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Topologia. — Maximal ideals in algebras of continuous C (S)

valued functions. Nota di WiLLiam Hery @, presentata ™ dal Corrisp.
G. ZapPA.

RIASSUNTO. — Siano S e T spazi completamente regolari, A algebra C (S, C) di tutte
le funzioni continue su S a valori complessi con la topologia compatto—aperta, C (T, A)
lalgebra di tutte le funzioni continue su T a valori in A, e #(X) lo spazio di tutti gli
ideali massimali di codimensione 1 nell’algebra X dotata di una certa topologia debole. Il
principale risultato della Nota concerne Desistenza di un isomorfismo di C (T ,A) su
C(TxAH(A), F) quando S & localmente compatto e realcompatto.

Let S and T be completely regular spaces, A the topological algebra
C (5,C) of all continuous complex valued functions on S with the compact-
open topology, C (T, A) the algebra of all continuous A valued functions on
T and # (X) the space of all maximal ideals of codimension 1 in an
algebra X endowed with the weak topology generated by the family
{%#:x€X}, where £(m)=x +m. If S is compact, C(S,C) becomes a
B* algebra and we can also consider the (Banach) algebra CB (T, A) of all
bounded continuous functions from T into A. In [14] Yood showed that
CB(T,A) is isometrically isomorphic to CB (T X.# (A),C), and there-
fcre 4 (CB (T, A)) is homeomorphic to the Stone-Cech compactification
B(T X.#(A)) (note that A and CB (T, A) are Banach algebras, so all maximal
ideals are of codimension 1). For S realcompact [5] and locally compact,
we obtain a similar isomorphism from C (T, A) onto C (T X.# (A), C); this
is then used to show that .# (C (T, A)) is homeomorphic to the realcompacti-
fication v (T X.# (A)). It is further shown that if S has nonmeasurable car-
dinal [5], # (C (T, A)) is also homeomorphic to (vI)X.# (A). These results
are then used to prove two known topological results: if S is a finite discrete
space and T is completely regular, then B (T XS) = (BT)XS [6]; and if S
is a locally compact, realcompact space with nonmeasurable cardinal, then
v (TXS) == (vI) XS [3]. Parallel results are obtained when A is the algebra
C(>,F) of all continuous functions from an ultraregular space S into a
nonarchimedean valued field F and T is ultraregular. (An ultraregular space
is one in which there is a base for the topology consisting of sets which are
simultaneously open and closed.) In that case, the Banaschewski (or nonar-
chimedean Stone-Cech) compactification [1 or 2] replaces the Stone-Cech
compactification and the F-repletion [1] replaces the realcompactification.
Either compactification will be denoted by B, both the realcompactification

(¥) Taken from the dissertation submitted to the faculty of the Polytechnic Institute
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and F-repletion will be denoted by v, and F will denote the underlying field
(complex or nonarchimedean); alternate statements for the nonarchimedean
case will be included in parentheses.

The properties of C (S, F) for a completely regular (ultraregular) space
S are well known ([5] and [1] are just two of several sources). Any f in
C (5, F) has a unique continuous extension v/ in C OS,F) and f —vf is
an isomorphism from C (S, F) onto C (S, F). The F valued homomorphisms
of C(S, F) are precisely the evaluation maps e,(f) = vf (p), with pevsS; all
such homomorphisms are continuous when C (S, F) has the compact-open
topology. Identifying the F valued homomorphisms with their kernels (which
must be closed maximal ideals of codimension 1), we consider .# (A) to be
a subset of the space A’ of all continuous linear functionals on the topological
vector space A = C (S, F); the topology on .#(A) generated by {f:fe A}
is then just the relative o (A’, A) topology [13]. Furthermore, identifying
the points of vS with .#(A), the original topology on vS coincides with the
relative o (A", A) topology. Thus, .# (A) is homeomorphic to vS; in particular,
if S is realcompact (F-replete) .# (A) is homeomorphic to S.

The isomorphism we are interested in is given by

ki C(T,A) >C(TXA(A),F) where f(t,m)=f() +m.
f=f
The first problem encountered is the continuity of £ With that in mind,

we say that .#(A) is locally equicontinuous if each point in .#(A) has an
equicontinuous neighborhood.

