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Geometria differenziale. — On Fibred Spaces with Invariant Equi-
Jorm Connection and Torseforming Structure Vector Field. Nota di
Tanjiro OkuUBoO, presentata @ dal Socio B. SEGRE.

RIASSUNTO. — Vengono discusse condizioni necessarie e sufficienti affinché uno spazio
fibrato con fibra 1-dimensionale sia tale che un vettore tangente alla fibra risulti torsiforme,
in modo inoltre che lo spazio ammetta una connessione invariante equiforme. Si mostra poi
come uno spazio fibrato tale che ad ogni cammino sullo spazio base corrisponda per proiezione
ancora un cammino, possa venire dotato di una connessione invariante equiforme coll’asse-
gnare un’arbitraria connessione affine simmetrica sullo spazio base.

INTRODUCTION

The notion of fibred spaces has recently been developed by many
geometers M. In differential-geometrical point of view its idea goes far back
to the five dimensional metric space considered by Th. Kaluza [2] and
O. Klein [3] for establishing a unified field theory of gravitation and electro-
magetism. In those fibred spaces it has been known that there is a notable
fibre structure such that the projection of any path in total space is still a
path in base space with respect to the connection induced from an invariant
connection introduced in total space [1]. On the other hand a special
connection called the volume preserving connection or simply the equiform
connection that arises in the theory of affine connections serves best for dealing
with affine metric properties parallel to the réle of the Levi-Civita connection
in Riemannian manifolds. In this paper we shall deal with these two concepts
by taking fibred spaces with 1-dimensional fibre in which the vector field
tangent to each fibre is torseforming and the total space admits an invariant
equiform connection.

§ 1 is devoted to describe the structure of fibred spaces with 1-dimensional fibre and
one sees there that the torseforming vector field indeed provides the fibred space with the
fibre structure said as notable above (Proposition 2). §* 2 discusses the condition for such
a fibred space to admit an invariant equiform connection and shows for this kind of fibred
spaces that if the horizontal lift of a path in the base space is also a path in the total
space, then it is always possible to endow an invariant equiform connection to the total space
by giving an arbitrary symmetric affine connection in the base space.

(*) Nella seduta dell’8 febbraio 1975.
(1) For the development of the theory one refers to those papers almost comprehensively
enlisted in the bibliographical section of ‘* Differential geometry of fibred space ” (S. Ishihara

and M. Konishi [1]). Throughout the present paper we adopt the same terminologies and
notations that were used in [1].
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§ 1. FIBRED AFFINE SPACES AND TORSE-FORMING VECTOR FIELD C

Let M and M be two differentiable manifolds, of dimension # + 1 and
n respectively and assume that there is a differentiable mapping = : M —>M
which is onto and of maximum rank # everywhere Then, for each point
P of M, its inverse image 7! (P) is a curve in M which is called the Jibre
over P. We suppose that every fibre is not discrete. Such a set { M ,M , =}
is called a fibred space, M the fotal space, M the base space and T the projection.
Throughout the present paper, manifolds, mapping and geometric objects
we deal with are assumed to be differentiable and of class C*. Let C be a

-~

vector field tangent to fibres such that C is non-zero everywhere in M.
Let v be a 1-form satisfying

(1.1) nC)y=1 , PLv=o0,

where £ denotes the Lie derivative with respect to C. For a vector field X
in M, we define its horizontal part X" by

X"=X—yXC,
and for a 1-form & in M, its horizontal part &'

&'=6—8a0C)7.
7 (X)C and & (C) 9 are then called the vertical part of X and & respectively.
For a functlon fin M, its horlzontal part f is identified with f itself. For a

tensor field T, its horizontal part T and vertical part TV are tensor fields

of the same type as T, such that they are inductively characterized by the
formula

Geh =St , @S+ 0)"=38H+0%
Sel)Y =8« , E+0)V=5v4+0V
T is said to be invariant if it satisfies the condition
LT =o0
and to be projectable if it satisfies
(#TY =

