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Astronomia. — A4 study on the large oscillation stability of trojan
asteroids around libration points. Nota di Virrorio Banri, pre-
sentata @ dal Corrisp. M. G. Fracastoro.

RIASSUNTO. — L’Autore considera il problema del moto dei pianetini troiani, tenendo
presente anche I’azione del pianeta Saturno, al fine di studiarne le grandi oscillazioni attorno
al punto triangolare L4, per confermare la non esistenza di oscillazioni periodiche, gia dimo-
strata dall’Autore stesso nel caso di tre corpi ristretto (sole, Giove, pianetino).

1. INTRODUCTION

Many investigations on the motion of a trojan asteroid around libration
points were made since 1959 till today. The astronomical problem has been
analytically approached by means of the mathematical model relating to
the three-body problem, in the general form as well as in the restricted one.

In a fundamental research carried on by W.H. Jefferys and J. Moser
(1966), a rigorous proof of the existence of a class of quasi-periodic solutions
of the three-body problem is given. Approximate solutions of the motion
problem, especially for astronomic and astrometric applications, are also
very important: they were found by P. I. Message (1959), E. Rabe (1961-1962)
and E. F. Goodrich (1966). In these studies the mentioned scientists endea-
voured to force the solution of the three-body problem into the frame of
Fourier series.

The present study intends to approach the trojan asteroid motion pro-
blem, starting from a more complicate mathematical model in respect of
that relating to the normal restricted three-body problem. In fact, the possible
perturbing action of Saturn on the asteroid motion is considered in order
to ﬁﬁd, if it exists, an influence on stability or on instability of the oscillations.
Geometrical and dynamical problems are established through the two
following steps:

1) restricted four-body problem, suitably defined;

2) large oscillation problem investigation (around libration points)
in order to confirm the non-existence of period oscillations, in the
restricted three-body problem, previously proved (Banfi, 1973).

2. FUNDAMENTAL ASSUMPTIONS OF THE MODEL

Saturn orbit has a small eccentricity (¢ = 0.0557) as well as Jupiter
(e = 0.0484); therefore, we suppose the two orbits be circular and in the same
invariable plane which contains also the Sun and the trojan asteroids. Let

(*) Nella seduta dell’8 febbraio 1973.
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O be the common centre of mass of the complete system, the origin of a
rectangular plane co-ordinate frame of reference. If we call (P,— O) the
radius vectors, corresponding to the three principal mass-points (i.e. 7 = 1
Sun, 7= 2 Jupiter, 7 = 3 Saturn), and =, the respective masses, then

3

() 2 (P:—O)m;= o

1

in every instant of the motion. Each one of the three radius vectors has its
own angular velocity around O (fixed point) and also constant amplitude;
furthermore, from the relation (), we have:

7

7y

(6) (P1—0) + (P> — 0) 22 +(P3—O)%=o,

where ms/m1 and msfmi are defined in this way

ms Jupiter mass

— . —3 = :
my ~ Sun mass 0.955-10 ws
t
s — M = 0.286-10"3 = 0.32 14
o Sun mass
and also

| Ps — O]

—_— = 1. .

m—o] — ¥

Besides, each radius vector (P;— O) can be analitically expressed in the
following manner

(P;—0)=|P;—O |4

whereas £; is the unit vector having the direction of (P;— 0). Relation (&)
takes the form

(Pi—0)=—|P:—0] 009355103 k2— | Ps— O | - 0.286- 1073 %3
or
(Ps—0O)=—|Ps— 0| 0.286-103 ks — | Po— O | - 0.055- 103 &s.

If the rectangular plane co-ordinate system, instead of having the origin in
the common: centre of mass, had P; as origin, then the new radius vectors
(Pe— P1) and (P3— Pi) should be

(P2—Pi) = (Po—O0) + (0O —P1) =
= |P2— O (0.955-1078 /s + 1.81-0.286 - 1073 £3) 4 (P2 — O)
(Ps—P1) = (Ps—0) + (O — P1) =
= | Ps— O] (0.286- 1078 %3 + -01'9% ~10—3,52) +(Ps—O0).
In these relations, it is pointed out that the vectors (Pa— Pi) and (Ps— P1)

differ from (Pe—O) and (Ps— O), in each instant of the motion, by for two
very small vectors whose magnitude i$ about 1/i000 of the magnitude of the

16. — RENDICONTI 1975, Vol. LVIII, fasc. 2.



