ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

CHARLES SUFFEL, EDWARD BECKENSTEIN, LAWRENCE NARICI

Lattice Theory and Jacobson Rings

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **57** (1974), n.6, p. 596–605. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1974_8_57_6_596_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ **Topologia.** — Lattice Theory and Jacobson Rings. Nota di CHARLES SUFFEL, EDWARD BECKENSTEIN E LAWRENCE NARICI, presentata ^(*) dal Corrisp. G. ZAPPA.

RIASSUNTO. — Viene studiato il completamento di Jacobson di uno spazio topologico T_0 , e ne vengono fatte applicazioni allo studio degli anelli comutativi con identità.

SECTION O. INTRODUCTION

Let T be a T₀ space and L a lattice of closed subsets of T which form a base for the closed sets in T. If T were a T₁ space, the collection W(T, L) of L-ultrafilters could be topologized so as to form a T₁-compactification of T referred to as a Wallman-type compactification of T. One reason for interest in such compactifications is the question of whether an arbitrary Hausdorff compactification of a Tychonoff space T can be realized as a Wallman-type compactification remains open.

We study here a larger compact space, J(T, L), than W(T, L) (Def. 5). W(T, L) is very dense in J(T, L) (for any closed set F in J(T, L), $cl_J F \cap W(T, L) = F$), and for every irreducible closed set F in W(T, L), J(T, L) contains a generic point for F (a point x such that $cl_J x = cl_J F$). J(T, L) is called a *Jacobson completion* of T. It is shown to exist in a number of forms and to be unique when T is compact. Another approach to Jacobson completions using other techniques can be found in [4].

The material on Jacobson completions is applied to the study of commutative rings A with identity. Let $\mathscr{M}(A)$ be the maximal ideals of A and $\mathscr{J}(A)$ the Jacobson prime ideals (those prime ideals p such that $(p = \bigcap_{M \supset p, M \in \mathscr{M}(A)} M)$. It is shown that $\mathscr{J}(A) = J(\mathscr{M}(A), L)$ where L is either of two lattices of hull-kernel closed subsets of $\mathscr{M}(A)$. As a consequence, $\mathscr{J}(A)$ is the Jacobson completion of $\mathscr{M}(A)$ and the generic points of irreducible closed subsets of $\mathscr{M}(A)$ lie in $\mathscr{J}(A)$. This generalizes some results of [2] and [3].

SECTION 1. VERY DENSE SPACES

In this section we develop some topological relationships between a space Y and a very dense subspace X. X is very dense if Y if and only if $cl_{Y}(F \cap X) = F$ for any closed set $F \subset Y$. We show that if X is a compact T_1 space, then X can be extended to a T_0 space Y in which X is very dense and every irreducible. closed subset of X has a generic point in the sense of Prop. 7. If in X the compact-open sets form a base for the topology closed with respect to the formation of finite intersections, then this is shown to be true in Y as

(*) Nella seduta del 14 novembre 1974.

well. Hochster in [5] referred to a space such as Y as a *spectral space*, and we will refer to X as a *prespectral space*.

Only brief sketches of proofs will be presented in this section.

PROPOSITION 1. X is very dense in Y if and only if for each $y \in Y$, $y \in cl_{Y}(cl_{Y} \{y\} \cap X)$.

PROPOSITION 2. (a) If X is very dense in Y and $\{B_{\alpha}\}$ is a base for the closed subsets of X, then $\{cl_{\mathbf{Y}} B_{\alpha}\}$ is a base for the closed subsets of Y.

(b) If X is very dense in Y and $\{F_{\beta}\}$ is a family of closed subsets of X, then $cl_{\mathbf{Y}} \cap F_{\beta} = \bigcap cl_{\mathbf{Y}} F_{\beta}$.

PROPOSITION 3. (a) If X is very dense in Y, a closed set $F \subset X$ is irreducible if and only if $cl_Y F$ is irredubible in Y.

(b) $\operatorname{cl}_{\mathbf{Y}} \{ y \}$ is irreducible for each $y \in \mathbf{Y}$.

(c) Letting Irr X denote the irreducible closed subsets of X,

 $I: Y \longrightarrow Irr X$

$$y \longrightarrow \operatorname{cl}_{\mathbf{Y}} \{ y \} \cap \mathbf{X}$$

is a I — I mapping.

PROPOSITION 4. (a) If X is very dense in Y and U is open in X, then there exists a unique open set $\hat{U} \subset Y$ such that $\hat{U} \cap X = U$.

(b) The set U of (a) is compact if and only if U is compact.

Proof. (a) $C\hat{U} \cap X = CU$ and X is very dense in Y. Thus $C\hat{U}$ is unique.

(b) If F is any closed set in X and U any open set in X, show that U meets F if and only if \hat{U} meets F where \hat{U} is the set of (a). Then show that a family of closed subsets of \hat{U} with the finite intersection property has nonempty intersection. Use Prop. 2 (b).

DEFINITION 1. A prespectral space X is a compact space such that the compact-open sets form a base for the topology which is closed with respect to the formation of finite intersections.

PROPOSITION 5. If X is very dense in Y, then X is prespectral if and only if Y is prespectral.