LEMMA 1. Let A be any topological algebra for which M (A) s locally
equicontinuous, T any completely regular (ultraregular) space and f € C (T , A).
Then f is continuous.

Proof. The continuity of f follows from the inequality
|F () —F (o, mo)| <1 f(O+m — (f (t)+m)| + | £ (t0) +m— (f(to) -+ ma),

the local equicontinuity of .#(A) at f (%), the continuity of f and the continuity
of m —f (¢0) + m.

The local equicontinuity of #(A) is not necessary to insure the continuity
of each 7: if T is a discrete space, each f is continuous. For the restriction of
f to each slice {# }X.#(A) is continuous by the definition of the topologv
on #(A), and the discreteness of T implies that {{t} x M) : 1€ T}
is an open partition of T X.#(A); thus 7 is continuous on TXAMA).

LEMMA 2. Let S be realcompact (F-replete) and A = C (S, F) with the

compact-open topology. Then MA) is locally equicontinuous if and only if
S s locally compact.

Proof. The polar of a set ECA is defined to be E° = {4 € A" : | 4(f) |<1
V€ E}; a subset of A’ is equicontinuous if and only if it is contained
in the polar of a neighborhood of the origin in A [13]. A base at the origin
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for the compact open topology is the collection of sets Bg, = {fe€A :
|/ (@ | <7 for all e K}, with K compact and 7€ (0, 1]. Direct compu-
tation (using the complete regularity of S) shows that (Bg )’ N MA) = K.
Thus the equicontinuous sets in .#(A) are precisely the relatively compact
sets, proving the lemma.

THEOREM 1. Let S be locally compact and realcompact (F-replete),
A =C (S, F) with the compact open topology and T completely regular. Then
h: C(T,A) —~C(TXAMA),F) is an isomorphism.

S=f

Proof. Only the ontoness remains to be shown. Let g€C (Tx.#(A), F).
For any # €T, g(t,s)€C (S, F); define f (%) =g (to, ). To show / is
continuous at %, let W = f (%) + Bk, be a basic neighborhood of f (z).
For any so€K, the continuity of g implies the existence of neigh-
borhoods U,, (20) and V (so) such that #€ U, (%) and se€V(so) imply
g (¢,5)—g(to,s50)| <7/2. Since K is compact, there exists a finite set
{5 }JCK such that {V(s;)} covers K. Let U(z) = N {Us, (%)}. Then if
t€U(#) and s € K, 5 must be in some V(s;) and

fOE =S| <lg@,)—gto,s)| +1gto,s)—g(t0,5)]| <r.

Thus, f () ¢ W and f is continuous; clearly 7 = g.
The following Corollary to Theorem 1 is due to Yood [14]; the proof

above is a modification of Yood’s proof (which only applied to S compact
and F =C).

COROLLARY 1. [f A is a B* algebra (N* Gelfand algebra with F locally
compact), then CB (1, A) is isometrically isomorphic to CB (T x.#(A), F).

Proof. In the complex case, A is isometrically isomorphic to C (#(A), C)
with the uniform norm; clearly f is bonded if and only if / is, and 1A = ILF Il
The same argument applies in the nonarchimedean case, noting that A is
isometrically isomorphic to C (#(A), F) if .#(A) is compact [12, p. 165],
which is the case if F is locally compact [12, p. 124]. An example in [8]
shows that the local compactness of F cannot be dropped, even if T consists
of only one point.

COROLLARY 2. Let A and T be as in Theorem 1. Then M (C (T ,A)) zs
homeomorphic to v(TX M(A)). In particular, if T is also realcompact
(F-replete), M (C (T, A)) is homeomorphic to T X M(A).

