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Topologia. — Lattice Theory and Jacobson Rings. Nota di CHARLES
SurrFeEL, EDWARD BECKENSTEIN e LawrENCE NARICI, presentata @
dal Corrisp. G. Zappa.

RIASSUNTO. — Viene studiato il completamento di Jacobson di uno spazio topologico
Ty, e ne vengono fatte applicazioni allo studio degli anelli comutativi con identita.

SECTION 0. INTRODUCTION

Let T be a To space and L a lattice of closed subsets of T which form a
base for the closed sets in T. If T were a Ty space, the collection W (T, L)
of L-ultrafilters could be topologized so as to form a Ti—compactification of
T referred to as a Wallman-type compactification of T. One reason for
interest in such compactifications is the question of whether an arbitrary
Hausdorff compactification of a Tychonoff space T can be realized as a Wall-
man-type compactification. This question remains open.

. We study here a larger compact space, J(T, L), than W(T, L) (Def. ).
W(T,L) is very dense in J(T,L) (for any closed set F in J(T, L),
c; FOW (T, L) = F), and for every irreducible closed set F in W(T, L),
J (T, L) contains a generic point for F (a point x such that cly x =clj F).
J(T,L)is called a Jacobson completion of T. It is shown to exist in a number
of forms and to be unique when T is compact. Another approach to Jacobson
completions using other techniques can be found in [4].

The material on Jacobson completions is applied to the study of commu-
tative rings A with identity. Let 4 (A) be the maximal ideals of A and _#(A)

the Jacobson prime ideals (those prime ideals p such that (p = N M).
2 MD #,M e /(A)

It is shown that #(A) = J(#(A), L) where L is either of two lattices of
hull-kernel closed subsets of .#(A). As a consequence, #(A) is the Jacobson
completion of #(A) and the generic points of irreducible closed subsets of
HM(A) liein #(A). This generalizes some results of [2] and [3].

SECTION 1. VERY DENSE SPACES

In this section we develop some topological relationships between a space Y
and a very dense subspace X. X iswvery dense if Y if and only if cly (FNX) = F
for any closed set FCY. We show that if X is a compact T1 space, then
X can be extended to a To space Y in which X is very dense and every
irreducible. closed subset of X has a generic point in the sense of Prop. 7.
If in X the compact-open sets form a base for the topology closed with respect
to the formation of finite intersections, then this is shown to be true in Y as

(*) Nella seduta del 14 novembre 1974.
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well.  Hochster in [5] referred to a space such as Y as a spectral space, and
we will refer to X as a prespectral space.
Only brief sketches of proofs will be presented in this section.

PROPOSITION 1. X 75 wery dense in Y if and only if for each ye Y,
v ecly (e {¥} O X).

PROPOSITION 2. (@) If X is very dense in Y and { By} is a base for the
closed subsets of X, then {cly By} is a base for the closed subsets of Y.

(b) If X is very dense in Y and { ¥y} is a family of closed subsets of
X, then clyNFg = Ncly Fg.

PROPOSITION 3. (a) If X is very dense in Y, a closed set F C X is irredu-
cible if and only if Ay F is irredubible in Y.
(b) cly{y} is irreducible for cach ye Y.
(¢) Letting Irr X denote the irreducible closed subsets of X,

I:Y— Irr X

is a 1 — 1 mapping.

PROPOSITION 4. (a) lf X is very densz in X and U is open in X, then there
exists a unique open set UCY such that ONX = U.
(b) The set U of (a) is compact if and only if U is compact.

Proof. (a) CUNX =CU and X is very dense in Y. Thus CU is unique.

(b) If F is any closed set in X and U any open set in X, show that U

meets F if and only if U meets F where U is the set of (a). Then show that

a family of closed subsets of U with the finite intersection property has
nonempty intersection. Use Prop. 2 (b).

DEFINITION 1. A prespectral space X is a compact space such that the
compact-open sets form a base for the topology whick is closed with respect to the
Jormation of finite intersections.

PROPOSITION 5. If X is very dense in Y, then X is prespectral if and only
if Y s prespectral.

DEFINITION 2. A point p is said to be adjoined to X if X is very dense
in XU{p}. '

By Prop. 3 (b) it is clear that adjoining a point to X amounts to adding
a generic point for an irreducible closed subset of X (necessarily containing
more than one point). We develop a proceedure for adjoining them all.

