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Equazioni differenziali ordinarie non lineari. — On a certain non-
linear fourth ovder ordinary differential equation. Nota di Haroox O.
Tejumora, presentata @ dal Socio G. SANSONE.

RIASSUNTO. — Si danno due criteri sufficienti per la limitatezza delle soluzioni dell’equa-
zione

.....

dove @y, @z, a, sono costanti ¢ (x), 4 (¢,x, x, #, #) funzioni continue dei loro argomenti
e nel caso che p sia funzione periodica di # si di anche un criterio sufficiente per Pesistenza
di almeno una soluzione periodica.

1. We shall be concerned here with the differential equation
(1.1) 2 @E b ak b o()& Fax=pt,x,%,&,5),

where a;, a3, a4 are constants and ¢ and p are continuous functions of the
arguments shown in (I.1).

In the case p = o in (1.1), Ogurcov [1] showed that if

(1.2) @ >0 , a>0 ., a >0
and if
(13) e@>o0 and 0(x)=aae@) — @@ —da >o

for all x, then every solution x (¢) satisfies
(1.4) x(#)—~o , ¥()—>o0 , & o0 , F@)—>0 as t-—>-foo.

Subsequently, Ezeilo and Tejumola [2] considered the case p not necessa-
rily identically zero in (1.1) and showed that every solution is ultimately
bounded (with bounding constant independent of solutions) if, in addition
to (1.2), |p(¢,x,y,2,u)| is bounded for all #,x,y,2,% and if

(1.3) ¢(x) >0 and 0(x) >3 (8 > o0 a constant) for |[x]| =>1.

Let ® and ¥ be the functions defined by
(1.6)  D(x) =f<p(s) ds , YO =aax®@&) — OX(x) — dfas 4"
0

Then

X

W (x) — xfe@ ds +§xj o2 () ds — @2 () |,
0

0

(*) Nella seduta dell’8 febbraio 1975.



138 Lincei — Rend. Sc. fis. mat. e nat. ~ Vol. LVIII — febbraio 1975

where gxfxth(s) ds — ®*(x)! =0 for all x, as can be verified by the
use of Schivartz’s inequality. Thus, the condition (1.3) implies that
(1.7) 7' ®(@) >0 and 27 ¥() >o (x ==0),

while (1.5) implies that

(1.8) 'O >0 and W@ =8 for |x|>1.

The main object of this note is to point out that the results [1] and [2] remain
valid if (1.3) and (1.5) are replaced by the weaker conditions (1.7) and (1.8).
In the case when p is periodic in ¢, it will be shown that (1.8) is also sufficient
for the existence of periodic solutions of (1.1).

In what follows, let ® and ¥ be defined as in (1.6). Our first result
concerns the case p = o and is as follows.

THEOREM 1. Given the equation
(1.9) 2 X+ agk +o(x)% +a4x =o0
suppose that conditions (1.2) and (1.7) hold. Then every solution x (f) of (1.9)
satisfies (1.4).

For the general equation (1.1) we prove the following:

- THEOREM 2. Let conditions (1.2) and (1.8) hold and suppose that p satisfies
(1.10) lp@,x,y,2,0)| <A Jor all t,x,y,z and u,

where A is a finite constant. Then there exists a constant K whose magnitude
depends only on ay,ay,ay,8, A and ¢ such that every solution x (¢) of (1.1)
ultimately satisfies

lx@I<K , [2@|<K , [#®)|<K , [§®|<K.

THEOREM 3. Suppose, further to the conditions of Theorem 2, that p salisfies
ptto,x,y,2,0)=p,x,y,2,n) Jor all 1,x,y,2,u.

Then equation (1.1) admits of at least one w-periodic solution.

'Note that in the special case ¢ (x) = as, a3 > 0 a constant, the condition
(1.7) (and, indeed (1.3)) together with (1.2) reduces to the Routh-Hurwitz
stability criteria

(1.11) a>0 (1=1,2,3,4), (a1a2——a3)ag——afa4>o

for (1.9) with ¢ (x) = as.

