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Analisi matematica. — Approximation structures, convergence
spaces and Katetov's merotopy. Nota di CALiN IGNAT, presentata®
dal Socio B. Suare.

RIASSUNTO. — In questo lavoro si stabiliscono connessioni fra le strutture di approssi-
mazione introdotte in [5], gli spazi di convergenza [1, 2, 3] e le strutture di mecotopia [6].
Nelle proposizioni 1-3 sono ottenute condizioni affinché una struttura di approssimazione
si generi tramite una struttura di convergenza. Le relazioni (17), (23) stabiliscono la corri-
spondenza voluta fra le strutture di approssimazione e le merotopie di Katetov.

The purpose of this paper is to establish a connection between the appro-
ximation structures introduced in [5], merotopic structures [6] and conver-
gence spaces [3].

Let X and A be two sets and let Z (A, X) be the collection of all relations
a CAXX.

DEFINITION 1. An approximation relation on X directed by A is a subset

A CXXR (A, X)
such that

(1) VreX Ja€Z A, X): (x,0) €.

We shall say that { X, ,A} is an approximation structure space.
We denote

(2) A [x] ={0e€BA,X): (x,a) €}, x€X.
If # is a collection of subsets of X, we denote by

(3) [#] ={KCX:3IMewxr , MCK}

the prefilter generated by .#. For « € Z(A,X) and 2 € A we set
(4) r@,a)={z€X: (a,z)€a}

and

) (@ =[{r(x,a): aeA}].

DEFINITION 2. Let.o/ and # two approximation relations on X directed
by A and B, respectively. The relation 7 is said to be finer than % (#B< A)if

©6) VzeX Vo €[x] BeB[x]: m(B)Cr (@) ;
& and % are said to be equivalent if

@) A ~Be=sd <B  and B <.

(*) Nella seduta dell’8 febbraio 1975.
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§ 1. APPROXIMATION STRUCTURES ASSOCIATED WITH CONVERGENCE SPACES

The convergence spaces introduced by M. Fréchet [4] have been inten-
sively investigated by H. R. Fischer [3], C. H. Cook and H. R. Fischer [2],
H. Poppe [7], H. J. Biesterfeldt [1].

In this paragraph we shall establish a relationship between convergence
spaces and approximation structures.

Let F (X) be the collection of all proper filter on the set X.

DEFINITION 3 ([3], [7D:

@) A non empty set X is said to be a convergence space if there is
& CXXF(X) such that:

(8) VreX = (v,4) e, @ = [{#3D,
©) (x,9)€LNeCY = (v, ) e”L.

£) A convergence space (X ,#) satisfying
(10) F, el N, el = (x, 9N e,

is called a filtred convergence spaces or L-space by Poppe [7].

¢) A non empty set X associated with a subset # which satisfies (8)
and ‘

(11) M X>FX): (x,9 el e=v(x)Co,

is called a space with generalized neighbourhoods and v (x) is said to be the
filter of generalizéd neighbourhoods of x € X.

d) An (X ,v) space with generalized neighbourhoods is a topological
space if

(12) VxeX VVev(x) IWev(x): VyeW Vev(y).

Any filter ¢ such that (x, @) €% is said to be convergent to x. By (8)
the set & [x] = {9 :(x, 9) €Z} is non-empty.

In Fischer’s paper [3] the convergence spaces fulfill (8), (9), (10) i.e. are
filtred convergence spaces.

Let (X, ) be any convergence space ((8), (9)) and A a set which is in
an one to one correspondence with an ultra filter of X, for example %o , xo € X.

Consider the following approximation structure on X directed by A

(13) F, e o= oL [x], T(W)=¢ a€Z(A,X)

where 7w is defined by (5).
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Let (X, &/, A) be an approximation structure such that
(CAS1) VreX, Jaedx]=n(0) =1,
(CAS2)  VreX, Vaed[r]: = ()€ F(X),
VB: m(B) e F(X)AR (@) Cn(®) = bed [x].

Then the set £, C X XF (X) defined by
(14) Ly={(x,9): Jaed[x]n(@)Co}
satisfies (8) and (9) i.e. generates a convergence structure on X.

PROPOSITION 1. 7he relations (13)—(14) define an one-to-one correspondence
between the collection of all comvergence structures on a nomempty set X and
the family of equivalence classes generated by the set of approximation structures
on X satisfying (CAS1) and (CAS2).