PROPOSITION 6. If X is a Ti prespectral space, then there exists a point
p such that p can be adjoined to X if and onlv if there exists a filterbase of com pczcl‘-
open sets B such that "% = &.
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Proof. Start by extending # to an ultrafilter among the compact-open
subsets of X. Refer to this ultrafilter again as . We define a topology on
the set XU {p} as follows

() If NOB for some B €%, then { »} UN is a neighborhood of p.

(2) If x € X and N is a neighborhood of x in X, then if N D B for some
Be#, {p}jUN is a neighborhood of x.

(3) If x€ X and N is a neighborhood of x in X containing no set
B € #, then N is a neighborhood of x again in { p } U X.

PRrOPOSITION 7. [f X 4s a T1 space and F an irreducible closed set with
more than one point, them a generic point P for F can be adjoined to X
(e (clxus3{P}) O X =TF).

Proof. Let # be the collection of open subsets of X which meet F. As
F is irreducible, & is a filter. As X is a T1 space, N# = . We define neigh-
borhoods of points in the space X U { p} exactly as in the previous result.

PrROPOSITION 8. If X is a T1 space, then X can be extended to a space Y
in which X is very dense and every irreducible closed subset of X has a generic
point in the sense of Prop. 7.

Proof. Let & be the irreducible closed subsets with no generic points in
X. Let T = X UZ with the cardinality of Z strictly greater than the cardi-
nality of &. We consider the family 7 of topological spaces such that for each
Sc¢o/, XCSCT and X is very dense in S. We order & under the relation-
ship S = Spif and only if Sy is a subspace of Sp. It follows then that S; is very
dense in S;. It can be shown that <7 is inductively ordered and contains a
maximal element Sy . We know (Prop. 3(c)) that Sy consists of generic points
of irreducible closed subsets of X. It can be shown that Sy is the space Y of
the theorem as follows: Since Z> .2, Sy cannot have exhausted Z. If there
is some F C X such that FF € #and F has no generic point in Sy, we adjoin
a point z€Z to Sy as follows.
Let # be the filter of open subsets of X associated with F as in Prop. 7.

For each O, € # let O, be the unique subset of Sy such that O, N X = O,.
We adjoin 2 to Sy by setting Y = Sy U{z} and defining neighborhoods of
points in Y by

(1) {2}UN is a neighborhood of z in Y if for some O,, 0,CNCS,.

(2) If s€Sy and N is a neighborhood of s such that for some O,,
s ¢ 0,CN, then {2}UN is a neighborhood of s.

(3) If N is a neighborhood of s in Sy and there exists no O, such
that s« O, CN, then N remains a neighborhood of s in Y.

It can be shown that Sy and X are both very dense in Y which violates
the maximality of Sy in T. There are numerous elementary steps in the veri-
fication of the statements of the previous sketch. These are left to the reader

DEFINITION 3. (a) If X s a Ty space, a Jacobson completion of X is a
space Y in which X is very dense and every irreducible closed subset of X has a
generic point.



C. SUFFEL ed ALTRI, Lattice Theory and Jacobson Rings 599

(b) If X is T1 and prespectral, a Jacobson completion of X is called a
spectral completion.

PROPOSITION 9. A Jacobson completion exists for every Ty space X.
Proof. See Prop. 8

DEFINITION 4. A Ti space X is spectrally complete if and only if it is
prespectral and admits no proper Jacobson completion.

PROPOSITION 10. A prespectral Ti space X is spectnz//y complete if and
only if any of the following are true.
(a) Each filterbase of compact-open subsets of X has nonempty inter-
section.
(b) X is not very dense in any proper extension Y.
(c) X contains the generic points of all irreducible closed sets.

In [5] Hochster has shown that a prespectral space which is spectrally
complete is topologically equivalent to the prime ideals of a ring. He called
such a space a spectral space. We have shown that every T prespectral space
X can be enlarged to a maximal spectral space Y in which it is very dense.

By the results of Section 3 (Prop. 17) it will be seen that Y constitutes
the prime ideals of a Jacobson ring for which X constitutes the maximal ideals.
Hence every prespectral Ti space X is the maximal ideals of a Jacobson ring.
In Section 3 (Prop. 13), it will emerge that the converse of this is also true.