- Let {U,X"}® and {U,2"} be local coordinate neighbourhoods of
M and M respectively such that U == (U). The projection ©: M —M is
locally expressed by certain equations

(1.2) v = 0° (")

(2) We adopt the following convention for inidices: %,7,7,% run over the range
1,2,---,7-+1, and @,b,c,d,e run over the range 1,2, --, 7.
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in {U,2"} and {U, 2"}, where »" are coordinates of an arbitrary point
P €U and ¢° are those of the point P == PeU, ¢* (+") being differentiable
functions of variables x”. Differentiating (1.2) we put

(1.3) Ef =99 , (5 =03x").
Then
(1.4) G ES=03E/"

and we have the local covector fields E* having in U with components E;*
for each index a. Since C is tangent to each fibre and 7 (C) = 1,

(1.5) C'Ci=1 , C;E°=
where C, are the components of v. These 7 + 1 local covector fields E“ and 7

are linearly independent and hence form a coframe in U. Because of (1.3)
the inverse of the matrix (E/ C,) has the form

E%
(Eia , C;'>—1 _ [ ;J
C

which gives rise 7 local vector field E; in U having the component E*;, and
we have

(1.6) E}Df =8 , E,Ci=0 , CE’=o0 , CC/=1,
that is,
LE'E)=98 , nE)=o0 , E©C=o0 , 7O=
or equivalently
(1.7) ESE', +C,C' =%,

Because of (1.4) and (1.5) we have

ZE =C3E +E5C =C3E*+E2C =C,(C’Ef)=o,
which together with (1.1) and #C = o yields the formula
(1.8) QEa =0

, ¥C=0 , ZE'=0 , %v=o0.

A function £ in M is invariant if and only if  is constant along each fibre
and there is a unique function # in M given by f = for. Any tensor field

in M, say T of type (1.1), is expressed locally in U as
(1.9) T =TS E'QE, + T, E’&C + Ty & E, + T n®C .

T, T, T" and T, are functions in U Then if T is invariant, then T," is an
invariant function, i.e. ZT,"=o0. T is projectable if and enly if T, is an
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invariant function and for any such projectable tensor ﬁeld T of M there is
a umque tensor field T in M, called the prOJectlon of T and denoted by
T = #T, such that T has components T,* in U if T has the local expression
(1.9) in U. Given a tensor field in M, say T of type (1.1) with component
T,% in {U, 9"}, a horizontal tensor field T in M will be defined by the local
expression

T =T,E’QE,

in U and T is called the lift of T and denoted by T =T" For a function
/ in M, its lift /"~ is deﬁned by f*=for.

An affine connection V is called an invariant affine connection if #V — o,
that is, if V satisfies

(1.10) Vs X) = VLXK +Vey X,
for any vector fields X and Y in M. Taking X" and Y" of arbitrary vector
fields X and Y in M and substituting them into (1.10) we find
£ Ve XY =0
which shows that €7yL X" is an invariant vector and is projectable. Hence

(1.11) P (Ve XY = ¥y X

defines an affine connection V in M, which we call the projection of V and denote
by ])V Supposing that such invariant connection is torsionless, we assume
that the vector field C satisfies the condition

(1.12) Vs C=a¥ |, (e ==0.is constant) .

In this case C is said to be a torseforming vector field. Then, by means of
(1.6) and Zv = o0, we have (1)

%]‘ E,‘a——— —_ FZ} E]f E,‘b - O(Eja C,’ - OCCj E,'a,
(i) V;C; = — /s ES E—aC; C;
(1.13 .
B =T ES B+ by Ef C' 4 oC; B
S Ch = a8/,

where 'y and 4. are invariant functions locally defined in U. Since (1.4)
is identical with the equation

V,ES =V, Ef
we see from the first of the equations in (1.13) that

(I'I4> . Ptb - FZ: )

that is, the connection V of M defined by (1.11) is torsionless.
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Tensor field % with local espression
h=hsE°@E’

in U determines a global tensor field in U and its projection P4 is now denoted
by 4. Because of the second equation in (1.13) we have

(1.15) dy = — — (hs— Jup) B B o \ doe’

and, since d dn = o, we have

(1.16) B (hes — Tsc) + 3¢ (hoa— hap) + 35 (e — hea) = ©
or by using (1.14)

(1.17) Vi (s — he) + Vo (hsa— ha) + Vi (lge— ha) = 0,

which show that the 2-form % = /4, dv‘/\ de’ is closed in M and hence %
determines the characteristic class of { M,M , =} ®. In this sense /% shall
be called the structure tensor field henceforward.

