ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

GIUSEPPE ACCASCINA

A Variant of Segal's construction of classifying spaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **57** (1974), n.6, p. 606–610. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1974_8_57_6_606_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Topologia. — A Variant of Segal's construction of classifying spaces. Nota di Giuseppe Accascina, presentata (*) dal Socio B. Segre.

RIASSUNTO. — Viene modificata la costruzione di spazio classificante (data da G. Segal in [5]) per una categoria topologica in modo tale che lo spazio classificante della categoria topologica associata ad un gruppo topologico sia omeomorfo allo spazio classificante definito da J. Milnor ([2]).

o. Introduction

Given a topological category \mathscr{C} , G. Segal ([5]) defines its classifying space to be the geometric realization of the semi-simplicial space given by the nerve of \mathscr{C} .

In this paper we regard the nerve of $\mathscr C$ only as a Δ -space (i.e. we do not consider the "degeneracy maps") and define the classifying space of $\mathscr C$ to be the geometric realization of such Δ -space. This construction looks more suitable than Segal's one because, when applied to the topological category associated to a topological group G, it gives a classifying space which is homeomorphic to the classifying space of G as defined by G. Milnor ([2]).

In the first section we define a Δ -space to be roughly a Δ -set ([4]) endowed with a topological structure. Milnor's geometric realization ([3]) adapts easily to define the realization T(A) of a Δ -space A. In our case T(A) is not necessarily a C. W. complex; this is due essentially to the presence of a non trivial topology in the spaces A^n of A. However one can prove that T(A) has a good filtration which gives a spectral sequence completely analogous to that of 5.1. in [5].

In the second section we make the definition of the nerve NV of a topological category $\mathscr C$ and prove that NV is a Δ -Space; then we define the classifying space of $\mathscr C$ to be $B\mathscr C=T(N\mathscr C)$.

In the third section, given a topological group G, we first define two topological categories $\mathscr G$ and $\overline{\mathscr G}$, then we show that $B\overline{\mathscr G}$ is a free G-space and prove that $(B\overline{\mathscr G})_{/G}\cong B\mathscr G$.

Finally we show that the fibration $B\overline{\mathscr{G}} \to B\mathscr{G}$ is equivalent to the universal bundle $E \to B_G$ given in [2].

This paper is part of [I] which is a dissertation submitted to the University of Warwick during September 1970 in partial fulfilment of the requirements of the Degree of Master of Science.

I whish to express my thanks to «Consiglio Nazionale delle Ricerche» for financial support during the period I spent at Warwick as a research student.

(*) Nella seduta del 14 dicembre 1974.

i. Δ -Spaces and Geometric Realization

For any non negative integer p, let [p] be the ordered set $\{0, 1, \dots, p\}$. Let Δ be the category having as objects the sets [p] and as morphisms the maps $\alpha: [p] \rightarrow [q]$ such that $\alpha(i) < \alpha(j)$ for every integer $0 \le i < j \le p$.

A Δ -space is a contravariant functor from the category Δ to the category Top of topological spaces and continuous maps. Since every morphism of Δ is the composition of maps $\partial_i: [\not p-1] \to [\not p]$ defined as follows: $\partial_i(j)=j$ for j < i, $\partial_i(j)=j+1$ for $j \geq i$, a Δ -space A is a sequence of topological spaces $A^0, A^1, \cdots, A^n, \cdots, (A^n=A([n]))$ and continuous maps $\partial_i^*: A^n \to A^{n-1}$ $(i=0,1,\cdots,n)$ which verify the property $\partial_i^*: \partial_j^* = \partial_{j-1}^*: \partial_i^*$ if i < j. Let Δ_p be the standard p-simplex in R^{p+1} every element $t \in \Delta_p$ is then given

Let Δ_p be the standard p-simplex in \mathbb{R}^{p+1} every element $t \in \Delta_p$ is then given by $t = (t_0, \dots, t_p)$ with $t_i \geq 0$ and $\sum_{i=0}^p t_i = 1$. Every map $\partial_i : [p-1] \to [p]$ induces a continuous map $\partial_{i*} : \Delta_{p-1} \to \Delta_p \partial_{i*} (t_0, \dots, t_{p-1}) = (t_0, \dots, t_{i-1}, 0, t_i, \dots, t_{p-1})$, therefore any morphism of $\Delta \alpha : [p] \to [q]$ induces a continuous map $\alpha_* : \Delta_p \to \Delta_q$.