DEFINITION 2. A point p is said to be adjoined to X if X is very dense in $X \cup \{p\}$.

By Prop. 3 (b) it is clear that adjoining a point to X amounts to adding a generic point for an irreducible closed subset of X (necessarily containing more than one point). We develop a proceedure for adjoining them all.

PROPOSITION 6. If X is a T₁ prespectral space, then there exists a point p such that p can be adjoined to X if and only if there exists a filterbase of compactopen sets \mathcal{B} such that $\cap \mathcal{B} = \emptyset$. *Proof.* Start by extending \mathscr{B} to an ultrafilter among the compact-open subsets of X. Refer to this ultrafilter again as \mathscr{B} . We define a topology on the set $X \cup \{p\}$ as follows

(1) If N⊃B for some B∈ 𝔅, then { p } ∪ N is a neighborhood of p.
(2) If x ∈ X and N is a neighborhood of x in X, then if N⊃B for some B ∈ 𝔅, { p } ∪ N is a neighborhood of x.

(3) If $x \in X$ and N is a neighborhood of x in X containing no set $B \in \mathcal{B}$, then N is a neighborhood of x again in $\{p\} \cup X$.

PROPOSITION 7. If X is a T_1 space and F an irreducible closed set with more than one point, then a generic point P for F can be adjoined to X (i.e. $(cl_{X\cup\{p\}} \{P\}) \cap X = F)$.

Proof. Let \mathscr{B} be the collection of open subsets of X which meet F. As F is irreducible, \mathscr{B} is a filter. As X is a T₁ space, $\cap \mathscr{B} = \emptyset$. We define neighborhoods of points in the space X $\cup \{ \ p \}$ exactly as in the previous result.

PROPOSITION 8. If X is a T_1 space, then X can be extended to a space Y in which X is very dense and every irreducible closed subset of X has a generic point in the sense of Prop. 7.

Proof. Let \mathscr{G} be the irreducible closed subsets with no generic points in X. Let $T = X \cup Z$ with the cardinality of Z strictly greater than the cardinality of \mathscr{G} . We consider the family \mathscr{A} of topological spaces such that for each $S \in \mathscr{A}, X \subset S \subset T$ and X is very dense in S. We order \mathscr{A} under the relationship $S_1 \leq S_2$ if and only if S_1 is a subspace of S_2 . It follows then that S_1 is very dense in S_2 . It can be shown that \mathscr{A} is inductively ordered and contains a maximal element S_M . We know (Prop. 3 (c)) that S_M consists of generic points of irreducible closed subsets of X. It can be shown that S_M is the space Y of the theorem as follows: Since $\overline{Z} > \overline{\mathscr{F}}$, S_M cannot have exhausted Z. If there is some $F \subset X$ such that $F \in \mathscr{G}$ and F has no generic point in S_M , we adjoin a point $z \in Z$ to S_M as follows.

Let \mathscr{B} be the filter of open subsets of X associated with \mathbf{F} as in Prop. 7. For each $O_{\alpha} \in \mathscr{B}$ let \hat{O}_{α} be the unique subset of $S_{\mathbf{M}}$ such that $\hat{O}_{\alpha} \cap X = O_{\alpha}$. We adjoin z to $S_{\mathbf{M}}$ by setting $Y = S_{\mathbf{M}} \cup \{z\}$ and defining neighborhoods of points in Y by

(1) $\{z\} \cup \mathbb{N}$ is a neighborhood of z in Y if for some \hat{O}_{α} , $\hat{O}_{\alpha} \subset \mathbb{N} \subset S_{\mathbf{M}}$.

(2) If $s \in S_M$ and N is a neighborhood of s such that for some \hat{O}_x , $s \in \hat{O}_{\alpha} \subset N$, then $\{z\} \cup N$ is a neighborhood of s.

(3) If N is a neighborhood of s in S_M and there exists no \hat{O}_{α} such that $s \in \hat{O}_{\alpha} \subset N$, then N remains a neighborhood of s in Y.

It can be shown that S_M and X are both very dense in Y which violates the maximality of S_M in T. There are numerous elementary steps in the verification of the statements of the previous sketch. These are left to the reader

DEFINITION 3. (a) If X is a T_1 space, a Jacobson completion of X is a space Y in which X is very dense and every irreducible closed subset of X has a generic point.

(b) If X is T_1 and prespectral, a Jacobson completion of X is called a spectral completion.

PROPOSITION 9. A Jacobson completion exists for every T_1 space X. Proof. See Prop. 8

DEFINITION 4. A T_1 space X is spectrally complete if and only if it is prespectral and admits no proper Jacobson completion.

PROPOSITION 10. A prespectral T_1 space X is spectrally complete if and only if any of the following are true.

(a) Each filterbase of compact-open subsets of X has nonempty intersection.

(b) X is not very dense in any proper extension Y.

(c) X contains the generic points of all irreducible closed sets.

In [5] Hochster has shown that a prespectral space which is spectrally complete is topologically equivalent to the prime ideals of a ring. He called such a space a spectral space. We have shown that every T_1 prespectral space X can be enlarged to a maximal spectral space Y in which it is very dense.

