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SEZIONE I
(Matematica, meccanica, astronomia, geodesia e geofìsica)

G eom etria . —  D ual cross-sectional measures. Nota di E rwin 
Lutwak, presentata dal Socio B. S egre.

R iassu n to . —■ Si definiscono « quermass integrali » duali a mezzo di formole di 
Kubota duali. Si esaminano le relazioni fra questi integrali ed i funzionali di Minkowski; 
in particolare, si trovano le disuguaglianze che corrispondono per dualità a quelle classiche.

T he integral form ulas of K ubota [3] perm it a simple recursive definition 
of the n +  I cross-sectional measures Wo , W i , • • •, W n in Euclidean 72-space, 
R*. In  a one dim ensional space, for convex compact A  , Wo (A) is defined 
to be the length of A  while W i (A) is defined to be 2. A fter defining the 
cross-sectional m easures in ( n — i)-space they  are defined in Euclidean 
72-space by letting Wo (A) equal V  (A), the 72-dimensional volume of A, 
and letting

(I) W , (A) =  j  w;_! (A I P„) dS («) [* >  o] .
h ■

In this integral O is the surface of the un it ball U  in R K while dS denotes 
the area element on O. A  | Vu is the projection of A  onto the hyperplane Fu 
which is perpendicular to u e Q and passes through the origin. W,-_i denotes 
the (2— I)-th cross-sectional measure in (72— i)-space while cow_! denotes 
the volume o f the un it ball in Kn~l .

T he dual cross-sectional measures of the title refer to the measures 
obtained when the definition of the cross-sectional measures is altered by 
replacing A  I P* in (1) by its dual A n P « .  These measures arise naturally  
in the exam ination of a radial addition th a t is analogous to M inkowski addi-

(*) Nella seduta dell’ll  gennaio 1975.
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tion. T hey  appear as coefficients in a polynomial expression analogous to 
the Steiner polynom ial expression for the volume of a parallel body [3]. 
In addition, the natu ral extension of these measures can be used to examine 
a harm onic addition previously considered by Firey [1, 2], S teinhardt [7, 
p. 15] and Rockafellar [6, p. 21].

I h e  setting for this paper will be R;\  Com pact convex sets with non­
em pty interiors will be called convex bodies. The space of all convex bodies 
which contain the origin in their interior, endowed with the H ausdorff 
topology, will be denoted by K n. For a convex body A, we use HA and F A 
to denote its support and distance function, respectively. A compact set A 
is  called a star body with respect to a point a if for every c in A the line 
{ta f  (1 — t) c I o <  / <  1} lies in the interior of A. The set of all star 
bodies with respect to the origin will be denoted by Sn . Associated with a 
star body A  e S n is a radial function pA defined on Ü by:

Pa (A) =  Sup {X >  o I Xu e A } [u e O] .

The radial function of a star body in Sn is a positive, continuous real-valued 
function on Q. Conversely, a positive, continuous real-valued function on Q 
is the radial function of a unique star body in S n . A  metric d can be 
defined in Sn by letting

d (A , B) =  Sup I pA (u) — pB (*) I [A , B e S„] .
u e Q

It is easy to verify tha t S„ endowed with the topology induced by this m etric 
has K n as a subspace.

W hile the cross-sectional measures are defined for com pact convex sets, 
the dual cross-sectional m easures Wo , W i , • • •, W„ will be defined for star 
bodies in S n.

DEFINITION i. In  R 1 the dual cross-sectional measures are defined by

Wo (A) =  V (A) W i (A) =  wi [A e Si] .

A fter defining the dual cross-sectional measures in Euclidean ( n —■ i)-space 
they are defined in R n by letting Wo (A) =  V (A) and

C2) W ,(A ) =  ^ ~  J w i 1( A n P u)d S (u )  [ * > o  A e S„]
Q

/
where W,-_i denotes the ( t — i)-th  dual cross-sectional m easure in Euclidean 
(n —  I Espace.

C om paring (2) w ith (1), we obtain:
T heorem  i .

W* (A) <  W z (A) [o <  i < n A  e K n]

with equality i f  and only i f  A  is an n-ball (centered at the origin).
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T he z'-th dual cross-sectional m easure W,- is a m ap

W r. S n ~* R .

It is continuous, bounded, additive, positive, rotation invariant, homogeneous 
of degree n — i and m onotone under set inclusion. All of these properties 
are simple consequences of our next theorem  which describes the dual cross- 
sectional m easures of a star body as m eans of powers of its radial function.

T heorem  2.

w,- (A) =  —  J p* ’ (u) dS (u) [A e S„] .
Q

The proof follows by induction on the dimension of the space using standard  
techniques (see H adw iger [3, p. 212]).

T he cross-sectional m easures satisfy the cyclic inequality [3, p. 282]:

W /" ’(A) >  W Î"y(A) W T ’(A) [ i < j < k  A  e K n].

As a simple consequence of H older’s Inequality  [4, p. 140] we have: 

T heorem  3.