By means of (1.15) the horizontal distribution defined by % = o is
integrable if and only if '

(I.IS) }1[5 :/lh

and it is easily seen that {M M,=n} is locally trivial (1).
In M with connection V, a curve I'in M is called a path if

I'" = oI

a being a function along ¢. Then the fourth equation in (1.13) implies

C/V,C" = aC".
Hence we have

PROPOSITION 1. /% a fibred space with invariant affine connection N in
which C is torseforming, each fibre is a path.

Let I' be a curve in M and denote by vy its projection in M. If I'hasa
local expression x* = " (#) in {U, 2"}, # being a parameter, and if y has
a local expréssion v* = 2°(#) in { U, 2"}, then, using (1.2), we have

o (1) = o (& ()

from which by differentiation

doe o dxi
s =E, “ar

(3) For the existence of the characteristic class determined by /% with respect to
general fibred spaces, see [1].
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Differentiating covariantly and using the first equation in (1.13), we get

32 pa a 2t dx?  doe
dze = E; drz — ok, Az dz
where
3272 . d2ye e doe  do?
d2 ~ de U e Tar T
82 x4 d2 x" s dxs daf
dz + Ty Tdr

and T jf,- are the coefficients in U of V. Thus we have

PROPOSITION 2. In the fibred space of Proposition I the projection
of any path in M is a path in M with respect to V == V.

Consider a curve y in M with local expression 2 = ¢°(#), # being a
parameter, and denote by I' the horizontal lift of v, which is supposed to
have local expression x* = x" (#). Then

dxt . doe
dz =EL Tdar

Differentiating covariantly and using the third equation in (1.13), we get

32xh Ly 20 doe ”
dze = E% dr +<;"” dz dz )C

from which we have

PROPOSITION 3. [If the structure tensor field h satisfies
(1.19) hey + s =0,

then the horizontal lift of a path in M is also a path in M and for the case,
w: M =M preserves affine parameter along corresponding paths.

Keeping the assumption that the vector field C of fibred space { M,M, T}
with invariant affine connection V is torseforming and using the Ricci formula

~

(I.ZO) Vk %j Xh —_

~

Vj %.é X;l == Rkj,’h Xi

for any _tensor field X = X*3, in M, Rk,, being components of curvature
tensor R of V, we have the structure equations (|)

Rus = Ru® + o [(38 ey — 88 heas) — (hrae — o) 8]

(1.21) -
0

Rzlcb - Vd ht‘b Vc }za’b

S 0 S 0 S a

Rip =0 , Ragy =0, Rug =0,

(1.22)

Rud = Ruoe” = Raoo) =
a0 — O , Rgoo = O , Kgoo = O,
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in virtue of (1.13), where we have put
Ru'= R/ EYELEL RS, Rap= Ry B CTEL Ky,
Rud = ﬁkjih E%ELE,C, , Ral= ﬁkj;‘h E%C E, G,
Ruo' = ﬁkaﬁ EY ELCES , Ru'= Rkjih EY,C’C'E/*,
Ruo = ﬁkjih ELEL.C'Ch , Ru' = R/ejih Ef,C7Ci ¢,

and R,," are components of the curvature tensor R of V = p% defined by
the Ricci formula

(1.23) V.V, X*— V.V, X = Ry, X*

for any tensor field X = X*9,, (3, = 3/30%), in M.