By the results of Section 3 (Prop. 17) it will be seen that Y constitutes the prime ideals of a Jacobson ring for which X constitutes the maximal ideals. Hence every prespectral T_1 space X is the maximal ideals of a Jacobson ring. In Section 3 (Prop. 13), it will emerge that the converse of this is also true.

SECTION 2. LATTICES AND THE JACOBSON COMPLETION

In this section we essentially, reproduce the material of Section 1 utilizing lattice theory. We show that any Jacobson completion of a compact T_1 space X is a Wallman type compactification of X and is unique (Prop. 12). Compactness of W was not assumed in Prop. 8. As we are most interested in the applications of these results to ring theory in which the compact T_1 space $\mathcal{M}(A)$ of maximal ideals of the ring A plays the role of X, we donot regard this as a serious drawback.

DEFINITION 5. Let L be a distributive lattice with 0 and 1. A prime filter \mathcal{P} in L is a filter such that if $a, b \in L$ and $a + b = \mathcal{P}$, then $a \in \mathcal{P}$ or $b \in \mathcal{P}$. A Jacobson filter \mathcal{J} is a prime filter such that \mathcal{J} is the intersection of all the ultrafilters containing it. We adopt the following notations.

> W(L)—the set of all ultrafilters; J (L)—the set of Jacobson filters; P (L)—the set of prime filters.

If $a \in L$, then we set $\beta_a = \{ \mathscr{P} \in P(L) \mid a \in \mathscr{P} \}$. On P(L) it is readily shown that $\beta_{a+b} = \beta_a \cup \beta_b$ and $\beta_{ab} = \beta_a \cap \beta_b$. Hence the sets $\{ \beta_a \mid a \in L \}$ are a base for the closed sets of a topology on P(L) which we refer to as the Wallman topology. If we restrict our attention to W(L) we find that $C\beta_{\alpha} \cap W(L) = \{\mathscr{Z} \in W(L) | \text{there exists } b \in \mathscr{Z} \text{ with } ab = 0\}$. This is no longer true once we leave W(L) and in fact if $\mathscr{P} \in P(L) - W(L)$, then as \mathscr{P} can be extended to an ultrafilter \mathscr{Z} and letting $a \in \mathscr{Z} - \mathscr{P}$, then $\mathscr{P} \in C\beta_{\alpha}$ but $ab \neq 0$ for all $b \in \mathscr{P}$.

From this point on in the section we assume that X is a T_1 space and \mathscr{C} the lattice of all closed subsets of X. The spaces $W(\mathscr{C})$, $J(\mathscr{C})$, and $P(\mathscr{C})$ will be denoted by $W(X, \mathscr{C})$, $J(X, \mathscr{C})$, and $P(X, \mathscr{C})$ respectively.

PROPOSITION 11. (a) A filter $\mathscr{P}_{F} = \{ K \in \mathscr{C} | F \subset K \}$ where F is closed, is a prime filter if and only if F is irreducible

(b) When X is compact, a filter $\mathscr{Z} \in W(X, \mathscr{C})$ if and only if $\mathscr{Z} = \mathscr{Z}_{\mathbf{x}} = \{ K \in \mathscr{C} | x \in K \}$ for some $x \in X$.

(c) When X is compact, a filter $\mathcal{J} \in J(X, \mathcal{C})$ if and only if $\mathcal{J} = \mathcal{P}_F$ for some irreducible closed set $F \subset X$.

Proof. (a) $\mathscr{P}_{\mathbf{F}}$ is prime if and only if when $\mathbf{F} \subset \mathbf{F}_1 \cup \mathbf{F}_2$, then $\mathbf{F} \subset \mathbf{F}_1$ or $\mathbf{F} \subset \mathbf{F}_2$, that is, if and only if F is irreducible.

(b) Suppose X is compact and \mathscr{Z} is an ultrafilter. Then $\bigcap K \neq \emptyset$. Thus for some $x \in X$, $x \in \bigcap_{x} K$ and it readily follows that $\mathscr{Z} = \mathscr{Z}_{x}$.

(c) Suppose X is compact. Let $\mathcal{J} \in J(X, \mathscr{C})$. Then $\mathcal{J} = \bigcap_{\mathcal{J}_x} \mathscr{Z}_x$ and let $F = \{x \in X \mid \mathcal{J} \subset \mathscr{Z}_x\}$. Then $cl_X F \subset \mathscr{Z}_x$ for all \mathscr{Z}_x such that $\mathcal{J} \subset \mathscr{Z}_x$ and $cl_X F \in \mathcal{J}$. If $K \in \mathcal{J}$, then $K \in \mathscr{Z}_x$ for all x such that $\mathcal{J} \subset \mathscr{Z}_x$. Hence $F \subset cl_X F \subset K$ and it follows that $\mathcal{J} \subset \{H \in \mathscr{C}/cl_X F \subset H\}$ However, as $cl_X F \in \mathcal{J}$, it follows that $\{H \in \mathscr{C}/cl_X F \subset H\}$ and therefore that $\mathcal{J} = \mathscr{P}_{cl_x F}$. Clearly then $F = cl_X F$ and by (a), Fis irreducible.