222 Lincei — Rend. Sc. fis. mat. e nat. - Vol. LVIII — febbraio 1975

same vectors (P2—O) and (Ps—O). Then the error deriving from the
assumptions

@) origin in Py

6) circular orbits, for P2 and Ps, with P; as centre,
is smaller than that relating to the initial assumption, i.e. circularity and
complanarity of Jupiter and Saturn orbits. In any case, this error does not
invalidate the final goal of the present study.

3. ANALYTICAL DEVELOPMENT OF THE MODEL

By means of the previous assumptions, the restricted four-body problem
is established in a way similar that relating to the restricted three-body to
problem. Again, the mass of the trojan asteroid is considered so small to
have no gravitational influence on the three principal bodies (Sun, Jupiter and
Saturn), and at the same time it is influenced by those.

v}

Fig. 1. - §'(#',5’) and S (x,y) co—ordinate systems. P infinitesimal mass asteroid.
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Let us assume a rectangular plane co-ordinate system S’ (x',y') with Py
as origin (fig. 1), following the standard method of the restricted three-body
problem (Finlay-Freundlich, 1958), and P:, Ps moving with uniform speed
in two circles around the origin P; as common centre. Now we change from
a fixed co-ordinate system to another system S(x,y) with the following
properties. The new x-axis passes through Py and Ps, while the origin is still Py,
and obviously it is rotated (with the angular velocity of Jupiter around the
Sun) with respect to the x"-axis of the preceding system. The problem of the
motion of the asteroid is transformed into the problem of the motion of a body
of infinitesimal mass under the attraction of two fixed mass-points Py and P,
both lying on the x-axis, and of a third mass-point P3 which moves with
circular motion around the centre P1. The final stage is to obtain a system of
two differential equations, with the new (x , y) variables, for suitable discussion.
At first, it is convenient to assume the standard form of the equations (Finlay-
Freundlich 1958), i.e. without the superfluous constants. Introducing the two
ratios

= BTN 3 L RS RS . RPN,
b et = m mitma+omg — mg . O32 B
and also assuming |P:—Pi|=1 and |Ps— P;|=1.81, and a suitable

time-scale in order to render the constant of gravitation also equal to unity,
we can write the equations of motion of the asteroid with respect to S’ (', 3)
system:

d*x x x —x, ' —x,
= —(—132p) 5 —p—5——o032p
() ds 73 75 7'3
I
dZy/ }/’ J” J/’ y _}/3
o = (I r3zp) s —p s —o32p ——
'3 7y 7y r3

where 71,72 and 73 denote the distances of the asteroid from the three finite
masses. Changing reference system, i.e. from S'(x',5) to S(x,3) by
means of the formulae of transformation

x' = x cos t— ysin ¢
(2

Y =ycost—+ xsin ¢

we get the equations

[ % d®x dy d®y .
F:(dtz ———2W———:\c)cosz——(G.lt2 —|—2——— y)smt
(3) ‘
A dzy’ a2 d .
? d;; = (dtz +2 ———y) cost—{—( d d—};~x)smt.

The co-ordinates of P2 and Ps in respect of S’ (#/,y') system are

gxé = cos ¢ x3 = 1.81 coS 0,408

Ps

(2 bis) P,

| y4 = sin ¢ 5 = 1.81 sin 0,408 £ .
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Substituting into (1) the relations (2), (2bis) and (3), it is found that the
differential equation system, in (x,y) co-ordinates, is

d2x dy x x—1 x
—_—2 I—1.32 1) — . - t—
{dtz dt x4+ ( 32 ) ri*l—!i 2 —{-032“73 cos
d .
> +2 ———y+(1—132v-) 7+ 5 o320 I sin—
ds 1 2 3
—0.32" I.SI-u»ﬁ—cosofow =0
73
4)
[ 2t 2 ————~y+(1—132m +“y+032“y}cost+
ds 1 2 73
d?x dy x w(x—1) pwr | .
—22 — I—I1.32) — 4 ——~ 32— 1—
+ [dtz o x4 ( 32W) 3 -+ - + 0.32 - sin
—0.32-1.81-p sino.408t.

