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SEZIONE 1

(Matematica, meccanica, astronomia, geodesia e geofisica)

Geometria. — Dual cross-sectional measures. Nota di ERWIN
LuTtwak, presentata @ dal Socio B. SEGRE.

RIASSUNTO. — Si definiscono « quermass integrali» duali a mezzo di formole di
Kubota duali. Si esaminano le relazioni fra questi integrali ed i funzionali di Minkowski;
in particolare, si trovano le disuguaglianze che corrispondono per dualith a quelle classiche.

The integral formulas of Kubota [3] permit a simple recursive definition
of the # - 1 cross-sectional measures Wo, Wi, -+, W, in Euclidean n-space,
R”. In a one dimensional space, for convex compact A, Wo (A) is defined
to be the length of A while Wi (A) is defined to be 2. After defining the
cross-sectional measures in (7 — 1)-space they are defined in Euclidean
n-space by letting Wo (A) equal V (A), the n-dimensional volume of A,
and letting

Ny

(1) W; (A) = f Wi_y (A|P,) dS (x) [ > o].
2

In this integral Q is the surface of the unit ball U in R” while dS denotes
the area element on Q. A | P, is the projection of A onto the hyperplane P,
which is perpendicular to 2 € Q and passes through the origin. W;_; denotes
the (7 — 1)-th cross-sectional measure in (% — 1)-space while ®,_; denotes
the volume of the unit ball in R*™'.

The dual cross-sectional measures of the title refer to the measures
obtained when the definition of the cross-sectional measures is altered by
replacing A | P, in (1) by its dual ANP,. These measures arise naturally
in the examination of a radial addition that is analogous to Minkowski addi-

(*) Nella seduta dell’r1 gennaio 1975.
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tion. They appear as coefficients in a polynomial expression analogous to
the Steiner polynomial expression for the volume of a parallel body [3].
In addition, the natural extension of these measures can be used to examine
a harmonic addition previously considered by Firey [1, 2], Steinhardt [7,
p. 15] and Rockafellar [6, p. 21].

The setting for this paper will be R". Compact convex sets with non-
empty interiors will be called convex bodies. The space of all convex bodies
which contain the origin in their interior, endowed with the Hausdorff
topology, will be denoted by X,,. For a convex body A, we use Hy and Fu
to denote its support and distance function, respectively. A compact set A
is called a star body with respect to a point @ if for every ¢ in A the line
{ta + (1—#)c|o <t <1} lies in the interior of A. The set of all star
bodies with respect to the origin will be denoted by S,. Associated with a
star body A €S, is a radial function p, defined on Q by:

pa(@) =Sup{rn>o0 | €A} [z € Q].

The radial function of a star body in S, is a positive, continuous real-valued
function on Q. Conversely, a positive, continuous real-valued function on Q
is the radial function of a unique star body in S,. A metric d can be
defined in S, by letting

d (A, B) =Sup | oy (1) — o3 () | [A,BeS,].

It is easy to verify that S, endowed with the topology induced by this metric
has K, as a subspace.

While the cross-sectional measures are defined for compact convex sets,

the dual cross-sectional measures Wo Wl, . W,, will be defined for star
bodies in .S,.

DEFINITION 1. In R' the dual cross-sectional measures are defined by
Wo(A)=V(A) WA= [AeS].

After defining the dual cross- sectional measures in Euclidean (% — 1)-space
they are defined in R” by letting Wo (A) =V (A) and

) W;(A) = Vi_1(ANP,) dS(x) [[>0 A€S,]

where \7\/’,{_1 denotes the (7 — 1)-th dual cross-sectional measure in Euclidean
(7 — 1)<space.

Comparing (2) with (1), we obtain:
THEOREM 1.
W, (A) < W; (A) [o<i<n A€k,

with equality if and only if A is an n-ball (centered at the origin).
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The Z-th dual cross-sectional measure 'CVi is a map
W;: S,— R.

It is continuous, bounded, additive, positive, rotation invariant, homogeneous
of degree 7# — 7 and monotone under set inclusion. All of these properties
are simple consequences of our next theorem which describes the dual cross-
sectional measures of a star body as means of powers of its radial function.

THEOREM 2.

W= L 6w asw [Aes,).