Proof. We shall establish that two approximation structures on X gene-
rated by (13) and a convergence structure# on X are equivalent in the sense
of Definition 2.

Let { X, ,A} and { X, %%, B} be two approximation structures
on X generated by # and let « €./ ¢)[x]; this means that 3¢ €Z[x], n(x) = o
and 3B e€Z (B, X) such that n(8) = ¢ and B € Byr] ie B < A (@.
Analogously one establishes that 2/(» < %), and therefore A gy~ By .

LetZ be a convergence structure on X and let o) be generated by (13).
We shall prove that %5 generated by any approximation structure # which
is equivalent to .7 ¢) coincides with Z.

By (14) (x , ) € Z3 == 3B € B[x] ©(B) Co. But.Z gy~ F and I €.9[x]
7 («) C7 (B) and therefore by (13) there is a filter ¢ €[] such that = («) = ¢
ie. % CZ. Let (x,y) €% By (13) it follows that there is o €.57g)[x]
such that w (&) =y and by #~ (¢, there is B € # [x] : n (B) Cw («). By (14)
one has y € ¥[x] and therefore £ C Zp.

Let .« be. an approximation structure on X which satisfies (CAS1) and
(CAS2). Let Zy be the convergence structures generated by .7 through (14)
and let %, be the approximation structure generated by %, through (13).
Obviously, %z, also satisfies (CAS1) and (CAS2). We shall prove that
A ~Bg, .

Let 8 € #,[x]. From (13) there is g€ Zy[x]: n (B) = ¢ and by (14)
it follows that there exists « €/ [x] with = () = ¢. Therefore = («) C:7 (B)
le. o < Bz,

Let w €/ [x]. By (14) one has ¢ = n («) € Zy[x] and B: n (B) = ¢ =
=B €Bg,y[x]. Thus for every a €/ [x] there exists B €&, [x] with
© () Cn () so that B(g, < .
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The following results are immediate

PROPOSITION 2. Let o be an approximation structure on X which satisfies

(CAS1) and (CAS2). of generates by (14) a filtral comvergence structure on X
if and only if

(FCAS) VxeX, Va, Bedx] IvyCH[x]: n(Y)Cr(m)Nn=@B).

PROPOSITION 3.  An approximation structure o/ gemerates by (14) a
structure with generalized neighbourhoods if and only if

(GNAS) VyxeX 3JneAdx]: VaeA zxer(n,a)
Veed[x] m(B)eF(X): BCa.

§ 2. KATETOV’'S MEROTOPY

An important generalization of topological structures is due to M. Ka-
tetov [6] which introduces the merotopic structure on a set.

In this paragraph we shall present Katetov’s definition of merotopic
space, an equivalence relation of merotopies, the concept of factor merotopy
and, finally, the merotopic-approximation structures.

DEFINITION 4. (M. Katetov [6]). Let X be any nonempty set.
FCZ(Z (x)) is said to be a merotropic structure on X if:
iy Mel', MeP (P (x), VMe#d IMi€M#Mr NMiCM = M €T,
iy MV Meel = (M1eD)V (Ma€T);
iii) VreX: {{x}}el;
iv) gel'.

Every 4 € I' will be called micromeric.

Let IT (X) denote the familly of all prefilters on X. Consider the equi-
valence relation on 2 (Z (x)):

Obviously, the factor space 2 (2 (x))/~ may be identified with II (X).

Let K be a semilattice { K, <, U}, i.e. a set with a binary reflexive
and transitive relation denoted by < and a binary operation U: KXK — K
such that VA1, €K £ < /A uéks.

A familly xCK is called an elementary prefilter on K if
pPeEXNp<r=rexn;

pUgex=(pex)V(g€x).
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We incidentally observe that II (X) is a lattice with < defined by set-
theoretic inclusion in 2 (2 (x)).
Denote [{x}] by

PROPOSITION 4. Let TCI(X) such that:
i T is an elementary prefilter on 11 (X);
i) VzeX: zel;
iy o el.
Then there exists an unique merotopy T bn X such that

(13) (Vu CT=[a]c)A (el =2rel).

Proof. Let \ be fixed in I'. We consider the collection of all prefilter
ba51s of 2, i.e. the equivalence class of A in 2 (# (X)|~ denoted by .
I shall prove that

(16) D= {4 :Mech:rel}

is a merotopy.