SECTION 2. LATTICES AND THE JACOBSON COMPLETION

In this section we essentially, reproduce the material of Section 1 utili-
zing lattice theory. We show that any Jacobson completion of a compact
T1 space X is a Wallman type compactification of X and is unique (Prop. 12).
Compactness of W was not assumed in Prop. 8. As we are most interested in
the applications of these results to ring theory in which the compact Ty space
M (A) of maximal ideals of the ring A plays the role of X, we donot regard
this as a serious drawback.

DEFINITION 5. Let L be a distributive lattice with o and 1. A prime fil-
ter P in L is a filter such that if a b€l and a4+ b= P, then ae P or be P.
A Jacobson filter £ is a prime filter such that § is the intersection of all the
ultrafilters  containing it. We adopt the following notations.

W(L)—the set of all ultrafilters;
J (L)—the set of Jacobson filters;
- P(L)—the set of prime filters.

If ael, then we set B, = {ZPePL)/acP}. On P(L) it is readily
shown that B,.; = 8,UB, and B, = 8,NB;. Hence the sets {B,/aeL}
are a base for the closed sets of a topology on P(L) which we refer to as the
Wallman topology.
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If we restrict our attention to W (L) we find that C8, N W (L) =
{Ze¢ W (L) /there exists €% with a6 = 0}. This is no longer true once
we leave W(L) and in fact if € P (L) — W (L), then as £ can be extended
to an ultrafilter & and letting ¢ € Z— 2, then P€CB, but ab==o0 for all
be 2.

From this point on in the section we assume that X is a T space and ¥
the lattice of all closed subsets of X. The spaces W (%), J(%), and P(%) will
be denoted by W(X,%), J(X,%), and P (X, %) respectively.

PROPOSITION 11. (a) A filter Py ={K €€ |FCK} where F is closed,
is a prime filter if and only if ¥ is irreducible
(b) When X is compact, a filter Z ¢ W (X, %) if and only if ¥ — %, =
={Ke®/xeK} for some x € X.
(c) When X is compact, a filter g€ J(X,€) if and only if §= Py for
some trreducible closed set F C X.
Proof. (a) Py is prime if and only if when F C F;UF:, then FC Fy or
F CF, that is, if and only if F is irreducible. ’
(b) Suppose X is compact and Z is an ultrafilter. Then NK == .
Thus for some x € X, x € NK and it readily follows that & = %,.%

z
(c) Suppose X is compact. Let fe J(X,%). Then #= n Z, and
JC

let F={xeX/|/FCZ,} Thencly FCZ, for all &, such that fCﬁZ’ and
cxFe g If Ke g, then KeZ, for all ¥ such that #£CZ%,. Hence
FCcly FCK and it follows that #C{He®%/clxy FCH} However, as
clxy Fe #, it follows that {He®%/cly FCH}C # and therefore that
F = Payg. Clearly then F = cly F and by (a), Fis irreducible.

Conversely, if #= 2 where F is an irreducible closed set, then
F =P = 0O Z, and clearly fe€ J(X,®).
sce,

PROPOSITION 12. Let X be a compact Ty space and X wvery dense in Y.
Then with F,=cy{y}nX

c:Y— J(X,%
Y —> ?Fy
is a homeomorphism such that o restricted to X establishes a homeomor phism

between X and W (X ,€). ¢ is onto J (X, ) if and only if every irreducible
closed set ¥ C X has a generic point in Y.

Proof. As F, = (cly{y}) N X is irreducible, o (y) = ﬂFy J(X,®).
As Y is a Ty space, cly {3, }F=cly {7, } if ¥,==55 and as X is very dense
in Y, is follows that F, ==F,, and ¢ is a 1 — 1 mapping.

By Prop. 11 (b), 6 () e WX %) if and only if 6 (y) = P, = &, = o ().
Thus ¢ (X) = W (X, ©).

quppose now that ¢ is onto. Then for each irreducible closed set F C X,

={KeF/FCK}eJ(X,%¥) and there exists y such that &, = Py, .

HenC° F=F,.
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Conversely it is clear that if for each irreducible closed set FC X,
F =T, for some y € Y, then ¢ is an onto map.

To show that ¢ is a homeomorphism we simply note that if F is closed
in Y, then ¢(F) ={%, /yeF}= {Z,/FO XeZg,}=Pinx N ] (X,9).