Q

The proof follows by induction on the dimension of the space using standard
techniques (see Hadwiger [3, p. 212]).
The cross-sectional measures satisfy the cyclic inequality [3, p. 282]:

Wi (A) = Wi7(A) Wi(A) <j<k A€k,
As a simple consequence of Hélder’s Inequality [4, p. 140] we have:
THEOREM 3.
WE=iA) < WE(A) Wi(A) [<j<t AE€S,]
with equality if and only if A is an n-ball (centered at the origin).

We note, that for convex bodies in X, Theorem 3 is a consequence of
a general inequality between dual mixed volumes that was obtained by us

in [5].

The Minkowski sum A -+ B of two convex bodies A and B can be defined
by the equation '

Hatp =Hy 4 Hp.
Given two star bodies A, B € S, we define the radial sum A®B by:
DEFINITION 2.

PagB = Pa T P8 [A,BeS,].

The Brunn-Minkowski Theorem [3, p. 187] states that:
VI (A + B) =V (A) + V¥ (B) [A,BeKk,]

with equality if and only if A and B are homothetic. A simple application
of the Minkowski Inequality [4, p. 146] yields:
THEOREM 4.
V7 (A®B) < V" (A) + V" (B) [A,BeS,]

with equality if and only if A is a dilation of B (with the origin as the center
of dilation).
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For a convex body A and a scalar p. > o the parallel body A, is defined
to be A 4 uU. For a star body A €S, and L > o we define the radial
body A by:

DEFINITION 3.
WA =ARQuU [w>0 AcS,].

For the volume of the parallel body A, we have the Steiner polynomial
expression [3, p. 214]:

7

V(A= (’Z)W,-(A) w [b>0 A€KX,].

1=

Just as the cross-sectional measures appear as coefficients in the polynomial
expression of V (A,), the dual cross-sectional measures appear as coefficients
in a polynomial expression of V (LA).

THEOREM 5.

V(HA)=2(?)\7V,-(A);J." >0 A€S,].

To prove this we merely note that Pua = Pa T L

Combining the definition of the surface area of a convex body [3, p- 184]
with the Cauchy area formula [3, p. 208] we obtain:

Lim [V(A) —V@)lfp = f VAP dS()  [AcK,)
Q

where V' denotes the volume in Euclidean (n— 1)-space. As a direct conse-
quence of Theorem 5 we have:

COROLLARY.
Lim [V(A) —V(A)]ju = ! fV' (AnP,) dS(») [AeS,].
=0 On—1
Q

As presented in Definition 1 the dual cross-sectional measures W, have
indices ¢ restricted to integer values between zero and 7. However, Theorem 1
points to a natural extension of the definition so that the W; are defined
for all real indices.

DEFINITION 1.

W;(A) = f 0" () dS () [[eR A€S,].
o)
The new \Xfi are also positive, continuous, additive, rotation invariant and
homogeneous of degree 7 —i. However, they are bounded and monotone
only for 7 <z Theorem 3 remains unaltered if we allow the indices of
the dual cross-sectional measures to range over all real numbers.

With extended indices the dual cross-sectional measures can be used
to examine a harmonic addition considered by Firey [1,2], Steinhardt [7,
p- 15] and Rockafellar [6, p. 21].
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The harmonic sum A X B of two convex bodies A , B € X, is defined by:

DEerINITION 4.
Faxg =Fs + F3 [A,Bek,].

We note that, while we chose not to do so, harmonic addition could have
been defined in S, by letting ¢, p == (pgl + pgl)“l. Both definitions coincide
in X,,.
The following dual to the Brunn-Minkowski theorem is due to Firey [1]
and Steinhardt [7]:
THEOREM 6.
V(A XB) =V (A) + V" (B) [A,BeK,]

with equality if and only if A is a dilation of B (with the origin as the center
of dilation).

The scalar product wA of a convex body A and a scalar w > ¢ can be
defined by the equation H,, = pwHa. Analagously, we define a harmonic
scalar product pwe A by:

DEFINITION 5.

Fuoa = p Fa [w>0 A€Kk,].

We note that harmonic scalar products could have been defined for star bodies
A €S, by letting puon =% " pa. Both definitions coincide in X,.
Analogous to the definition of the parallel body we define the harmonic
body A" by:
DEFINITION 6.
A =AxXuoU [w >0 A€ek,].

Our last theorem shows that, for small u, the extended dual cross-sectional
measures appear as coefficients in an expression for V(A").

THEOREM 7.

V) = i () Wy v [< Inf p,] .

=

The proof is a simple exercise involving the use of the binomial theorem.
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