ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

MICHAL KISIELEWICZ

Description of a class of differential equations with set-valued solutions. Nota I

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **58** (1975), n.2, p. 158–162. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1975_8_58_2_158_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Equazioni funzionali. — Description of a class of differential equations with set-valued solutions. Nota I di Michael Kisielewicz, presentata (*) dal Socio G. Cimmino.

RIASSUNTO. — Nelle presenti Note (I e II) proviamo il teorema di tipo Orlicz per equazioni differenziali con soluzioni a valori che sono insiemi compatti convessi. Questa Nota contiene le definizioni di base e la dimostrazione della completezza di uno spazio metrico fondamentale.

INTRODUCTION

In [6] W. Orlicz proved that the class of all differential equations of the form y' = f(t, y) which have more than one solution is of the Baire first category. Later on, this type of theorem was proved for a partial differential equation of the hyperbolic type by A. Alexiewicz and W. Orlicz ([1]). The aim of the present Notes (I and II) is to give a proof of the analogous theorem for differential equations with set-valued solutions of the form:

$$DX = F(t, X),$$

where $F: [o, T] \times H \to H$ is a given mapping and (H, r) denotes the metric space of all nonempty compact convex subsets of the Euclidean space R^n with the metric function r given by the Hausdorff distance. It is known ([4]) that (H, r) is a complete metric space. The existence and uniqueness of solutions of the initial value problem of (1) have been proved in [2] and [3]. In § 1 we give some basic definitions and conventions. The §2 contains the proof of the completeness of a fundamental metric space which we introduce in this paragraph.

§ 1. BASIC DEFINITIONS AND CONVENTIONS

Let R^n denote the Euclidean n-space and denote by (H,r) the metric space of all non-empty compact convex subsets of R^n , where r is the metric given by the Hausdorff distance. If A and B are given points of H, it is defined $A+B=\{x+y:x\in A,y\in B\}$ and $\lambda\cdot A=\{\lambda x:x\in A\}$ where $\lambda\in R_1$ and $\lambda\geq 0$. We define the difference A-B as the set C, if it exists, such that A=B+C. In [2] was proved the following Lemma:

LEMMA 1. Let $\lambda \ge 0$, X, Y, U, V \in H and suppose differences X - U and Y - V exist. Then

$$r(X + U, Y + V) \le r(X, Y) + r(U, V),$$

 $r(X - U, Y - V) \le r(X, Y) + r(U, V),$
 $r(X + U, Y + U) = r(X, Y),$
 $r(\lambda \cdot X, \lambda \cdot Y) = \lambda r(X, Y).$

(*) Nella seduta dell'8 febbraio 1975.

Let D be a measurable subset of R^1 such that $\mu(D) \in (o,\infty)$. A function $F:D \to H$ is said to be measurable if for each $C \in H$ the set $\{t: F(t) \cap C = \varnothing\}$ is Lebesgue measurable. The mapping F is called Hukuhara integrable if the single-valued function $\|F(t)\| = r(F(t), o)$, where $o = (o, \cdots, o)$, is Lebesgue integrable on D. In this case we shall denote by $\int_D F(t) \, \mathrm{d}t$ the Hukuhara integral of F on D. The mapping $F: H \to H$

is called continuous in $C \in H$ if for every number $\eta > 0$ there is a number $\delta > 0$ such that for $X \in H$ such that $r(C, X) < \delta$ we have $r(F(C), F(X)) < \eta$.

Let $X : [\alpha, \beta] \to B$ be a given mapping. Using the definition of the difference in H, the Hukuhara derivative ([5]) of X may be introduced in the following way:

(2)
$$DX(t) = \lim_{h \to 0^+} (1/h) \cdot (X(t+h) - X(t)) = \lim_{h \to 0^+} (1/h) \cdot (X(t) - X(t-h))$$

where X is assumed to belong to the class \mathcal{D} (clearly not empty) of all functions such that the differences in (2) are possible. The mapping X is called Hukuhara differentiable in $[\alpha, \beta]$ if DX (t) exists for every $t \in [\alpha, \beta]$.

We recall some topological notations in (H, r). Let $\{A_n\}$ be a sequence of (H, r). The sequence $\{A_n\}$ is said to be convergent to $A \in H$ if $\lim_{n \to \infty} r(A_n, A) = o$. Let $S \subset H$ and let \overline{S} denote the closure of S. We shall write $A \in \overline{S}$ if and only if there is a sequence $\{A_n\}$ such that $A_n \in S$ for $n = 1, 2, \cdots$ and $r(A_n, A) \to o$ as $n \to \infty$. We call the set $S \subset H$ dense in $B \subset H$ if $B \subset \overline{S}$. We shall call the set $S \subset H$ non-dense if there is not a ball K of (H, r) such that $K \subset \overline{S}$. The set $S \subset H$ is said to be of the Baire's first category in (H, r) if there exists a sequence $\{S_n\}$ of non-dense subsets of (H, r) such that $S = \bigcup_{n=1}^{\infty} S_n$.

