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Equazioni funzionali. — Description of a class of differential
equations with set-valued solutions. Nota 1 di Micuar KIsiELEWICZ,
presentata @ dal Socio G. Cimmino.

R1AsSUNTO. — Nelle presenti Note (I e II) proviamo il teorema di tipo Orlicz per equa-
zioni differenziali con soluzioni a valori che sono insiemi compatti convessi. Questa Nota
contiene le definizioni di base e la dimostrazione della completezza di uno spazio metrico
fondamentale.

INTRODUCTION

In [6] W. Orlicz proved that the class of all differential equaticns of
the form y' = f (¢, y) which have more than one solution is of the Baire
first category. Later on, this type of theorem was proved for a partial differ-
ential equation of the hyperbolic type by A. Alexiewicz and W. Orlicz ([1]).
The aim of the present Notes (I and II) is to give a proof of the analogous
theorem for differential equations with set-valued solutions of the form:

(1) ~ DX = F (¢, X),

where F: [o, T]XH — H is a given mapping and (H , ») denotes the metric
space of all nonempty compact convex subsets of the Euclidean space R”
with the metric function 7 given by the Hausdorff distance. It is known ([4])
that (H,7») is a complete metric space. The existence and uniqueness of
solutions of the initial value problem of (1) have been proved in [2] and [3].
In § 1 we give some basic definitions and conventions. The §2 contains the proof
of the completeness of a fundamental metric space which we introduce in this
paragraph.
§ 1. BASIC DEFINITIONS AND CONVENTIONS

Let R” denote the Euclidean n-space and denote by (H ,7) the metric
space of all non-empty compact convex subsets of R”, where 7 is the metric
given by the Hausdorff distance. If A and B are given points of H, it is
defined A +B={x+y:x€A,yeB} and NA = {lx:x €A} where
A €R;and A >o0. We define the difference A — B as the set C, if it exists,
such that A =B 4 C. In [2] was proved the following Lemma:

LEMMA 1. ZLetAN=0,X,Y,U,VeH and suppose differences X —U
and Y — N exist. Then
rfX+U,Y4+V) <X, Y)+»U,V),
rX—U,Y—V)<rX,Y)+»U,V),
rX+U,Y4+U)=rX,Y),
rxX, YY) =nm»mX,Y).

(*) Nella seduta dell’8 febbraio 1975.
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Let D be a measurable subset of R such that (D) € (0,00). A func-
tion F:D --H is said to be measurable if for each Ce€H the set
{t: F(#) O C = @} is Lebesgue measurable. The mapping F is called Huku-
hara integrable if the single-valued function ||F(¥)| = » (F(#), 0), where
0= (0, --,0), is Lebesgue integrable on D. In this case we shall denote

by [ F(#) dz the Hukuhara integral of F on D. The mapping F: H -~ H
“D

is called continuous in C € H if for every number 7 > o there is a number

3> o such that for X € H such that » (C, X)< 8 we have » FC), FX) < .

Let X :[a,B] — B be a given mapping. Using the definition of the
difference in H, the Hukuhara derivative ([5]) of X may be introduced in
the following way:

(2) DX@=lim (1/A)- (X (¢ + &) — X(®) = lim (1/4)-(X () — X (t— 7))
r—0t A0t

where X is assumed to belong to the class & (clearly not empty) of all
functions such that the differences in (2) are possible. The mapping X is
called Hukuhara differentiable in [, 8] if DX (#) exists for every # € [, B].

We recall some topological notations in (H,7). Let {A,} be a sequence
of (H,r). The sequence {A,} is said to be convergent to A€eH if
lim» (A,,A) =o0. Let SCH and let S denote the closure of S. We shall

write A €S if and only if there is a sequence {A,} such that A, €S for
n=1,2,-- and »(A,,A) >0 as # — co. We call the set SCH dense

in BCH if BCS. We shall call the set SCH non-dense if there is not a
ball K of (H,7) such that KCS. The set SCH is said to be of the
Baire’s first category in (H ,7) if there exists a sequence {S,} of non-dense

subsets of (H,#) such that S = 8 S, .
n=1

Finally, we recall the Arzela theorem for multi-valued mappings ([4D)-

THEOREM (Arzeld). Suppose {X, ()} is a sequence of mappings from
[oe, B] 20 H which is equicontinuous and uniformly bounded on [« ,B]. Then
there is an uniformly converging subsequence of {X, (?)}.

§ 2. THE FUNDAMENTAL METRIC SPACE

Suppose F:[o,T] XH —H is a mapping such that the following
Hypotheses H (F) are fulfilled. Hypotheses H (F):

(i) F (-, X) is measurable for every fixed X € H,
(ii) F(z,-) is continuous for every fixed 7€ [0, T],

(iif) there exists a Lebesgue integrable function ¢ : [0, T] - R! such
that || F (¢, X) || < ¢ (?) for every (¢, X)€ [o,T]xH, where |F @, X)| =
=7’(F(Z,X),O);O=(O,-‘~,O),
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(iv) for every m > o there exists a mapping G,:[o,T]xH—->H
such that :
(@) Gy satisfies (i)-(iii);

(6) G, is uniformly Lipschitz continuous with respect to X, i.e.
there is a number L > o such that » (G, #,X), G, (#,Y)) <Lr(X,Y) for
X,YeH and every z€[o,T];

© rF(¢,X),G,¢,X)) <wn for every (¢,X)e€[o,T]xH.