Let # €I and #' be such that for every M € /% there exists M' € .4’
M'CM. Therefore [#])cl~].

Since I' is an elementary prefilter on IT(X) and .# € I it follows [.#] € T
and [.#'] el.

Then, since .#' € [%’] '€ I'. This proves condition i) of Definition 4.

Let M1, M> € P (P (X)) be such that #1y#z€T. Then [./llu/%,g] el.
Since [./llu./lz] =[] u[#-] it follows ([.#1] € I‘) V([#5] € T") and there-
fore (M1€T) V (M2€T).

Condition iii’) follows immediately by ii’) and iv) by iii).

Now, suppose that there exists a meroropy I'' which satisfies (13).
Since, in accOrdmg to condition i) in the definition of merotopy, if . € I‘l,
M€P (P (X))~ M CTr then [.#] € I'1, and by (13), it follows [#]€T.
Then, as a consequence of (16) M€l and I CT.

Let #°€I'. Then [#] €l and since Iy satisfies the second part of (15)
it follows [./V JCT. Tiis a merotopy and according to the condition
i) it follows A €I'. Thus I' = I't as claimed.

Proposition 4 allows us to define equivalently merotopic structures:

DEFINITION 5. Let X be a set. A collection I' C II (X) which satisfies
conditions i), ii’) and iii) in Proposition 4 is called a m-merotopic structure
on X and its elements are called w-micromerics.

DEFINITION 6. A m-merotopic structure on X is said to be localized
if to each w-micromeric A there exists an x) € X such that

7\0/’!‘5;\617‘.
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We shall say that the m-micromeric A is localized in x,. Now we shall
establish the relation between m-merotopic localized structures and appro-
ximation structures. :

Let A =2 (X) and I' an localized n-merotopy on X. Consider a map
«:I'—>Z (A, X) defined by:

. . ra(),d)=a if a€h,
for A€ - -
r(@(A),a)=X if aé¢nr.

Since A is a prefilter it follows that w (« (X)W = A
We define an approximation structure on X associated with I by:

(17) (x, )€t esPhel Anzel n@) =r.
For an approximation structure & on X we set
p()={a€eZ(A,X) : FJreX(xr,a0)esl}.
Let o/ be an approximation structure on X such that
(18) a€p(); u,vell(X)m(@=puv=3p€ o (L) =B =wVx (@) =v);
(19) a€p(A)n(@WCpell(X)=Pep(A)n@) =u;
(200 VxeX3Ja€ep () (x) =4
(21) Vaesd [x]IpeA [x]ﬁ(a)myzzn(ﬁ).

It is immediate that the collection {7 («):a € p ()} which satisfies
(18), (19), (20), (21) is a localized w-merotopy on X.

PROPOSITION 5 Let o4 be an approximation structure on X such that
are the conditions (18), (19), (20) (21) fulfilled and

(22) VaeZ (A, X):Pep(A)m@) =m0 Ni=aecs [x].
Let |
(23) Fo={n(:ace()}

and By, be constructed by (17). Then (according to Definition 2) ol ~ By .
o Y o

Proof. Let € [x] . By (23) n(2) CI'y and by (21) = (a) is localized
in x. Then there exists § € #r_, [x] such that n () == (8). Thus Br,,<A.

Let B €%r , [x], ie. there exists Ae 'y, ANz e, therefore Jue o ()
7 () = A and Wep(A)n@) =n(x)Nnx. Hence by (22) x€s [x] and
A< Br,,.
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It follows immediately the

PROPOSITION 6. Let I' be a localized n-merotopy on X, Ay be the appro-
ximation structure defined by (17), and Uy, be defined by (23). Then = Pog.
From Propositions 5 and 6 one obtains

PROPOSITION 7.  The relations (17)—(23) establish an one-to-one corve-
spondence between the set of all localized w-merotopies on X and the set of all
equivalence classes of approximation structures on X satisfying (18), (19),
(20), (21).

Let I be a n-merotopy on X such that there exists a m-micromeric A
with the property: Vx € X A% € I'. We consider the localized extension of
X, denoted by X, X =X U { % } such that, if T' is not localized on X, we
define on X the merotopy:

="V ={Mu{ro}Mei}rel}.

Obviously: #o, € I™ because 2 (X)el' and 2 (X)* = Zo .
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