The conclusion . (C (T ,A)) =~ T X.# (A) has been obtained by Haus-
ner [7] when T is compact and A is a Banach algebra, by Mallios [10] when
T is compact and A is a locally multiplicatively convex topological algebra
whose completion is a Q algebra and by Dietrich [4] when T is a completely
regular £-space and A is a complete locally convex topological algebra with
AM(A) locally equicontinuous; the latter two used the space of all closed
maximal ideals of codimension 1 in lieu of .#(X) as used here and give
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C(T,A) the compact-open topology. The results here neither supercede
nor are superceded by the above results. When T is a completely regular
realcompact 4-space and S in locally compact and realcompact, C (S, F)
is complete (see below) and both Corollary 1 and Dietrich’s result both apply.
Since the elements of .# (A) are all closed, we see that the elements of
# (C (T, A)) are also all closed; i.c., all F valued homomorphisms of C (T , A)
are continuous.

COROLLARY 3. Let A and T be as in Corollary 1. Then 4 (C (T, A)) is
homeomorphic to B (T X M(A)).

Proof. Since F is locally compact, CB (T X.#(A), F) = C* (T x4 (A), F)
(the aigebra of continucus functions with relatively compact range). In
both the complex and nonarchimedean [1, Theorem 7] cases, the maximal
ideal space is then known to be B (T X.# (A)).

Another representation of .# (C (T ,A)) is available when A is also
realcompact (F-replete), which will be true when S is locally compact and
S and F have nonmeasurable cardinal. For then S is a 4-space [9, p. 231]
and C (S, F) is complete in the compact-open topology [/6id.]. (This applies
in both the complex and nonarchimedean cases, since the only property
of F used is that it is a uniform space). Shirota’s Theorem [5, p. 232] then
shows that A is realcompact. The cardinality restriction is not too severe,
since a measurable cardinal must be an inaccessable cardinal, and the
nonexistence of inaccessable cardinals is consistent with the Zermelo-Frankel
axioms of set theory with the axiom of choice; it is therefore not possible to
prove the existence of measurable cardinals within that axiom system.

COROLLARY 4. Let T,S and A be as in Theorem 1 and A realcompact
(F-replete).  Then M (C (T ,A)) is homeomorphic to (VI) X M(A).

Progf. By the realcompactness (F-repleteness) of A, each feC (T, A)
has a unique extensicn vf € C ("T , A) and / — vf is an isomorphism. Applying
Corollary 2 and using the realcompactness of vT and S yields the desired result.

We next use these results to prove two known topological results.
(These results have been published for the complex case. I am not aware
of anything in print regarding the nonarchimedean case, but it seems that
proofs analogous to those published for the complex case would be possible.)

’P’ROPOSITION 1 (Glicksberg). Let S be a finite discrete space and T com-
pletely regular (ultraregular). Then B (T xS) =~ (BT)xS.

Proof. Let F be the complex numbers (any locally compact nonarchi-
medean valued field, such as the 2-adic numbers) and A =C (S, F) with

the uniform norm. Since .# (A) =S, it sollows from Corollary 3 that
M (CB(T,A)) = B(TxS). Using the local compactness of A, we obtain

CB(T,A) =C*(T,A)=~C (BT ,A) = CB (8T, A)..

Applying Corollary 3 again, we obtain .#(CB (T, A)) = (BT)XS proving
the corollary.
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PROPOSITION 2 (Comfort-Negrepontis). et S be a locally compact and
realcompact (locally compact, ultraregular and F-replete) space with nonmeasu-

rable cardinal, and T completely regular (ultraregular). = Then v(T XS) =~
OT)xS.

Proof. Let A=C(S,F). From the remarks preceding Corollary 4,

we see that A is realcompact (F-replete); the proposition then follows from
Corollaries 2 and 4.

In [3], Comfort explores the consequences of this proposition in relation
to the question of when v (T xS) is homeomorphic to OT) X (vS).

We conclude by noting that Theorem ‘1, Corollaries 2 and 4, and Pro-
position 2 are also true if T is discrete and S is a k-space (instead of a
locally compact space) (see the remarks following Lemma 1). Since a discrete
space is realcompact if and only if it has nonmeasurable cardinal, the con-
clusion of Proposition 2 in this case is trivial when T has unmeasurable
cardinal; but if T has measurable cardinal and S is a realcompact £-space
with unmeasurable cardinal, v (T XS) 22 (VT)xS = (VI) X (vS) is of interest.
This condition can then be added to the list of sufficient conditions developed
by Comfort in [3] for v (T XS) to be homeomorphic to O T) X (vS).
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