Finally, we recall the Arzelà theorem for multi-valued mappings ([4]).

THEOREM (Arzelà). Suppose $\{X_n(t)\}$ is a sequence of mappings from $[\alpha, \beta]$ to H which is equicontinuous and uniformly bounded on $[\alpha, \beta]$. Then there is an uniformly converging subsequence of $\{X_n(t)\}$.

§ 2. The fundamental metric space

Suppose $F: [o, T] \times H \to H$ is a mapping such that the following Hypotheses H(F) are fulfilled. Hypotheses H(F):

- (i) $F(\cdot, X)$ is measurable for every fixed $X \in H$,
- (ii) $F(t, \cdot)$ is continuous for every fixed $t \in [0, T]$,
- (iii) there exists a Lebesgue integrable function $\varphi: [o, T] \to \mathbb{R}^1$ such that $\| F(t, X) \| \le \varphi(t)$ for every $(t, X) \in [o, T] \times H$, where $\| F(t, X) \| = r(F(t, X), o)$; $o = (o, \dots, o)$,

- (iv) for every $\eta>o$ there exists a mapping $G_{\eta}:[o\,,T]\times H\to H$ such that
 - (a) G_{η} satisfies (i)-(iii);
- (b) G_{η} is uniformly Lipschitz continuous with respect to X, i.e. there is a number L>0 such that $r(G_{\eta}(t,X),G_{\eta}(t,Y))\leq Lr(X,Y)$ for $X,Y\in H$ and every $t\in [0,T]$;

(c)
$$r(F(t, X), G_{\eta}(t, X)) < \eta$$
 for every $(t, X) \in [0, T] \times H$.

Let \mathscr{B} denote the class of all mappings F satisfying the Hypotheses H(F). An equivalence relation \sim is defined on \mathscr{B} by stating that $F_1 \sim F_2$ if $F_1(t,X) = F_2(t,X)$ for almost every $t \in [o,T]$ and fixed $X \in H$. The equivalence class containing F is denoted by \tilde{F} . The space \mathscr{F} is taken to be the quotient space \mathscr{B}/\sim . A metric $\rho_{\mathscr{F}}$ on \mathscr{F} is defined by

(3)
$$\rho_{\mathscr{F}}(\tilde{F}_1, \tilde{F}_2) = \int_0^T \sup_{X \in H} r(F_1(t, X), F_2(t, X)) dt \quad \text{for} \quad F_1 \in \tilde{F}_1, F_2 \in \tilde{F}_2.$$

We shall prove the following Theorem:

THEOREM 1. $(\mathcal{F}, P_{\mathcal{F}})$ is a complete metric space.

Proof. Let $\{\tilde{F}_n\}$ be a sequence of \mathscr{F} such that $\rho_{\mathscr{F}}(\tilde{F}_n, \tilde{F}_m) \to 0$ as $n, m \to \infty$, and let $F_n \in \tilde{F}_n$, $F_m \in \tilde{F}_m$. For every $\eta > 0$ there is $N = N(\eta)$ such that

$$\int_{0}^{T} \sup_{\mathbf{X} \in \mathbf{H}} r(\mathbf{F}_{n}(t, \mathbf{X}), \mathbf{F}_{m}(t, \mathbf{X})) dt < \eta$$

for n, $m \ge N(\eta)$. Suppose $\{n_k\}$ to be such that $n_1 < n_2 < \cdots$ and $n_k \ge N(1/2^{2k})$. Then

$$\sup_{{\bf X}\in {\bf H}} r\left({\bf F}_{n_k}(t\,,\,{\bf X})\,,\,{\bf F}_{n_{k-1}}(t\,,\,{\bf X})\right)\,{\rm d}t \leq {\bf I}/2^{2^k}$$

for k=1, 2, Taking $A_k=\{t:\sup_{X\in H}r\left(F_{n_k}(t,X),F_{n_{k-1}}(t,X)\right)>1/2^k\}$ we have

$$\mathrm{I}/2^{2k} \geq \int_{\mathbf{A}_{t}} \sup_{\mathbf{X} \in \mathbf{H}} r\left(\mathrm{F}_{n_{k}}(t, \mathbf{X}), \mathrm{F}_{n_{k-1}}(t, \mathbf{X})\right) \mathrm{d}t \geq \left(\mathrm{I}/2^{k}\right) \cdot \mu(\mathbf{A}_{k}).$$