Let $A: \Delta \to T$ op be a Δ -space. The geometric realization of A is given by $T(A) = \left(\bigsqcup_{i=0}^{\infty} \Delta_i \times A^i\right) / \sim$ where $(t, \alpha^* a) \sim (\alpha_* t, a)$ where $t \in \Delta_p$, $a \in A^q$, $\alpha: [p] \to [q]$ is a morphism of Δ and \square is the disjoint union. Denote $q: \square \Delta_i \times A^i \to T(A)$ the quotient map and $|t, a| \in T(A)$ the equivalence class of (t, a) and $T^p(A) = q\left(\bigsqcup_{i=0}^p \Delta_i \times A^i\right)$ and denote $q_p: \bigsqcup_{i=0}^p \Delta_i \times A^i \to T^p(A)$ the restriction of q.

Then we have the following:

PROPOSITION. If A is a Δ -space, there is the following filtration of T(A):

$$T^{0}(A) \subset T^{1}(A) \subset \cdots \subset T^{p}(A) \subset \cdots \subset T(A).$$

Proof. If C is a closed subspace of T(A) then for every $p \in C \cap T^p(A)$ is closed in $T^p(A)$ because $T^p(A)$ is a subspace of T(A). On the other way, if $C_p = C \cap T^p(A)$ is closed for every p then $q_p^{-1}(C_p)$ is closed for every p, therefore $q^{-1}(C)$ is closed and C is therefore closed because q is a quotient map.

We can now prove an analogue of the Theorem 5.1. of [5].

THEOREM. Let A be a Δ -space and $h_*(h^*)$ and additive generalized homology (cohomology) theory, then there is a spectral sequence $\{E_{p,q}^*\}$ ($\{E_*^{p,q}\}$) which converges to $H_*(T(A))$ ($H^*(T(A))$) with:

$$\mathbf{E}_{p,q}^2 \! \cong \! \bar{\mathbf{H}}_p(h_q(\mathbf{A})) \quad , \quad (\mathbf{E}_2^{p,q} \! \cong \! \bar{\mathbf{H}}^p(h^q(\mathbf{A})))$$

where $\overline{H}_p(h_q(A))$ is the p-th homology group of the chain complex:

$$h_q(\mathbf{A}^0) \leftarrow \cdots \leftarrow h_q(\mathbf{A}^p) \leftarrow \stackrel{\mathbf{d}_{p+1}}{\longleftarrow} h_q(\mathbf{A}^{p+1}) \leftarrow \cdots$$

where $d_{p+1} = \sum_{i=0}^{n} (-1)^{i} h_{q}(\hat{z}_{i}^{*})$ (and similarly for the cochain complex $h^{q}(A)$).

Proof. Follow Segal's proof of 5.1. of [5] with the obvious modifications. For example, in our case we do not have degenerate parts.

2. CLASSIFIYNG SPACES OF TOPOLOGICAL CATEGORIES

A topological category $\mathscr C$ is a category in which the set of objects $(\operatorname{Ob}\mathscr C)$ and the set of morphisms $(\operatorname{Mor}\mathscr C)$ have a structure of topological spaces and where the following maps are continuous:

$$\alpha:\operatorname{Mor}\mathscr{C}\to\operatorname{Ob}\mathscr{C}\qquad \qquad ,\quad \alpha(f)=\operatorname{domain\ of}\ f;$$

$$\beta: \operatorname{Mor} \mathscr{C} \to \operatorname{Ob} \mathscr{C}$$
 , $\beta(f) = \operatorname{range} \ \operatorname{of} f$;

 $\gamma: \operatorname{Mor} \mathscr{C} \times \operatorname{Mor} \mathscr{C} \to \operatorname{Mor} \mathscr{C} \quad \text{,} \quad \gamma(f,g) = f \circ g \ \, \text{(where the composition } \\ \qquad \qquad \text{of maps makes sense)}.$