COROLLARY. /f X is a compact T1 space, the Jacobson compactification
of X, exists, is unique, and is equivalent to J (X , %).

COROLLARY. [If X is a prespectral Ty space, J (X, €) is the spectral com-
pletion of X.

SECTION 3. APPLICATIONS TO RING THEORY.

In this section we apply the material of the previous two sections to
relationships between the prime and maximal ideals of a commutative ring
with identity. Denoting the maximal ideals of A as .(A) and the hull of
{ar, 2, }CA as Huwn(ay, -+, a,) ={MeMA)a; e M}, Lya as,
the lattice of all such hulls, #(A) as the set of all Jacobson prime ideals,
we show that if € is the lattice of all bull-kernel closed subsets of .#(A), then
FA) = T MD), Luw) = ] (MA), E).

In [3] Grothedieck showed that the points of Spec A (the set of all prime
ideals of A) can be put in 1 — I correspondence with the irreducible closed
subsets of Spec A under the mapping p— clspeca { £}. In [2] it was shown that
if A is a Jacobson ring (,#(A) = SpecA), this correspondence can be establi-
shed between the points of SpecA and the irreducible closed sets in .#(A) under
the mapping p — (clgpeca { # } ) VA (A). Critical in proving the result is the
fact A (A) is very dense in Spec A when A is a Jacobson ring. We are interested
in locating the generic points of the irreducible closed subsets of .#(A) when
A is not a Jacobson ring. Here, having shown (Prop. 15) that #(A) is the
Jacobson completion of .#(A), we find (Prop. 16) that these generic points
are located in #Z(A).

In addition, we prove (Prop. 17) that a topological space X is identifiable
as the maximal ideals of a Jacobson ring A if and only if X is a prespectral
T1 space. In such a case it is shown that the Jacobson completion of X is
identifiable as Spec A.

DEFINITION 6. Zet S CSpecA. Then

Hg(ay, -+, a,) ={peSla;€p}
LS:{HS(al)"'yan>/ai€A}~

The sets Hg (ay ,- - -, a,) are a base for a topology on S referred to as the
hull-kernel topology. Any closed subset of S in the hull-kernel topology is
of the form clgF = Hg(4F) = {p €S/ AFCp} where FCS and ZF =N p.

peF
The space # (A) is a compact T; space and SpecA is a compact Ty space.
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PROPOSITION 13. (a) If p€S, then clg{p}={p' €S/pCp 1.
(b) If FCS, clgF={peS[;FCp}.
(¢c) If M(A)CSCSpec, then S is compact.
(d) If #M(A)CSCSpecA, then M(A) is very dense in S if and only
FSCFA).
Proof. (d) If pe F(A), then cls{ptNMA)={MeMA)/MDp}.
As p = ﬂ M, if peCHg(ay,- -, a,), then a; € p for some 7. Hence there

ex1stsM G./%(A) such that pCM and @;€M for some 7. Thus CHg(aq, - -, a,)0
Ncls{p} N MA)==2 and peclg(cls{p}NAQA)). Hence by Prop. 1,
M(A) is very dense in S under the assumption SC £(A).

Conversely if peS and pé€ #(A), then p :iz ﬁ M and there exists

ae ﬁ M with a€p. Hence peCHg(e) but for any M such that M D p,
2C
MGHS(a) Thus CHg(a) Nclg{p} N H#(A) = >.

DEFINITION 7. Let S be such that M(A)CS C SpecA. Then S satisfies
condition Hg of cls Wy (ay ,- -+, a,) = Hg(ay,- - -, a,) for any {ay, -+, a,} CA.

PROPOSITION 14. (@) If M(A)CSC F(A), then S satisfies condition Hg.
(b) If M(A)CSC F(A) and F is a closed subset of M(A), then clgF =
= {p€S|kFCp} and every closed sct in F(A) is of this form.

Proof. (a) If M(A)CSC FZ(A), then as M(A) is very dense in S and
Hg (ay, -, @) OM(A) = Hyny(ay,- -, a,), the proof is done.
b) Let F be a closed subset of .#(A). Then F= N H.ya(a,).
F

a“E
As M(A)CSC FZ(A), then H(A) is very dense in S and S satisfies condition
Hg. Then clg F = N cls Hywy(as) = O Hgla,). Hence p € clgF if and only
ay € AF ay €AF
if for all a, € £F, p € Hg(a,). Equivalently, p € cIgF if and only if AF C ».
As JM(A) is very dense in S, the remainder of the statement of (b) follows

immediately.