Conversely, if $\mathcal{J} = \mathcal{P}_F$ where F is an irreducible closed set, then $\mathcal{J} = \mathcal{P}_F = \bigcap_{\mathcal{J} \subseteq \mathcal{J}_x} \mathcal{J}_x$ and clearly $\mathcal{J} \in J(X, \mathscr{C})$.

PROPOSITION 12. Let X be a compact T_1 space and X very dense in Y. Then with $F_y = cl_Y \{y\} \cap X$,

$$\begin{split} \sigma: \mathbf{Y} & \longrightarrow & \mathbf{J} \left(\mathbf{X} \;, \; \boldsymbol{\mathscr{C}} \right) \\ & y & \longrightarrow \; \boldsymbol{\mathscr{P}}_{\mathbf{F}_{y}} \end{split}$$

is a homeomorphism such that σ restricted to X establishes a homeomorphism between X and W(X, \mathscr{C}). σ is onto J(X, \mathscr{C}) if and only if every irreducible closed set $F \subset X$ has a generic point in Y.

Proof. As $F_y = (cl_Y \{y\}) \cap X$ is irreducible, $\sigma(y) = \mathscr{P}_{F_y} J(X, \mathscr{C})$. As Y is a T₀ space, $cl_Y \{y_1\} \neq cl_Y \{y_2\}$ if $y_1 \neq y_2$ and as X is very dense in Y, is follows that $F_{y_1} \neq F_{y_2}$ and σ is a 1 - I mapping.

By Prop. 11 (b), $\sigma(y) \in W(X, \mathscr{C})$ if and only if $\sigma(y) = \mathscr{P}_{F_y} = \mathscr{Z}_x = \sigma(x)$. Thus $\sigma(X) = W(X, \mathscr{C})$.

Suppose now that σ is onto. Then for each irreducible closed set $F \subset X$, $\mathscr{P}_{F} = \{ K \in \mathscr{C} / F \subset K \} \in J(X, \mathscr{C}) \text{ and there exists } y \text{ such that } \mathscr{P}_{F} = \mathscr{P}_{F_{y}}.$ Hence $F = F_{y}$. Conversely it is clear that if for each irreducible closed set $F \subset X$, $F = F_y$ for some $y \in Y$, then σ is an onto map.

To show that σ is a homeomorphism we simply note that if F is closed in Y, then $\sigma(F) = \{ \mathscr{P}_{F_{\psi}} | y \in F \} = \{ \mathscr{P}_{F_{\psi}} | F \cap X \in \mathscr{P}_{F_{\psi}} \} = \beta_{F \cap X} \cap J (X, \mathscr{C}).$

COROLLARY. If X is a compact T_1 space, the Jacobson compactification of X, exists, is unique, and is equivalent to $J(X, \mathcal{C})$.

COROLLARY. If X is a prespectral T_1 space, $J(X, \mathcal{C})$ is the spectral completion of X.

SECTION 3. APPLICATIONS TO RING THEORY.

In this section we apply the material of the previous two sections to relationships between the prime and maximal ideals of a commutative ring with identity. Denoting the maximal ideals of A as $\mathcal{M}(A)$ and the hull of $\{a_1, \dots, a_n\} \subset A$ as $\mathcal{H}_{\mathcal{M}(A)}(a_1, \dots, a_n) = \{\mathcal{M} \in \mathcal{M}(A) | a_i \in \mathcal{M}\}, \mathcal{L}_{\mathcal{M}(A)}$ as, the lattice of all such hulls, $\mathcal{J}(A)$ as the set of all Jacobson prime ideals, we show that if \mathscr{C} is the lattice of all bull-kernel closed subsets of $\mathcal{M}(A)$, then $\mathcal{J}(A) = \mathcal{J}(\mathcal{M}(A), \mathcal{L}_{\mathcal{M}(A)}) = \mathcal{J}(\mathcal{M}(A), \mathscr{C}).$

In [3] Grothedieck showed that the points of Spec A (the set of all prime ideals of A) can be put in I - I correspondence with the irreducible closed subsets of Spec A under the mapping $p \rightarrow \operatorname{cl}_{\operatorname{Spec A}} \{p\}$. In [2] it was shown that if A is a Jacobson ring $(\mathcal{J}(A) = \operatorname{Spec A})$, this correspondence can be established between the points of Spec A and the irreducible closed sets in $\mathcal{M}(A)$ under the mapping $p \rightarrow (\operatorname{cl}_{\operatorname{Spec A}} \{p\}) \cap \mathcal{M}(A)$. Critical in proving the result is the fact $\mathcal{M}(A)$ is very dense in Spec A when A is a Jacobson ring. We are interested in locating the generic points of the irreducible closed subsets of $\mathcal{M}(A)$ when A is not a Jacobson ring. Here, having shown (Prop. 15) that $\mathcal{J}(A)$ is the Jacobson completion of $\mathcal{M}(A)$, we find (Prop. 16) that these generic points are located in $\mathcal{J}(A)$.