In what follows, we shall adopt the notations in [2] and use the letters
Di;, 2=1,2,3,--- to denote finite positive ccnstants whose magnitudes
depend only on the constants a1, a2, @3, @a, 8 , A as well as on the function ®,
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but are independent of solutions of any differential equation under consi-
deration. In §4, the D,’s are, in addition, independent of the parameter p
employed in defining equation (4.1).

2. PROOF OF THEOREM 1

The differential equation (1.9) is equivalent to the system

2.1 x= , =z , g=u—a15— O , db=—az—ayx.
y y

Consider Ogurcov’s function [1] Vi =Vi(x,y,2, %) defined here by

(2.2) Vi=0Q + alj{q)(s)——ala{la,ls}ds R
0

where
2 2 1 2 2 3 1 2 2 -1 2
0 =(m—2a+dia a)r +(@1+ara; —3a)y" +25 + apay o’ +
—l—zagxz—zalxu—l—zalyz—l—z(agazl——z)yu

is a positive definite quadratic form (for proof, see [1]). Since the integral
in (2.2) is, by (1.7), non-negative, the function Vi satisfies

Vi(@,y,z,4) >+o00 as 22492422442 >oc0.

Let (x,y,z,0)=(x(®),y®,2(®),u () be any solution of (2.1).
It is easy to verify from (2.2) and (2.1) that

(2.4) Vi = —a;! [O(x) + a12]° — a1 ' V() ,

so that, in view of (1.7), Vi < o. Thus all solutions of (2.1) are bounded for
all # >o. Let the solution (x,y,z, %) of (2.1) satisfy the condition V; = o.
Then, from (2.4),

Y(@#x) =o0o and [®HK) +asz]=o0
and, by (1.6) and (1.7), this implies that
rxr=0 , z=o0.
It therefore follows from system (2.1) that
y=o0 and wu=o0.

Theorem 1 now follows in view of [4; Theorem I.II].

3. PROOF OF THEOREM 2

The procedure is the same as for the result [2], and we shall merely
indicate the'modifications necessary in the arguments in [2].
Take (1.1) in the system form

@B =y, y=z, t=u—a12—P0x) , 4 =—ayz— ayx+p(t,x,y,2,u%)
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and consider the function (same as (4.3) of [2]) V=V (x,y,2, %) defined
here by

(3-2) V=Vi+Vs+ Vs,
where Vi is the function (2.2) and

—Msgny, if [y]|=]x]
Vg:(——lysgnm if |x|z|yl>
(3:3) — Azsgnu, if Jul>]z2]

Vs:(——v}usgnz, if ]z[2!u|>
A > o being, as yet, an arbitrary constant. Observe that (1.8) implies that
2T O()> a7 (a1 as + ot ) if |x | >1, so that by the continuity of ®

f@@~mgMsz~m for all x.
0

Thus
VZQ—r(yl+lul)—D:

(since | Vo | <A |y | and |Vs| <A |#]|) and hence
(3.4) V&,y,2,u4) > + oo as 22+ 92 4+ 22 4+ 42 > oo,
since Q is a positive definite quadratic form.

For any solution (x,y,2,0) =@,y ,z@),u®) of (3.1), we
have, by a straightforward differentiation of (2.2), that
(3.5) Vi=— afl[(b(x) + a2 — a7 W)+ {apar ut+ (Bai'—2)y —ax} p.
Now' choose Dz such thét

m>@@+m+$yﬁwm@m@@y

Then

(3.6), W (x) > 322 — Dg for all «,

as can be easily verified from (1.6) and (1.8). Observe next from (1.8) that
o<x ' ®(x)<aya if || >1, so that by the continuity of @,

| ®(x) | < aiaz| x| + Ds for all =«
with Ds sufficiently large. Thus

@2(96) < @aa:Dax® + DDy (Da= araz + Dy) for all =z,
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and hence