W r (A) <  w r (A) w r ( A )  [ i < j < k  A e S „ ]

with equality i f  and only i f  A  is an n-ball (centered at the origin).

We note, th a t for convex bodies in K ni Theorem  3 is a consequence of 
a general inequality  between dual m ixed volumes tha t was obtained by us 
in [5].

The M inkowski sum A  +  B of two convex bodies A  and B can be defined 
by the equation

H a+b =  H a +  H b .

Given two star bodies A  , B e S n we define the radial sum A 0 B by: 

D e f in i t io n  2.

Pa®b — Pa +  Pb [A , B e S n] .

T he Brunn-M inkowski Theorem  [3, p. 187] states that:

V 1/Ä (A +  B) >  V 1/K (A) +  V lln (B) [A , B e K n]

with equality  if and only if A  and B are homothetic. A  simple application 
of the M inkowski Inequality  [4, p. 146] yields:

T heorem  4.

V 1/K (A® B) <  V1/B (A) +  V1/M (B) [A , B e S n]

with equality i f  and only i f  A  is a dilation of B (with the origin as the center 
of dilation).
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For a convex body A  and a scalar [x >  o the parallel body A,, is defined 
to be A +  [xU. For a star body A  e S„ and [X >  o we define the radial 
body (A  by:

Definition 3.
=  A  ® jxU [[x >  o A e 5 „] .

Por the volume of the parallel body A^ we have the Steiner polynomial 
expression [3, p. 214]:

V ( A , ) =  . g  ( *)w ,-(A )n* ' [ j x > o  A e K n] .

Just as the cross-sectional measures appear as coefficients in the polynom ial 
expression of V  (Ajx), the dual cross-sectional measures appear as coefficients 
in a polynom ial expression of V (^A).

Theorem 5.

V G A ) =  £ ( ; )  W ,-(A )g  |> >  o A 6 5 J .
t = 0  ' '

To prove this we m erely note th a t p^A =  pA +  jx.
Com bining the definition of the surface area of a convex body [3, p. 184] 

with the C auchy area form ula [3, p. 208] we obtain:

L im  [V(An) —  V(A)]/[x =  f--T f  V '(A  | P„) dS («) [A e K n\
Q

where V denotes the volume in Euclidean ( n — i)-space. As a direct conse­
quence of Theorem  5 we have:

Corollary.

Lim  [V(|iA) —  V(A)]/jx =  - v' | V ( A n  P„) dS (u) [A e S„] .
pi->0 U>n-1 J  '

Q
As presented in Definition i the dual cross-sectional m easures W, have 

indices i  restricted to integer values between zero and n. However, Theorem  i 
points to a natu ra l extension of the definition so that the W* are defined 
for all real indices.

Definition i*.

W,-(A) =  J  p”- ’ (*) dS (») \i e R  A  e S„].
Q

T he hew W 2- are also positive, continuous, additive, rotation invariant and 
homogeneous of degree n —  i. However, they  are bounded and monotone 
only foi* i  <  n. Theorem  3 rem ains unaltered if we allow the indices of 
the dual cross-sectional measures to range over all real num bers.

W ith extended indices the dual cross-sectional measures can be used 
to exam ine a harm onic addition considered by Firey [1 , 2], S teinhardt [7, 
p. 15] and Rockafellar [6, p. 21].



Erwin LtjtwAK, Dual cross-sectional measures S

T he harm onic sum  A  X B of two convex bodies A  , B e K„ is defined by: 

Definition 4.
FAxb = F a +  Fb [A , B e K„\ .

We note that, while we chose not to do so, harm onic addition could have 
been defined in S„ by letting pAXB =  (p“ 1 +  p j 1) -1 . Both definitions coincide 
in K n.

The following dual to the Brunn-M inkowski theorem  is due to F irey [1] 
and S teinhardt [7] :

Theorem 6.
V _1/" (A X B) >  V _1/” (A) +  (B) [A , B e X n]

w ith  equality i f  a n d  only i f  A is a d ila tion  o f  B (w ith  the origin as the center 
o f d ila tio n f

The scalar product piA of a convex body A  and a scalar pi >  c can be 
defined by the equation H aA =  piUIA. Analagously, we define a harm onic 
scalar product pi o A  by:

Definition 5.
F ,oA — y. Fa [pi >  o A  e K n] .

We note th a t harm onic scalar products could have been defined for star bodies 
A c S n by letting p,xoA =  pi“ 1 pA. Both definitions coincide in K n.

Analogous to the definition of the parallel body we define the harm onic 
body A [l by:

Definition 6.
A^ =  A  x  pi o U [pi >  o A e  K n] .

O ur last theorem  shows that, for small pi, the extended dual cross-sectional 
m easures appear as coefficients in an expression for V (A^).

Theorem 7.
00

V(A*1) =  H  (“ ”) W _, (A) ,F‘ [{*< In f pA] .
2=0  \ 1 1

The proof is a simple exercise involving the use of the binomial theorem.
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