In addition, we prove (Prop. 17) that a topological space X is identifiable as the maximal ideals of a Jacobson ring A if and only if X is a prespectral T_1 space. In such a case it is shown that the Jacobson completion of X is identifiable as Spec A.

DEFINITION 6. Let $S \subset Spec A$. Then

$$H_{\mathbf{S}}(a_1, \dots, a_n) = \{ \not p \in \mathbf{S} \mid a_i \in p \}$$
$$L_{\mathbf{S}} = \{ H_{\mathbf{S}}(a_1, \dots, a_n) \mid a_i \in \mathbf{A} \}.$$

The sets $H_{\mathbf{S}}(a_1, \dots, a_n)$ are a base for a topology on S referred to as the hull-kernel topology. Any closed subset of S in the hull-kernel topology is of the form $\operatorname{cl}_{\mathbf{S}} F = H_{\mathbf{S}}(kF) = \{ \not p \in S \mid kF \subset p \}$ where $F \subset S$ and $kF = \bigcap_{p \in F} p$. The space $\mathcal{M}(A)$ is a compact T_1 space and Spec A is a compact T_0 space.

PROPOSITION 13. (a) If $p \in S$, then $\operatorname{cl}_{S} \{ p \} = \{ p' \in S | p \subset p' \}$. (b) If $F \subset S$, $\operatorname{cl}_{S} F = \{ p \in S | kF \subset p \}$.

(c) If $\mathcal{M}(A) \subset S \subset Spec A$, then S is compact.

(d) If $\mathcal{M}(A) \subset S \subset \text{Spec } A$, then $\mathcal{M}(A)$ is very dense in S if and only if $S \subset \mathcal{J}(A)$.

Proof. (d) If $p \in \mathscr{J}(A)$, then $\operatorname{cl}_{S} \{p\} \cap \mathscr{M}(A) = \{M \in \mathscr{M}(A) | M \supset p\}$. As $p = \bigcap_{p \in M} M$, if $p \in \operatorname{CH}_{S}(a_{1}, \dots, a_{n})$, then $a_{i} \notin p$ for some *i*. Hence there exists $M \in \mathscr{M}(A)$ such that $p \in M$ and $a_{i} \notin M$ for some *i*. Thus $\operatorname{CH}_{S}(a_{1}, \dots, a_{n}) \cap \cap \operatorname{cl}_{S} \{p\} \cap \mathscr{M}(A) \neq \emptyset$ and $p \in \operatorname{cl}_{S}(\operatorname{cl}_{S} \{p\} \cap \mathscr{M}(A))$. Hence by Prop. I, $\mathscr{M}(A)$ is very dense in S under the assumption $S \subset \mathscr{J}(A)$.

Conversely if $p \in S$ and $p \notin \mathscr{J}(A)$, then $p \neq \bigcap_{p \in M} M$ and there exists $a \in \bigcap_{p \in M} M$ with $a \notin p$. Hence $p \in CH_{s}(a)$ but for any M such that $M \supset p$, $p \in M$ $M \in H_{s}(a)$. Thus $CH_{s}(a) \cap cl_{s} \{p\} \cap \mathscr{M}(A) = \emptyset$.

DEFINITION 7. Let S be such that $\mathcal{M}(A) \subset S \subset \text{Spec } A$. Then S satisfies condition H_S if $cl_S H_{\mathcal{M}(A)}(a_1, \dots, a_n) = H_S(a_1, \dots, a_n)$ for any $\{a_1, \dots, a_n\} \subset A$.

PROPOSITION 14. (a) If $\mathcal{M}(A) \subset S \subset \mathcal{J}(A)$, then S satisfies condition H_s . (b) If $\mathcal{M}(A) \subset S \subset \mathcal{J}(A)$ and F is a closed subset of $\mathcal{M}(A)$, then $cl_s F = \{p \in S | kF \subset p\}$ and every closed set in $\mathcal{J}(A)$ is of this form.

Proof. (a) If $\mathcal{M}(A) \subset S \subset \mathcal{J}(A)$, then as $\mathcal{M}(A)$ is very dense in S and $H_{S}(a_{1}, \dots, a_{n}) \cap \mathcal{M}(A) = H_{\mathcal{M}(A)}(a_{1}, \dots, a_{n})$, the proof is done.

(b) Let F be a closed subset of $\mathscr{M}(A)$. Then $F = \bigcap_{a_{\alpha} \in kF} H_{\mathscr{M}(A)}(a_{\alpha})$. As $\mathscr{M}(A) \subset S \subset \mathscr{J}(A)$, then $\mathscr{M}(A)$ is very dense in S and S satisfies condition H_{s} . Then $cl_{s} F = \bigcap_{a_{\alpha} \in kF} cl_{s} H_{\mathscr{M}(A)}(a_{\alpha}) = \bigcap_{a_{\alpha} \in kF} H_{s}(a_{\alpha})$. Hence $p \in cl_{s} F$ if and only if for all $a_{\alpha} \in kF$, $p \in H_{s}(a_{\alpha})$. Equivalently, $p \in cl_{s} F$ if and only if $kF \subset p$. As $\mathscr{M}(A)$ is very dense in S, the remainder of the statement of (b) follows immediately.