Let # denote the class of all mappings F satisfying the Hypotheses
H (F). An equivalence relation ~ is defined on # by stating that F1 ~ F;
if F1(¢z,X) = Fa (¢, X) for almost every € [0, T] and fixed X e H. The
equivalence class containing F is denoted by F. The space # is taken to
be the quotient space #/~. A metric p# on F is defined by

T
(3) P‘g;(f“l,ﬁz)=JSup7’(F1(t,X),F2(Z‘,X>) d¢ for Fleﬁl, erﬁz.
XeH ’
0

We shall prove the following Theorem:

THEOREM 1. (F,Px) is a complete metric space.

Proof. Let {F,} be a sequence of # such that ps (F,,F,) —>o as
n,m —oo, and let F,eF,, F,€F,. For every v> o there is N = N

such that
T

J sup 7 (F, (¢, X),F, (¢, X)) ds <9
XeH
0

for n,m > N(v). Suppose {7} to be such that 7 < < --- and
ng =N (1/2%). Then

sup 7 (Fa, (¢, X), Fu,_, (¢, X)) dz < 1/2%
XeH

for #=1,2,--. Taking A;={z: sup7» (Fn, (¢,X), Fn,_, (¢, X)) > 1/2°}
we have XeH

2% > f sup 7 (Fuy (¢, X), Fu, , (2, X)) dt > (1/2")-n(Ap) .

Then y.(Ak) <1/2%. LetA= n u A;. Since p(A) < p.(UAk> < 2_, (A <

i=1 k=i

<2(1/26—1/z’ “lfori=1,z2, then w(A) =o. Let A~= [o,T]\A

and A;e = [0, T]\A;. Wehave A™= U n A7, Then for £ €A™ there is a
i=1 k=1
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number 7 such that for every 2> 7 we have sup » (Fs, (2, X), Fn,_, (¢, X)) <
XeH

< 1/2*. Since for an arbitrary £, > ¢ such that £ <m we have
sup 7 (Fnk (t ’ X) ) an (t ) X)) S
XeH
g)s(ugr(Fnk (¢, X), Fup, (¢, X)) 4+ - -+ }S(ulgl7<an—1 ¢, X),F,, (¢,X) <
< (1)) — (12"

then sup » (Fx, (¢, X), F, (¢,X)) =0 as £,m — oo for t€ A~. The space
XeH

(H,7) is a complete metric space, then for every fixed (¢, X) € A~ XH the

sequence {F», (¢, X)} is convergent to some element G (¢, X) € H. Therefore

we have the mapping G : A~ XH —H such that » (Fa, (¢, X), G (¢, X)) -0

as £ - oo for every (¢, X) € A”xXH. The function G is measurable in # for

every fixed X € H.  We shall show that sup »(Fx, (#,X),G (#,X)) 20
XeH

as £ -—>oo for € A~. Indeed, let g, (z,X) =7 Fx, (¢,X),G (¢, X)) for
(z,X) €e AT xH. For every £=1,2,--- and (¢, X) € ATXH we
have [g:(¢2,X) — &1 (¢, X)| <7 (Fx, (¢,X), Fu,_, (¢, X)). Therefore
;u%lgk @, X)—g: 1@, X) 1 < 1/2* for every €A~ and £ >4 Hence it

is easy to see that the series g,(#,X) 4 Z [g: (¢, X)—gr 12, X)] is
=1

absolutely and uniformly convergent. Consequently, the sequence {g; (¢, X)}
is uniformly convergent on A~ XH. Therefore for #€¢A™ we have
sup 7 (Fa, (¢,X),G(#,X)) S0 as £ —>o00. Let F:[o,T]xH —H be the
XeH ’

mapping defined by
F LX) ‘G(Z,X) for (¢,X)€eA~XH
’ | {0} for (¢,X)eAxH.

The mapping F is measurable in 7 for fixed X e H. It is continuous in X
for every fixed # € A. Furthermore for any C € H and arbitrary n > o there
exists a number § >o0 such that »(Fu, (¢, X), Fu, (z,C))<n/3 whenever
r(X,C) <8 for £=1,2,--- and 7€ [0, T]. Hence and from the uni-
form convergence of {Fa, (¢, X)} it follows that F is continuous in X for
fixed t € A™. It is easy to see that ||[F (¢, X) || < ¢(?) for (¢, X) € [o,T]xH.
Now, suppose N is such that » (Fy (z, X), F (¢, X)) <m/2 for (#, X) e A~ xH
and let Gy satisfy the conditions (2), (6) of (iv) and suppose that
r(Fx(,X), Gz, X))<mn/2 for (¢,X) € A~ XH. Taking
Gy () X) = (Gup(2,X)  for (z,X)eA~XH

o ?{0} for (z,X)eAxH

we have » (F (¢, X), G, (z, X)) <= for every (¢,X) € [0, T]xH. Therefore
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Fe# and Fe#. We shall show that Pg:(lz‘,,,f‘)%o as # —oo. For
n,% >N (1) we have

T

[sup 7 (F, (¢, X), Fa, (2, X)) dt <.
J XeH
0

Taking for fixed 7z > N()
@, (1) = sup » (F,(z, X), Fu, (2, X))
XeH

in virtue of Fatou’s Lemma we have
T T

/ lim @ (/) df < lim [ ®,() d¢ = lim 5 (F,, , F, ) < 7

. Ak—>o00 k—>00 v/ k—00
0

for # >N (y). Let us observe that lim sup 7 (Fr, (2, X),F(z,X)) =0

k—>o00 XeH

for € A~ implies lim P& (Fnk , f*‘) =0 ([5]). Therefore for 7 > N(y) we
k—>00
have ¢& (f*“n , 13) <. This completes the proof.
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