§ 2. FIBRED SPACE {M ,M, =} WITH INVARIANT EQUIFORM CONNECTION V
AND TORSEFORMING VECTOR C.

The affine connection V dealt with in § 1 being torsienless, we have the
Bianchi identities of the first and second kind:

(2.1) Ry, + ﬁﬁkh + Ry =o,
(2:2) ViRy/ A+ v R 4+ ViR =o0.

In (2.1) we put 7 = % and summing up from 1 to # -+ 1, we have

(2.3) Ry’ =

Iy

N
& — Raj s

where Iikj = ﬁ,~kji are the components in U of the Ricci curvature tensor of
V in which we have used the fact resulting from (1.20) that ﬁk]‘l‘h are skew-
symmetric with respect to the indices £ and 7. Again in (2.2) we put 7 = %
and summing up, we get

(2.4) Vi Ry — R + Ve Ry — Rp) + V, Ry — Ra) = 0

in virtue of (2.3). N
Similarly we have for A = »V ,

Rus* + Ru” + Ry = o

Ve Rdtba '"I" Vd Rreba + Vr Rebda =0
and

(25> R:baa == Rh'a - ;ba ’

(2.6) ViR —Ry) + V.(Rse—Ra) +Vi(Re.— Ry =o0.
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We now suppose that our invariant affine connection V keeps the affine
volume 1 covariantly constant, that is, V, u = o, where 1 is by definition”
the simple (2 -+ 1)-vector having components

4
uhl ey nt1
1 1
% &
2" E e o S /(% _I_ I) |
A %
7R Vet
n+1 n+1

in U, and it is characterized by (4)
(27> Rkj,'i = 0.

Such a connection is called the volume preserving affine connection as simply
the equiform connection and as is seen from (2.3) the Ricci curvature tensor
is symmetric for this case and accordingly the equations (2.4) reduce to trivial
ones.

We have assumed that the vector field C is torseforming and obtained
the structure equations (1.21) and (1.22). Then the condition (2.7) and (1.22)
imply that Ry, should vanish, which in turn implies in virtue of (1.21) that
we should have

(2.8) Ria" = (n + 1) o0 (hge — hy) .
The ‘comparison of (2.8) with (2.5) yields

(29) }ldc - }lzd = (R-m’_' Rd;)/(% + I) o .

Thus we have

THEOREM 1. Zez {M ,M, T} be a fibred space with invariant affine connec-
tion N\ in which the vector field C tangent to the fibre is torseforming. Then the
necessary and sufficient condition Sor €7 to be an equiform commection is that
the structure tensor field h be related by (2.9) with the Ricci curvature tensor
Jreld of V = p{7. When this condition is satisfied, equation (2.4) coincides
with (1.16).

‘ Further, if we suppose that % is an skew-symmetric tensor, i.e., if (1.19)
is satisfied, then we have from (2.9)

(2.10) g = (Raz— ) 2(n+1)«

and consequently % is completely determined by giving an arbitrary affine
connection in M, and the connection V is of equiform because (2.10) yields
Ryi" = 0. Hence, by taking account of Proposition 3 too we have

THEOREM 2. et {1\7[ M, } be a fibred space and V be an arbitrary
symmetric affine connection in M. Then, if ome chooses the structure tensor
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field h in such a way that h satisfies (2.10), it is always possible to endow
{1\7[ M, 7t } with an invariant equiform conmection in which the vector field C
is torseforming and the horizontal lift of any path in M is also a path in M
that has the same affine parameter.

Coming back to a general V, if its Ricci curvature tensor field vanishes
identically, then we have (2.7) again in virtue of the equations (2.3) and
consequently V is of equiform too. For the case we have from (1.21) and
(1.22), [1]

hge = — (nRye + R[(m2—1) o,

which of course satisfies condition (2.9) and in this case % is again com-
pletely determined by giving an arbitrary affine connection V in M and for
the case it has been proved by S. Ishihara and M. Konishi that the R¥
with components Ru in U given in (1.21) is the Weyl projective
curvature, [1].
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