Then $\mu(A_k) \leq 1/2^k$. Let $A = \bigcap_{i=1}^{\infty} \bigcup_{k=i}^{\infty} A_k$. Since $\mu(A) \leq \mu(\bigcup_{k=i}^{\infty} A_k) \leq \sum_{k=i}^{\infty} \mu(A_k) < \sum_{k=i}^{\infty} (1/2^k) = 1/2^{i-1}$ for $i = 1, 2, \cdots$, then $\mu(A) = 0$. Let $A^{\sim} = [0, T] \setminus A$ and $A_k^{\sim} = [0, T] \setminus A_k$. We have $A^{\sim} = \bigcup_{i=1}^{\infty} \bigcap_{k=i}^{\infty} A_k^{\sim}$. Then for $t \in A^{\sim}$ there is a

number i such that for every $k \ge i$ we have $\sup_{X \in H} r(F_{n_k}(t, X), F_{n_{k-1}}(t, X)) \le \le 1/2^k$. Since for an arbitrary k, $m \ge i$ such that k < m we have

$$\begin{split} \sup_{\mathbf{X} \in \mathbf{H}} r\left(\mathbf{F}_{n_k}(t\,,\,\mathbf{X})\,,\,\mathbf{F}_{n_m}(t\,,\,\mathbf{X})\right) \leq \\ \leq \sup_{\mathbf{X} \in \mathbf{H}} r\left(\mathbf{F}_{n_k}(t\,,\,\mathbf{X})\,,\,\mathbf{F}_{n_{k+1}}(t\,,\,\mathbf{X})\right) + \dots + \sup_{\mathbf{X} \in \mathbf{H}} r\left(\mathbf{F}_{n_{m-1}}(t\,,\,\mathbf{X})\,,\,\mathbf{F}_{n_m}(t\,,\,\mathbf{X})\right) \leq \\ \leq \left(1/2\right)^{k+1} - \left(1/2\right)^{m+1} \end{split}$$

then $\sup_{X\in H} r\left(F_{n_k}(t\,,X)\,,\,F_{n_m}(t\,,X)\right)\to o$ as $k\,,m\to\infty$ for $t\in A^\sim$. The space $(H\,,r)$ is a complete metric space, then for every fixed $(t\,,X)\in A^\sim\times H$ the sequence $\{F_{n_k}(t\,,X)\}$ is convergent to some element $G(t\,,X)\in H$. Therefore we have the mapping $G:A^\sim\times H\to H$ such that $r\left(F_{n_k}(t\,,X)\,,\,G\left(t\,,X\right)\right)\to o$ as $k\to\infty$ for every $(t\,,X)\in A^\sim\times H$. The function G is measurable in t for every fixed $X\in H$. We shall show that $\sup_{X\in H} r\left(F_{n_k}(t\,,X)\,,\,G\left(t\,,X\right)\right)\stackrel{\rightarrow}{\to} o$ as $k\to\infty$ for $t\in A^\sim$. Indeed, let $g_k(t\,,X)=r\left(F_{n_k}(t\,,X)\,,\,G\left(t\,,X\right)\right)$ for $(t\,,X)\in A^\sim\times H$. For every $k=1\,,2\,,\cdots$ and $(t\,,X)\in A^\sim\times H$ we have $|g_k(t\,,X)-g_{k-1}(t\,,X)|\le r\left(F_{n_k}(t\,,X)\,,\,F_{n_{k-1}}(t\,,X)\right)$. Therefore $\sup_{X\in H}|g_k(t\,,X)-g_{k-1}(t\,,X)|\le 1/2^k$ for every $t\in A^\sim$ and $k\ge i$. Hence it is easy to see that the series $g_0(t\,,X)+\sum_{k=1}^\infty [g_k(t\,,X)-g_{k-1}(t\,,X)]$ is absolutely and uniformly convergent. Consequently, the sequence $\{g_k(t\,,X)\}$ is uniformly convergent on $A^\sim\times H$. Therefore for $t\in A^\sim$ we have $\sup_{X\in H} r\left(F_{n_k}(t\,,X)\,,\,G\left(t\,,X\right)\right)\stackrel{\rightarrow}{\rightarrow} o$ as $k\to\infty$. Let $F:[o\,,T]\times H\to H$ be the mapping defined by

$$F(t, X) = \begin{cases} G(t, X) & \text{for } (t, X) \in A^{\sim} \times H \\ \{o\} & \text{for } (t, X) \in A \times H \end{cases}.$$