Given any topological category $\mathscr C$ we define the nerve of $\mathscr C$ to be the following $\Delta\text{-space}$:

$$N\mathscr{C}: \Delta \to \text{Top}$$
, $[p] \to \text{Funct}(p, \mathscr{C})$

where p is the category having the set [p] as set of objects and only a morphism from i to j whenever $i \leq j$. We have that $N\mathscr{C}^p = N\mathscr{C}([p])$ is a topological space for every p since it is $N\mathscr{C}^0 = \mathrm{Ob}\,\mathscr{C}$, $N\mathscr{C}^1 = \mathrm{mor}\,\mathscr{C}$ and in general $N\mathscr{C}^p$ is given by all the sequences of p morphisms of \mathscr{C} :

$$C_0 \xrightarrow{l_1} C_1 \xrightarrow{l_2} \cdots C_{p-1} \xrightarrow{l_p} C_p$$
 where $C_i \in Ob\mathscr{C}$

and therefore $N\mathscr{C}^{p}$ has the topology induced by the topology of Mor \mathscr{C} . It is easy to see that ∂_{0}^{*} , $\partial_{1}^{*}:N\mathscr{C}^{1}\to N\mathscr{C}^{0}$ are respectively β and α . In general the map $\partial_{i}:[\not p-1]\to[\not p]$ induces the following map $\partial_{i}^{*}:N^{p}\mathscr{C}\to N^{p-1}\mathscr{C}$

$$\partial_{i}^{*} \left(C_{0} \xrightarrow{l_{1}} \cdots \xrightarrow{l_{i-1}} C_{i-1} \xrightarrow{l_{i}} C_{i} \xrightarrow{l_{i+1}} C_{i+1} \rightarrow \cdots \rightarrow C_{p} \right) =$$

$$= \begin{pmatrix} C_{0} \xrightarrow{l_{1}} \cdots C_{i-1} \xrightarrow{l_{i+1} \circ l_{i}} C_{i+1} \rightarrow \cdots \rightarrow C_{p} & \text{if } o < i < p \\ C_{1} \xrightarrow{l_{2}} C_{2} \rightarrow \cdots \rightarrow C_{p} & \text{if } i = o \\ C_{0} \xrightarrow{l_{1}} C_{1} \rightarrow \cdots \rightarrow C_{p-1} & \text{if } i = p .$$

All these maps are continuous because of the properties stated in the definition of a topological category.

Given a topological category $\mathscr C$ we define its classifying space to be $B\mathscr C=T(N\mathscr C).$

3. THE CLASSIFYING SPACE OF A TOPOLOGICAL GROUP

Given any topological group G, following G. Segal, we define two topological categories \mathscr{G} , $\overline{\mathscr{G}}$. The category \mathscr{G} has only one object and G as the space of morphisms, the product in G gives the composition law in \mathscr{G} ; the category

 $\overline{\mathscr{G}}$ has G as the space of objects and a unique morphism $(\mathscr{G}_0,\mathscr{G}_1)$ for each ordered pair of elements $(\mathscr{G}_0,\mathscr{G}_1)$ of G.

Since an element of $N^p \overline{\mathcal{G}}$ is a sequence $g = (g_0, g_1, \dots, g_p)$ of (p+1) elements of G we can define for every p a free action p of G over $N^p \overline{\mathcal{G}}$ by putting $p((g_0, \dots, g_p)\overline{g}) = (g_0\overline{g}, \dots, g_pg)$ where $\overline{g} \in G$. Since $\alpha^* p(g, \overline{g}) = p(\alpha^* g, \overline{g})$ for $g \in N^p \overline{\mathcal{G}}$, $\overline{g} \in G$ and $\alpha \in \text{Mor } \Delta$, it is easily checked that the classifying space $B\overline{\mathcal{G}}$ is a free G-space.

For every p we have also a homeomorphism $k_p: (N^p \overline{\mathscr{G}})_{/G} \to N^p \mathscr{G}$ such that $k_q(\alpha^* g, g) = \alpha^* k_q(g, \overline{g})$ for every $\alpha: [p] \to [q]$ morphism of Δ , therefore $(B\overline{\mathscr{G}})_{/G}$ is homeomorphic to $B\mathscr{G}$.

Let us consider the construction of the universal boundle for a topological group G given by J. Milnor in [2]. Given a topological group G, the infinite join of G, $E = G * G * \cdots G * \cdots$, is defined to be the set $(t_0 g_0, \cdots, t_p g_p, \cdots)$ where t_i are real numbers such that $t_i \geq 0$, all but a finite number of t_i vanish and $\Sigma t_i = 1$, and $g_i \in G$ is given for any i such that $t_i \neq 0$. When $t_i = 0$ g_i can be chosen arbitrarly or omitted.

The following sets are a sub-basis of open sets of E:

- I) the set of all $(t_0 \, g_0 \, , \cdots, t_p \, g_p \, , \cdots)$ such that $\alpha < t_i < \beta$;
- 2) the set of all $(t_0 g_0, \cdots, t_p g_p, \cdots)$ such that $t_i \neq 0$, $g_i \in U_i, U_i$ open in G.