We establish notation here which is in force for the remainder of the paper. Let $p \in \text{Spec A}$. Then $\sigma(p) = \{ H_{\mathcal{M}(A)}(a_1, \dots, a_n) | a_i \in p \}$. Clearly by Prop. 14, $\sigma(p) = \{ H_{\mathcal{M}(A)}(a_1, \dots, a_n) | p \in H_{\mathcal{J}(A)}(a_1, \dots, a_n) =$ $= \operatorname{cl}_{\mathcal{J}(A)} H_{\mathcal{M}(A)}(a_1, \dots, a_n) \}$ for all $p \in \mathcal{J}(A)$. If $p \in \operatorname{Spec A}$, then $\hat{\sigma}(p) =$ $= \{ F \in \mathscr{C} | kF \subset p \}$. If $p \in \mathcal{J}(A)$, then by Prop. 14 (b) $\hat{\sigma}(p) = \{ F \in \mathscr{C} | p \in \operatorname{cl}_{\mathcal{J}(A)} F \}$.

PROPOSITION 15. (a) The Mapping σ establishes a homeomorphism between $\mathcal{J}(A)$ and $J(\mathcal{M}(A), L_{\mathcal{M}(A)})$ with $\sigma(\mathcal{M}(A)) = W(\mathcal{M}(A), L_{\mathcal{M}(A)})$.

(b) The mapping $\hat{\sigma}$ establishes a homeomorphism between. $\mathcal{J}(A)$ and $J(\mathcal{M}(A), \mathcal{C})$ with $\hat{\sigma}(\mathcal{M}(A)) = W(\mathcal{M}(A), \mathcal{C})$.

Proof. (a) We first show that if $p \in \mathcal{J}(A)$, then $\sigma(p) \in J(\mathcal{M}(A), L_{\mathcal{M}(A)})$. If $H_{\mathcal{M}(A)}(a_1, \dots, a_n) \subset H_{\mathcal{M}(A)}(b_1, \dots, b_m)$ with $H_{\mathcal{M}(A)}(a_1, \dots, a_n) \in \sigma(p)$, then as $p \in cl_{\mathcal{J}(A)} H_{\mathcal{M}(A)}(a_1, \dots, a_n) = H_{\mathcal{M}(A)}(a_1, \dots, a_n) \subset cl_{\mathcal{J}(A)} H_{\mathcal{M}(A)}(b_1, \dots, b_m) = H_{\mathcal{J}(A)}(b_1, \dots, b_m)$ it follows that $H_{\mathcal{J}(A)}(b_1, \dots, b_m) \in \sigma(p)$ and clearly $\sigma(p)$ is a filter. As p is a prime ideal, it follows readily that $\sigma(p)$ is a prime filter. To show that $\sigma(p)$ is a Jacobson filter, we first characterize the ultrafilters. We show that \mathscr{Z} is an ultrafilter if and only if $\mathscr{Z} = \sigma(M)$ where M is a maximal ideal. If $H_{\mathscr{M}(A)}(a) \notin \sigma(M)$, then there exists $m \in M$ such that ab + m = e for some $b \in A$. Then $H_{\mathscr{M}(A)}(a) \cap H_{\mathscr{M}(A)}(m) = \emptyset$ and it follows that $\sigma(M)$ is an ultrafilter. Conversely if \mathscr{Z} is an ultrafilter and $p = \{a \in A / H_{\mathscr{M}(A)}(a) \in \mathscr{Z}\}$, it follows readily that p is a maximal ideal and that $\sigma(p) = \mathscr{Z}$.

To complete the proof that when $p \in \mathscr{J}(A)$, $\sigma(p) \in J(\mathscr{M}(A), L_{\mathscr{M}(A)})$, we show that $\sigma(p) = \bigcap_{\sigma(p) \subset \sigma(M)} \sigma(M) = \bigcap_{p \subset M} \sigma(M)$. This follows readily from the fact that p is a Jacobson prime ideal for if $H_{\mathscr{M}(A)}(a_1, \dots, a_n) \in \sigma(M)$ for all M such that $p \subset M$, then $\{a_1, \dots, a_n\} \subset M$ for all M such that $p \subset M$. Thus $\{a_1, \dots, a_n\} \subset p$ and therefore $H_{\mathscr{M}(A)}(a_1, \dots, a_n) \in \sigma(p)$. Thus $\sigma(p) = \bigcap_{\mathscr{I} \subset \sigma(M)} \sigma(M)$.

To show that σ is onto, let $\mathcal{J} \in \mathcal{J}(\mathcal{M}(A), \mathcal{L}_{\mathcal{M}(A)})$. Then $\mathcal{J} = \bigcap_{\mathcal{J} \subset \sigma(M)} \sigma(M)$. Let $p = \{a \in A / H_{\mathcal{M}(A)}(a) \in \mathcal{J}\}$. Clearly p is a prime ideal and $\sigma(p) = \mathcal{J}$. It is clear that $\sigma(p) \subset \sigma(M)$ (M a maximal ideal) if and only if $p \subset M$. Thus to show that p is a Jacobson ideal we must show that $p = \bigcap_{p \subset M} M$. But if $a \in M$ for all M such that $p \subset M$, then $H_{\mathcal{M}(A)}(a) \in \sigma(M)$ for all $\sigma(M)$ such that $\mathcal{J} \subset \sigma(M)$. Therefore $H_{\mathcal{M}(A)}(a) \in \mathcal{J}$ and $a \in p$.