The mapping F is measurable in t for fixed $X \in H$. It is continuous in X for every fixed $t \in A$. Furthermore for any $C \in H$ and arbitrary $\eta > 0$ there exists a number $\delta > 0$ such that $r(F_{n_k}(t,X),F_{n_k}(t,C)) < \eta/3$ whenever $r(X,C) < \delta$ for k=1, $2,\cdots$ and $t \in [0,T]$. Hence and from the uniform convergence of $\{F_{n_k}(t,X)\}$ it follows that F is continuous in X for fixed $t \in A^{\sim}$. It is easy to see that $\|F(t,X)\| \le \varphi(t)$ for $(t,X) \in [0,T] \times H$. Now, suppose N is such that $r(F_N(t,X),F(t,X)) < \eta/2$ for $(t,X) \in A^{\sim} \times H$ and let $G_{\eta/2}$ satisfy the conditions (a), (b) of (iv) and suppose that $r(F_N(t,X),G_{\eta/2}(t,X)) < \eta/2$ for $(t,X) \in A^{\sim} \times H$. Taking

$$G_{\eta}(t, X) = \begin{cases} G_{\eta/2}(t, X) & \text{for } (t, X) \in A^{\sim} \times H \\ \{o\} & \text{for } (t, X) \in A \times H \end{cases}$$

we have $r(F(t, X), G_{\eta}(t, X)) < \eta$ for every $(t, X) \in [0, T] \times H$. Therefore

 $F \in \mathcal{B}$ and $\tilde{F} \in \mathcal{F}$. We shall show that $P_{\mathcal{F}}(\tilde{F}_n, \tilde{F}) \to 0$ as $n \to \infty$. For $n, k \ge N(\eta)$ we have

$$\int_{0}^{T} \sup_{X \in H} r(F_{n}(t, X), F_{n_{k}}(t, X)) dt \leq \eta.$$

Taking for fixed $n \geq N(\eta)$

$$\Phi_{k}\left(t\right)=\sup_{\mathbf{X}\,\in\,\mathbf{H}}\,r\left(\mathbf{F}_{n}(t\;,\;\mathbf{X})\;,\;\mathbf{F}_{n_{k}}\left(t\;,\;\mathbf{X}\right)\right)$$

in virtue of Fatou's Lemma we have

$$\int_{0}^{T} \frac{\lim_{k \to \infty} \Phi_{k}(t) dt}{\int_{0}^{T} \Phi_{k}(t) dt} = \lim_{k \to \infty} \rho_{\mathscr{F}}(\tilde{\mathbf{F}}_{n}, \tilde{\mathbf{F}}_{n_{k}}) \leq \eta$$

for $n \geq N$ (η) . Let us observe that $\limsup_{k \to \infty} r(F_{n_k}(t, X), F(t, X)) = 0$ for $t \in A^{\sim}$ implies $\lim_{k \to \infty} \rho_{\mathscr{F}}(\tilde{F}_{n_k}, \tilde{F}) = 0$ ([5]). Therefore for $n \geq N(\eta)$ we have $\rho_{\mathscr{F}}(\tilde{F}_n, \tilde{F}) \leq \eta$. This completes the proof.

REFERENCES

- [1] A. ALEXIEWICZ and W. ORLICZ (1956) Some remarks on the existence and uniqueness of solutions of the hyperbolic equation $z'_{xy} = f(x, y, z, z'_x, z'_y)$, «Stud. Math. », 15, 201–215.
- [2] F. S. DE BLASI and F. JERVOLINO (1969) Equazioni differenziali con soluzioni a valore compatto convesso, « Boll. U.M.I. », (4) 2, 491–501.
- [3] A. I. Brandão, Leopes Pinto, F. S. De Blasi and F. Jervolino (1970) Uniqueness and Existence Theorems for Differential Equations with Compact Convex Solutions, « Boll. U.M.I. » (4), 47–54.
- [4] M. Hukuhara (1967) Sur l'Application Semi-continue dont la Valeur est un Compact Convexe, «Funk. Ekv.», 10, 43–66.
- [5] M. HUKUHARA (1967) Intégration des Applications Measurables dont la Valeur est un Compact Convexe, « Funk. Ekv. », 10, 205–223.
- [6] W. Orlicz (1932) Zur Theorie der Differentialgleichung y' = f(t, y), « Bull. de Acad. Pol. des Sciences », Ser. A, 221–228.