Now define an action of G on R by putting:

$$\rho((t_0 \, \mathcal{G}_0 \,, \cdots, t_p \, \mathcal{G}_p \,, \cdots) \, \overline{\mathcal{G}}) = (t_0 \, \mathcal{G}_0 \, \overline{\mathcal{G}} \,, \cdots, t_p \, \mathcal{G}_p \, \overline{\mathcal{G}}).$$

The universal bundle is given by $E \rightarrow E_{/G} = B_G$.

Theorem. The two fibrations $B\overline{\mathscr{G}}\to B\mathscr{G}$ and $E\to B_G$ are equivalent. Proof. The following continuous maps:

$$h_p: \Delta_p \times N^p \bar{\mathscr{G}} \to G * G * \cdots * G \qquad (p+1)$$
-times

given by $h_{p}(t;g) = h_{p}(t_{0}, \dots, t_{p}; g_{0}, \dots, g_{p}) = (t_{0}g_{0}, \dots, t_{p}g_{p})$ verify the condition $h_{q}(\alpha_{*}t,g) = h_{p}(t,\alpha^{*}g)$, therefore they define a continuous map $h: B\overline{\mathscr{G}} \to E$.

Obviously h is onto. We have to prove that if $h \mid t', g' \mid = h \mid t, g \mid$ then $(t', g') \sim (t, g)$.

Let $(t',g') \in \Delta_p \times \mathbb{N}^p \overline{\mathscr{G}}$ and $(t,g) \in \Delta_{p-r} \times \mathbb{N}^{p-r} \overline{\mathscr{G}}$. We can assume $t_i \neq 0$ for every $i=0,\cdots,p-r;$ orthorwise if exist $i_1 < \cdots < i_s$ such that $t_{i_1} = \cdots = t_{i_s} = 0$ we have

$$(t,g) = (\partial_{i_{1*}} \cdots \partial_{i_{s*}} t'',g) \sim (t'',\partial_{i_s}^* \cdots \partial_{i_1}^* g)$$

where

$$t'' = (t_1, \dots, t_{i_1-1}, t_{i_1+1}, \dots, t_p).$$

43. — RENDICONTI 1974, Vol. LVII, fasc. 6.

If r = 0 it must be (t', g') = (t, g). If r > 0, since $t_i \neq 0$ for every i, from $h \mid t', g' \mid = h \mid t, g \mid$ it follows that exist $i_1 < \cdots < i_r$ such that

$$t' = (t_0, \dots, t_{i_1-1}, o, t_{i_1}, \dots, t_{i_r-1}, o, t_{i_r}, \dots, t_{p-r})$$

and

$$g' = (g_0, \dots, g_{i_1-1}, g'_{i_1}, \dots, g_{i_{r-1}}, g'_{i_r}, \dots, g_{p-r}).$$

Therefore if we put

$$t = (t_0, \dots, t_{i_1-1}, t_{i_1}, \dots, t_{p-r})$$

and

$$g = (g_0, \dots, g_{i_1-1}, g_{i_1+1}, \dots, g_{p-r})$$

we have

$$(t',g')=(\partial_{i_{1*}}\cdots\partial_{i_{r*}}t,g')\sim(t,\partial_{i_r}^*\cdots\partial_{i_1}^*g')=(t,g).$$

It is easy to see that h is a homeomorphism.

Moreover it commutes with the action of G and therefore induces an homeomorphism $h': B\mathscr{G} \to B_G$ and the theorem is proved.

REFERENCES

- [1] G. ACCASCINA (1970) Δ-Spaces and Classifying Spaces, September 1970. University of Warwick.
- [2] J. MILNOR (1956) Construction of Universal Bundles, II, «Ann. of Math.», 63, 430-436.
- [3] J. MILNOR (1957) The Geometric Realization of a Semi-Simplicial Complex, «Ann. of Math. », 65, 357-362.
- [4] C. P. ROURKE and B. J. SANDERSON (1971) Δ-Sets. I: Homotopy Theory «Quart. J. Math.», Oxford, ser. II, 22, 321-338.
- [5] G. SEGAL (1968) Classifying Spaces and Spectral Sequences, « Publ. Math. Ist. des Hautes Etudes Scient. (Paris) », 34, 105-112.