We establish notation here which is in force for the remainder of
the paper. Let pe€SpecA. Then o (p) = {Hun(ay, - ,a,)]a; €p}.
Clearly by PYOP- 14, © (ﬁ) = {H-/f(A) <al PR ’ln) /ﬁ € I-I.J‘V(A) (611 D] dn) =
=clgw Ho@y(ay, -, an)} for all pe #(A). If peSpecA, then 6(p) =
= {Fe@[AFCp}. If pc Z(A), then by Prop. 14(b) 6(p)={Fe®/pecclynF}.

PROPOSITION I 5. (@) The Mapping o establishes a homeomorphism bet-
ween J(A) and J(MA), Lauw)) with o (MA)) = W (M(A), Lawy).
(b) The mappz’ng 6 establishes a homeomorphism between. F(A) and
J(AMA), ) with 6 (MA) =W (HA), D).
Proof. (a) We first show that if p € #(A), then o (p) € J(M(A), Lyay)-
If Hypwy(ay, -+, @) CHua@ay 8y, -+, b,,) with Hywy(ay,: -, a,) € 6(p), then
as p € clywy Haw (@, -+ @) =Huwy (a1, -+, ay) Cclpay Hawy (61, - -, b) =
= Hg@ (1, -+, b,) it follows that Hg (1, -, 6,) € 6 (p) and clearly o(p)
is a filter. As pis a prime ideal, it follows readily that ¢(p) is a prime filter.
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To show that 6(p) is a Jacobson filter, we first characterize the ultrafil-
ters. We show that & is an ultrafilter if and only if &= 6(M) where M
is a maximal ideal. If H,a)(a) €c (M), then there exists 7 €M such
that a6 4 = ¢ for some 6€A. Then H.n (@) N Hyw(m) = @ and it
follows that o (M) is an ultrafilter. Conversely if % is an ultrafilter and
p={a€A|Huywn(a) e Z}, it follows readily that p is a maximal ideal
and that 6(p) = Z.

To complete the proof that when pe #(A), o(p)€ J(MA), Lawy,
we show that 6(p) = N o(M) = ﬁMG (M). This follows readily from the

#C

6(p)Co(M)
fact that p is a Jacobson prime ideal for if H.ga)(ay, -+, a,) € 6 (M) for
all M such that p CM, then {a;,---,a,}CM for all M such that p CM.
Thus {ay, --,a,} Cp and therefore Hywa (2, -, a, € o(p). Thus

s(p)= N o(M).
F Co(M)

To show that o is onto, let Ze J(#(A), Lywy). Then £= N o (M).
FCo(M)
Let p ={a€A|/Huyn(a)€ #}. Clearly p is a prime ideal and o (p) = 7

It is clear that 6 (p) C (M) (M a maximal ideal) if and only if p CM. Thus

to show that p is a Jacobson ideal we must show that p = N M. But if 2 € M
pCM
for all M such that p CM, then H.uy@y(a) € 6 (M) for all 6 (M) such that

FCa(M). Therefore H(a) € £ and a € p.

To show that ¢ is a 1 — 1 mapping we assume p; # p, and a € p; with
a € py. Clearly Huya(a) €6 (p1) but if Huny(a)€o(py), then Hyn)(a) =
= Huww(ay, -, a,) where a;€p,. Thus clga Haew (@) = Hpn (@) =
= clrw Haw(ar, -, a,) =Hpw (@, -+, a,) and as py€ Hp (ay,- -, a,),
72 € Hgay(a) and a € p, but this is a contradiction.

As G<H/(A)<‘ll)' C,ay)) = {f& .V’/”<A>’ LJ”(A)> / H-/f(A)<al) ) € f} =
=By (@, a) 0 JA), and o7 (FA) O Haw(ay, - - -, @) =
Hgw(ay, -, a,), then ¢ is clearly a homeomorphism.