To show that σ is a I - I mapping we assume $p_1 \neq p_2$ and $a \in p_1$ with $a \notin p_2$. Clearly $H_{\mathcal{M}(A)}(a) \in \sigma(p_1)$ but if $H_{\mathcal{M}(A)}(a) \in \sigma(p_2)$, then $H_{\mathcal{M}(A)}(a) = H_{\mathcal{M}(A)}(a_1, \dots, a_n)$ where $a_i \in p_2$. Thus $cl_{\mathcal{J}(A)} H_{\mathcal{M}(A)}(a) = H_{\mathcal{J}(A)}(a) = cl_{\mathcal{J}(A)} H_{\mathcal{M}(A)}(a_1, \dots, a_n) = H_{\mathcal{J}(A)}(a_1, \dots, a_n)$ and as $p_2 \in H_{\mathcal{J}(A)}(a_1, \dots, a_n)$, $p_2 \in H_{\mathcal{J}(A)}(a)$ and $a \in p_2$ but this is a contradiction.

As $\sigma(\operatorname{H}_{\mathscr{J}(A)}(a_1, \dots, a_n)) = \{\mathscr{J} \in \operatorname{J}(\mathscr{M}(A), \operatorname{L}_{\mathscr{M}(A)}) / \operatorname{H}_{\mathscr{M}(A)}(a_1, \dots, a_n) \in \mathscr{J}\} = \beta_{\operatorname{H}_{\mathscr{M}(A)}}(a_1, \dots, a_n) \cap \mathscr{J}(A), \text{ and } \sigma^{-1}(\mathscr{J}(A) \cap \operatorname{H}_{\mathscr{M}(A)}(a_1, \dots, a_n)) = \operatorname{H}_{\mathscr{J}(A)}(a_1, \dots, a_n), \text{ then } \sigma \text{ is clearly a homeomorphism.}$

(b) Since $\mathcal{M}(A)$ is very dense in $\mathcal{J}(A)$, if $p \in cl_{\mathcal{J}(A)} F$ and $p \in cl_{\mathcal{J}(A)} K$, it follows that $p \in cl_{\mathcal{J}(A)} F \cap K$ and therefore it is readily seen that $\hat{\sigma}(p)$ is a prime filter.

Once again, we begin by showing that \mathscr{Z} is an ultrafilter if and only if $\mathscr{Z} = \hat{\sigma}(M)$ where M is a maximal ideal. If M is a maximal ideal and $F \notin \hat{\sigma}(M)$, then $M \notin \operatorname{cl}_{\mathscr{I}(A)} F = \bigcap_{a \in \mathscr{k}F} H_{\mathscr{I}(A)}(a)$. Thus for some $a \in \mathscr{k}F$, $M \notin \operatorname{cl}_{\mathscr{I}(A)} H_{\mathscr{M}(A)}(a) = H_{\mathscr{I}(A)}(a)$ and $a \notin M$. Consequently for some $m \in M$ and $b \in A$, ab + m = e and $H_{\mathscr{M}(A)}(a) \cap H_{\mathscr{M}(A)}(m) = \emptyset$. Thus $F \cap H_{\mathscr{M}(A)}(m) = \emptyset$. Of course $\hat{\sigma}(M) \cap L_{\mathscr{M}(A)} = \sigma(M)$ and therefore $H_{\mathscr{M}(A)}(m) \in \hat{\sigma}(M)$. Suppose now that \mathscr{Z} is an ultrafilter in $J(\mathscr{M}(A), \mathscr{C})$. Let $p = \{ p \in A \mid H_{\mathscr{M}(A)}(a) \in \mathscr{Z} \}$. As \mathscr{Z} is an ultrafilter in \mathscr{C} , then $\mathscr{Z} \cap L_{\mathscr{M}(A)}$ is an ultrafilter in $L_{\mathscr{M}(A)}$ is a maximal ideal. By the strong properties of the closure operator in very dense spaces (Prop. 2), as M is in the closure of every set in $\sigma(M) = \mathscr{Z} \cap L_{\mathscr{M}(A)}$ by (a), and every set in \mathscr{Z} and we are done.

To show that if $p \in \mathscr{J}(A)$, then $\hat{\sigma}(p) \in J(\mathscr{M}(A), \mathscr{C})$, we need only show that $\hat{\sigma}(p) = \bigcap_{\hat{\sigma}(p) \subset \hat{\sigma}(M)} \hat{\sigma}(M)$. But if $F \in \hat{\sigma}(M)$ for all M such that $p \subset M$, $\hat{\sigma}_{(p) \subset \hat{\sigma}(M)}$ $M \in cl_{\mathscr{J}(A)} F$ for all such M and equivalently $kF \subset M$ for all such M. Hence $kF \subset p = \bigcap_{p \subset M} M$ and $F \in \hat{\sigma}(p)$.