3
73

From these two equations the final differential equations in x and y are obtained
after multiplying by cos# and sin# and adding and subtracting respectively;
they are

d%x dy N X w(x—1) x.
— —2 2 =g — (I —1.32p) % — L —0.32 —-
P 5 = E( 3 u)rf ; 320 g+
—|—o.32-1.81—‘%coso,5921
73
®
y-{— -—y——(l——13zm——% 0.32;1.%—
7 7a 73
y. .
—0.32 - 1.81 —-sin 0,502 ¢ .

73
Remembering that 71,72 and 73 can be written in the form:
= Ja? + 52

7o = l/(x-— 1)2 + 32

= l/(x — 1.81 c0s 0.592 £)2 4 (y — 1.81 sin 0.592 £)?
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the system (5) becomes:

dzx—-zdyzx—-—-(1—~1 2 1) x . x—1 B
dzs2 dz 32 (x2 - y2)8/2 P [(x —1)2 + y2]3i2
—0.32 il
32 [(x — 1.81 cos 0.592 #)2 + (y — 1.81 sin 0.592 £)2]3/2 +

€0s 0.502 ¢
+o0.32-1.81p [(* — 1.81 cos 0.592#)2 + (y — 1.81 sin 0.592 £)2]3/2
© &y y y
rr +2—=—=y— (I 1.32 (L) (x2F 2302 — K [(x—1)2 + y2]3/2 J—
Y
O3 G 8T cos 0,502 4% + (¥ — 181 sin0.502 2P
sin 0.592 £

—o032- 181y [(x — 1.81 c0s 0.5924)2 + (y — 1.81 sin 0.592£)2J3/2

The differential equation system (6) describes analytically the motion of the
asteroid P, with respect to the system S(x, ), under the attraction of the Sun
and Jupiter and under the perturbing force exerted by the planet Saturn.
Let % = x0o=1/2, ¥ =y =3/2 denote the co-ordinates of a point of
libration; let also substitute, in system (6), # and y with the expression:
x:xo—i—izi—l—% ) J’=J’0—|“7)=“Q+—V—23—;
then it is possible to study the motion of P, in terms of co-ordinates £ and 7,
i.e. to investigate, if they exist, large and stable oscillations arount libration
point Po(xo, y0). In other words, the problem is to look for periodic or non-
periodic solutions of system (6), i.e. large and stable, or unstable, oscillations
starting from libration point.
Putting the 6 (bis) into the system (6), we obtain:

| Bt gL
a’g dy 1 !
at 72&4__2-——(1—[.32”) I) s M 1\ (V3 213/2
(e i (T el 2 ]
I
T3
—0.32 . - . y— - .
[(E}—F?——I'SI C05'0-5()”) + (7 + 7 —1.81sin 0.592 z‘) J
+0.32- 1.81- 1 czc)so.;gz; -
t(&—k 2 —1.81 cos 0'592") + (73 -+ n — 1.81 sin 0.592 t) }
/
(n ! s V3
n 2
o o _—7)—*— Ty 1\* (V3 e 1 V3 282
, [(E+§)+(7+n)] [(g—7)+(7+n) }
5
—o0,32p 1 22 - .
[(E—l— 7—1.81 cos asgzt) 4 (yH. 13 __1.81sino. 59”) ]

sin 0.592 £

V3

—0.32-1.81- : s
K -+ - 1.81 cos 0.5921) -+ ('y}—|—~~ > —1.81 sin o.592t>

3/2
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In a more compact form, the above system becomes:

S
|

d*E
ds2
d

*n g _
@ T2 =BE.

d:
_Z'a%:A(i»"))

®

where the functions A and B can be extracted from the system (7) with simple
analytical work. Starting from a previous paper (Banfi 1973), the knowledge
of periodicity or non-periodicity, of eventual solutions £ (#) and v (&) of sy-
stem (8), is obtained by the study of the indicating function F = %—‘2 + %%

A simply connected region in the plane (£, v), obviously including libra-
tion point Po, where the function F does not change sign in every instant of
time belonging to the full period of a complete revolution of Ps around Py,
contains no closed trajectories. In this case, no periodic solutions of equa-
tion (8) exist.