(b) Since (A) is very dense in Z(A), if p € clya F and p € clgm K,
it follows that p € clg FNK and therefore it is readily seen that & (p) is
a prime filter,

Once again, we begin by showing that & is an ultrafilter if and only if
& = 6(M) where M is a maximal ideal. IfM is a maximal ideal and F € &(M),
then M € clga) F = néFH‘f(A) (a). Thus for some a € £F, M € cl ga) Hop(ay (@) =

i ae

= H g () and « €M. Consequently for some 7 €M and 4 €A, ab+m = ¢
and H.g@ (@) 0 Hyw () = . Thus FO Hyu(n) = @. Of course
(M) N L.gay = o (M) and therefore H.g) () € 5(M). Suppose now that &
is an ultrafilter in J (A#(A),¥). Let p={peA|Huyn(@)eZ}) As &
is an ultraﬁltelj in €, then ZN L g, is an ultrafilter in L.#y and by part (a),
M=s¢1(ZnNn L.«) is a maximal ideal. By the strong properties of the closure
operator in very dense spaces (Prop. 2), as M is in the closure of every set
ine(M)=2nN L@y by (2), and every set in & is an intersection of sets in
o (M), M is in the closure of every set in & and we are done.
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To show that if pe #(A), then 6(p) € J(M(A),¥), we need only
show that6(p) = O & (M). But if Fe6M) for all M such that p CM,

-~

(T3
Meclgay F for all such M and equivalently 2F CM for all such M. Hence

EFC p =1’QMM and Fea(p).

To show that 6 is onto, let fZe€ J(M(A),%¥). Then fF= N (M)
FCon

and O Luay=06MOLsay= N  oM) and FNLaw = 6(p)
IO L g (ayCoM)

for some p€ #(A). Once again as p is in the closure of each set in
F NLywy and every set in £ is an intersection of sets in # DL 4, # is in
the intersection of each set in # and it readily follows that 6(p) = ¢.

The proofs of the facts that ¢ is a 1 — 1 bicontinuous map are straight
forward and left to the reader.

PROPOSITION 16. If A is a commutative ring with identity, then there
is a 1 — 1 correspondence between the ideals p € F(A) and the irveducible closed
subsets of M(A) where p — (clga{ p}) O M(A) establishes the correspondence.

Proof. See Prop. 12 and Prop. 15.

Noting that we have now shown that #(A) is the Jacobson completion of
M(A), as F(A) is spectral when A is Jacobson, .#(A) is therefore prespectral.
We may now state the following proposition.

PROPOSITION 17. A topological space X is the maximal ideals of a Jacob-
son ring if and only if it is a prespectval T space.

We close the paper with a few examples.

Example 1. 1f X is a compact Hausdorff space, then J (X, %) = W (X, %),
This follows from Prop. 11 and the fact that every closed subet of X with more
than one point is reducible. It follows that a regular semi-simple Banach
algebra [2] is not an integral domain, for the ideal consisting of the zero vector
would then be a Jacobson prime ideal and this cannot be by Prop. 15.

Example 2. Let X be an infinite set with cofinite topology. Then the follo-
wing are all true:
(a) X is a prespectral T; space;
(b)) WX, ®) = X;
(o) J(X,%) = XU{Z} where Zx={X)}.

These three statements lead to the conclusion that any Jacobson ring for
which X is the maximal ideals will have a unique prime ideal which is the
radical of the ring. This prime ideal will be the zero ideal if and only if the
ring is an integral domain. A result of this sort can be found in [2].

Example 3. Let X be a O-dimensional Hausdorff space [1] and F a
rank one nontrivially nonarchimedean valued-field of characteristic zero.
Let C (X, F) denote the continuous F-valued functions on X and I, the ideal
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in C(X, F) generated by all characteristic functions of closed and open (clopen)
sets O such that x € CO. The maximal ideal of all functions in C (X, F)
which vanish at x will be denoted by M, . In X, the zero sets of functions of
C (X, F) are the Cs sets (denumerable intersections of clopen sets). See [1]
for a proof of this. The following statements are all true.

(a) If X is compact, then clex,n I, = M,.

(b) If p is a prime ideal in C (X, F), then if X is compact, there
exists a unique x € X such that clex,pp =M,.

(¢) C (X, F)is biregular [6] if and only if all Cs sets in X are clopen.
In this case with A=C(X,F), P(HA), Lyn) =W (HA), Lua) =
= J(M(A),L) = Be(X) where Po (X) is the Banaschewski compactification
of X, and every prime ideal of C (X, F) is maximal.
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