(3.7) THO @) + a2 + Lot 8 > ap @) + a2 +
+ 18 (ai e D) O (x) — 1 8 (dla) D
>D; {s + ®(x)} — Dg

for a sufficiently small D; and with D¢ =48 (a} 2) ' D;. On using the

estimate (3.7) and (3.6) in (3.5) and noting from (1.10) that | p | < A, it follows
that there are constants D; and Dg such that

V1 S—*D7(x2+32> ‘{‘D8<I +|x|+|yl+|”])

From this point onwards, the arguments in [2; § 7] apply here. By
defining V* = V; 4 V; -+ V5 as in [2; Lemma 2] but relative to the system
(3.1) and notmg that the estimates (7.2) and (7.3) of [2] hold respectively
for V3 and V, with A = 2Dg, it can be shown, just as in [2, § 7], that

Vi< —1  if 22 492 4+ 22 422 >Dy.

This, together with (3.4), implies Theorem 2 in the usual way.

4. PROOF OF THEOREM 3

The proof here is by Schaefer’s Theorem [3; §5]. Let a3 >0 be a
constant satisfying (1.11) and consider the parameter p-dependent equation

) gxiv—l—ala"c' —I—ago'c'—%—cpu(x)o'c—{—@x:uﬁ(t,x,&,i&,ﬁ) (o<u <),
4.1)
loe@ = —wa+ue @),

which reduces to the original equation (1.1) for the value p. = 1. The equation
(4.1) itself is equivalent to the system

(4-2) I=y , =2, d=u—as—Oux) , 4 =-—apz—ayx + pp

%@Efwwm,

0

and, in view of the choice of as, we may use the system (4.2) to set up the
operator required in the application of the Schaefer’s Theorem (see [3; § 5]).
Indeed, following the arguments in [3], it suffices here to show that solutions
of (4.2) are ultimately bounded, with the bounding constant independent
of solutions and of p.

Let V=Vi + Va2 + V3 be the function (3. 2) but with ®,(x) in place
of @ (x). That is,

@3 “=Q+@ﬁ%®—m@%ﬂ®,
0 .

11, — RENDICONTI 1975, Vol. LVIII, fasc. 2.
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where Q is given by (2.3). Then, by the definition of ®.(x),
2] {@u(s) —aya3 tags}ds = 2(1.[ {D(s) — aya3 'ays} ds +
0 0

+ (1 —p) (a3 —ara3'a) £°
Since the integral on the right hand side is, by (1.8), non-negative if |x | > 1,

and (a3 — a1a9 1a4) > o by (1.11), it follows from the continuity of ® that

zf{d)n(s)—alag_la“}ds = —Duo for all =x.
0

Thus, as in the preceding case, V satisfies (3.4) uniformly in g, since Q is posi-
tive definite in x,y,2, and =.

Let (x,y,2,0)=(x{#),y®,2&,u®) be any solution of (4.2).
It is easy to verify from (4.3) that

Vi=—W + ® {aga[lu——(agail—— 2)y—- yqzx}p,
where W=a2+4220,(%) + aax O (&) — g ay2?2 =
= poy {[mz + O ()" + [a1a92 O (x) — D*(x) — alay £°} +
+ (0 —w) ar {[arz + asx]’ + [a1a9a5 — a5 — alad] £} .
The second expression in brace brackets above is, by (1.11), non-negative,
while the second expression in square brackets is precisely the function
W(x) for which the estimate (3.6) holds. By setting A = @,a503 — a3 — dia,

(A > o0, in view of (1.11)) and by considering the interval o < p g%,
% < u <1 separately it is easily verified that

W > 1a7 ' min {[a,2 + ®(x)]® + 847, [m2 + a3x]® + Ax®} — a7 ' Dy .
Thus, by an argument similar to that employed in § 3, we have that V satisfies
Vi< —Du(@®+2%)+Du( +|x|+|y|+ |«

for some constants D and D1z, and hence, V* = Vi+V, +V3 , With A= 2Dse
also has the property that

Vi< —1 if 22492 + 22 + 22 > Das,

for some constant Dije. The desired boundedness property of solutions of
(4.2) follows from this and (3.4) and, as remarked earlier, Theorem 3 now
follows.
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