Let us write down the analytical expression for F = % + B
The calculation gives o

T e T T T
(g +,}> As+ (E+ %) A

5/2
Al

I
—“0-64!1(A—1)3,;+3‘0-32P‘ +

(sin 0.592 #) Az — (cos 0.592 #) Ag
A5/2
1

+3:0.32 - p-1.81

where

V3

Ay = (E /+%—1.81 cos 0.5921)2+ (7) +—-— 1.815sin 0.5925)2

A= ¢ + %— 1.81 cos 0.592 ¢
Az = + LE—— 1.81sin0.592 ¢.

Let us examine the values of F in an established region including the libration
point Po. A closed curve is drawn in fig. 2 which contains the largest astro-
nomically observed oscillations of trojan asteroids. It is convenient to fix
a definite field, for numerical verification of the function F which includes
the closed curve mentioned above. Choosing then each value for 7 of this set

+o0.2, 4o0.1, o, —o.1, —o0.2, —o0.3, —0.4

it is possible to calculate the second and third term of F [formula (9)] in
correspondence of each value for £ which allows to check completely the
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0
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\ /
Fig. 2. — Linear squared region for numerical check; curved region containing
observed oscillations.

region established in fig. 2. The remainder terms of F depend also upon ¢,
through A;,As and As. Writing F in the following form

F=Ki— Ky

where Ko and K are given by the formulae:

— — 1. I Y | 3 ‘
Ko =2 + (1 — 1.320) (4 1)+ ()" i (=) (5 )"

I
Ki=0.64 4 52 —
1

0.96 [(—g +-q) As+ (E—{— %) Az] +1.74 [(sin0.5922) Ag — (cos 0.592 £)Az]

— A?/2

because Ko is positive, it is necessary to calculate, within the field established
above and during the period of the revolution time of Ps, the maximum
positive value of Ki. This maximization calculus was carried out by an
electronic computer. Numerical results are gathered in the enclosed Table I.
It is easy to see that F remains always positive.
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TABLE 1.

| £ F ! 12 F
+o0,2 ——048 2,7238 o —0,3 3,4189
—+0,2 —0,7 2,7722 o —o0,2 3,2936
+o0,2 —0,6 2,8038 o —O0,1 3,1464
+o0,2 —O0,5 2,8148 o 7 o 2,9939
+o0,2 —0,4 2,8039 o +o,I 2,8481
+o0,2 —o0,3 2,7724 o +o0,2 2,7156
+o0,2 —0,2 2,7241 o +0,3 2,5987
+o0,2 —o0, 1 2,6036 o +0,4 2,4965%
40,2 o 2,5961 —o0,1 —o0,1 3,5454
40,2 +o0,1 2,5256 —o0,1 o 3,3022
+o0,1 —o0,8 2,9582 —o0,1 “+o0,1 3,0811
+o,I —o0,7 3,0341 —o0,1 +o0,2 2,8900
+o,1 —o0,6 3,0845 —o0,1 40,3 ' 2,7296
+o,1 —O0,5§ 3,1023 —o0,1 +0,4 2,5967
+o,1 90,4 3,0847 —o0,2 o 3,7281
+o,1 —0,3 3,0343 —0,2 +o,1 3,3855
“+o,1 —o0,2 2,9586 —o0,2 -+o0,2 3,1060
“+o0,1 —o,1I 2,8665 —o0,2 +0,3 2,8835
“+o,1 o 2,7674 —o0,2 +0,4 2,7082
+o,1 +o,1 2,6683 —o0,3 +o,1 3,7804
—}—"b,l +o0,2 2,5740 —o0,3 -+o0,2 3,3701
o —o0,8 | 3,2932 —0,3 +o0,3 3,0624
o —0,7 3,4186 —o0,3 -+0,4 2,8318
io —o0,6 3,5039 —0,4 —+0,2 3,6833
0 —0,5 3,5342 —0,4 +0,3 3,2635
o —0,4 3,5041 —0,4 +o0,4 2,9652

4. CONCLUSIONS

The analytical development of the proposed model shows that the non-
existence, generally speaking and for the examined region, of periodic
solutions can be affirmed in the case of large oscillations (in the plane £, 7)
around the libration point, of the trojan asteroid. The region under conside-
ration includes largely the maximum deviations astronomically observed.
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