To show that $\hat{\sigma}$ is onto, let $\mathcal{J} \in J(\mathcal{M}(A), \mathscr{C})$. Then $\mathcal{J} = \bigcap \hat{\sigma}(M)$ and $\mathcal{J} \cap L_{\mathcal{M}(A)} = \bigcap \hat{\sigma}(M) \cap L_{\mathcal{M}(A)} = \bigcap_{\mathcal{J} \cap L_{\mathcal{M}(A)} \subset \sigma(M)} \sigma(M)$ and $\mathcal{J} \cap L_{\mathcal{M}(A)} = \sigma(p)$ for some $p \in \mathcal{J}(A)$. Once again as p is in the closure of each set in $\mathcal{J} \cap L_{\mathcal{M}(A)}$ and every set in \mathcal{J} is an intersection of sets in $\mathcal{J} \cap L_{\mathcal{M}(A)}, p$ is in the intersection of each set in \mathcal{J} and it readily follows that $\hat{\sigma}(p) = \mathcal{J}$.

The proofs of the facts that σ is a I - I bicontinuous map are straight forward and left to the reader.

PROPOSITION 16. If A is a commutative ring with identity, then there is a I - I correspondence between the ideals $p \in \mathcal{J}(A)$ and the irreducible closed subsets of $\mathcal{M}(A)$ where $p \to (\operatorname{cl}_{\mathcal{J}(A)} \{p\}) \cap \mathcal{M}(A)$ establishes the correspondence.

Proof. See Prop. 12 and Prop. 15.

Noting that we have now shown that $\mathscr{J}(A)$ is the Jacobson completion of $\mathscr{M}(A)$, as $\mathscr{J}(A)$ is spectral when A is Jacobson, $\mathscr{M}(A)$ is therefore prespectral. We may now state the following proposition.

PROPOSITION 17. A topological space X is the maximal ideals of a Jacobson ring if and only if it is a prespectral T_1 space.

We close the paper with a few examples.

Example 1. If X is a compact Hausdorff space, then $J(X, \mathcal{C}) = W(X, \mathcal{C})$, This follows from Prop. 11 and the fact that every closed subet of X with more than one point is reducible. It follows that a regular semi-simple Banach algebra [2] is not an integral domain, for the ideal consisting of the zero vector would then be a Jacobson prime ideal and this cannot be by Prop. 15.

Example 2. Let X be an infinite set with cofinite topology. Then the following are all true:

(a) X is a prespectral T_1 space;

- (b) $W(X, \mathscr{C}) = X;$
- (c) $J(X, \mathscr{C}) = X \cup \{\mathscr{Z}_X\}$ where $\mathscr{Z}_X = \{X\}$.

These three statements lead to the conclusion that any Jacobson ring for which X is the maximal ideals will have a unique prime ideal which is the radical of the ring. This prime ideal will be the zero ideal if and only if the ring is an integral domain. A result of this sort can be found in [2].

Example 3. Let X be a O-dimensional Hausdorff space [I] and F a rank one nontrivially nonarchimedean valued-field of characteristic zero. Let C(X, F) denote the continuous F-valued functions on X and I_x the ideal

in C(X, F) generated by all characteristic functions of closed and open (clopen) sets O such that $x \in CO$. The maximal ideal of all functions in C(X, F)which vanish at x will be denoted by M_x . In X, the zero sets of functions of C(X, F) are the C_{δ} sets (denumerable intersections of clopen sets). See [I] for a proof of this. The following statements are all true.

(a) If X is compact, then $cl_{C(X,F)} I_x = M_x$.

(b) If p is a prime ideal in C (X, F), then if X is compact, there exists a unique $x \in X$ such that $cl_{C(X,F)} p = M_x$.

(c) C(X, F) is biregular [6] if and only if all C_{δ} sets in X are clopen. In this case with A = C(X, F), $P(\mathcal{M}(A), L_{\mathcal{M}(A)}) = W(\mathcal{M}(A), L_{\mathcal{M}(A)}) = J(\mathcal{M}(A), L) = \beta_0(X)$ where $\beta_0(X)$ is the Banaschewski compactification of X, and every prime ideal of C(X, F) is maximal.

References

- [1] G. BACHMAN, E. BECKENSTEIN, L. NARICI and S. WARNER (1975) Rings of continuous functions with values in a topological field, «Trans. Amer. Math. Soc.», to appear.
- [2] E. BECKENSTEIN (1968) On regular nonarchimedean Banach algebras, «Archiv der Math. (Basel)», 19, 423-427.
- [3] A. GROTHENDIECK (1960) Elements de Geometrie Algebrique (Le Lanagage des Schemes), « Publ. Math. I.H.E.S. », 4.
- [4] A. GROTHENDIECK and J. A. DIEUDONNE (1971) Elements de Geometrie Algebrique, I, Springer Verlag, Berlin.
- [5] M. HOCHSTER (1969) Prime ideal structure in commutative rings, «Trans. Amer. Math. Soc. », 142, 43–60.
- [6] N. JACOBSON (1956) Structure of rings, «Amer. Math. Soc. Colloquium Publications», 37, Providence, R.I.