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Topologia. — L a th ee  Theory a n d  Jacobson R in g s . N ota di C h a r le s  
S ü f f e l ,  E d w ard  B e c k e n s te in  e L aw ren ce  N a r ic i, presentata (,) 
dal Corrisp. G. Z a p p a .

RIASSUNTO. — Viene studiato il completamento di Jacobson di uno spazio topologico 
T0, e ne vengono fatte applicazioni allo studio degli anelli comutativi con identità.

Section o. Introduction

Let T  be a To space and L  a lattice of closed subsets of T  which form a 
base for the closed sets in T. If  T  were a Ti space, the collection W  (T , L) 
of L—ultrafilters could be topologized so as to form a T i—compactification of 
T  referred to as a W allm an-type compactification of T. One reason for 
interest in such compactifications is the question of whether an arb itra ry  
H ausdorff com pactification of a Tychonoff space T  can be realized as a Wall- 
m an-type compactification. This question remains open.

, W e study here a larger compact space, J (T , L), than  W (T , L) (Def. 5). 
W  (T , L) is very dense in J (T , L) (for any closed set F in J (T , L) , 
clj F  H W  (T , L) =  F), and for every irreducible closed set F in W (T  , L), 
J (T , L) contains a generic point for F  (a point x  such th a t clj x  =  clj F). 
J(T, L) is called a Jacobson completion of T. It is shown to exist in a num ber 
of forms and to be unique when T is compact. A nother approach to Jacobson 
completions using other techniques can be found in [4].

T he m aterial on Jacobson completions is applied to the study of com m u­
tative rings A with identity. Let J t  (A) be the m axim al ideals of A  and f  (N) 
the Jacobson prim e ideals (those prim e ideals p  such that (p  =  O M).

It is fehown th a t ß (A) =  , L) where L is either of two lattices of
hull-kernel closed subsets of As a consequence, ß ( A )  is the Jacobson
completion of «/#(A) and the generic points of irreducible closed subsets of 
e/#(A) lie in ß (A ) .  This generalizes some results of [2] and [3].

Section i . Very Dense Spaces

In this section we develop some topological relationships between a space Y 
and a very dense subspace X. X is very dense if Y if and only if clY (FO  X) =  F 
for any  closed set F  C Y. We show that if X is a com pact T i space, then 
X can be extended to a To space Y in which X is very dense and every 
irreducible, closed subset of X has a generic point in the sense of Prop. 7. 
If  in X the com pact-open sets form a base for the topology closed with respect 
to the form ation of finite intersections, then this is shown to be true in Y as (*)

(*) Nella seduta del 14 novembre 1974.
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well. H öchster in [5] referred to a space such as Y as a spectral space, and 
we will refer to X as a prespectral space.

Only brief sketches of proofs will be presented in this section.

Proposition i. X is very dense in  Y i f  and  only i f  fo r  each y e  Y , 
y  e cl y (cly { y  } O X).

Proposition 2. (a) I f  X is very dense in Y  and  {B a } is a base fo r  the
closed subsets o f X, then { clY Ba } is a base fo r  the closed subsets o f Y.

(b) I f  X is very dense in Y  and  { Fß } is a fa m ily  o f closed subsets o f
X, then clY O Fp =  O clY F ß .

PROPOSITION 3. (a) I f  X is very dense in  Y, a closed set F  C X is irredu­
cible i f  and  only i f  clY F is irredubible in  Y.

(b) clY {y  } is irreducible fo r  each y e  Y.

(c) Letting  Irr X denote the irreducible closed subsets o f X,

I : Y -----> Irr X

y  — > clY { y  } n  X

is a I  —  I mapping.

Proposition 4. (a) I f  X is very dense in Y  andXJ is open in  X, then there
exists a unique open set U  C Y such that U  D X =  U.

(b) The set U  of (a) is compact i f  and  only i f  U  is compact.

Proof, (a) CÛ O X  =  CU and X is very dense in Y. Thus CÛ is unique.
(b) I f  F is any closed set in X and U any open set in X, show th a t U 

meets F if and only if Û  meets F  where Û is the set of (a). Then show that 
a fam ily of closed subsets of Û with the finite intersection property has 
nonem pty intersection. Use Prop. 2 (b).

Definition  i. A prespectral space X is a compact space such that the 
compact-open sets fo rm  a base fo r  the topology which is closed w ith respect to the 

form ation  o f fin ite  intersections.

PROPOSITION 5- I f  x  is very dense m  Y, then X is prespectral i f  and  only 
i f  Y  is prespectral.

DEFINITION 2. A  po in t p  is said to be adjoined to X i f  X is very dense 
in  X U { p ) ,

By Prop. 3 (b) it is clear th a t adjoining a point to X am ounts to adding 
a generic point for an irreducible closed subset of X (necessarily containing 
m ore than  ope point). W e develop a proceedure for adjoining them  all.

Proposition 6. I f  X is a Ti prespectral space, then there exists a po in t 
p  such that p  can be adjoined, to X i f  and  only i f  there exists a filterbase o f compact- 
open sets such that Cit% =  0 .
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Proof. S tart by extending &  to an ultrafilter am ong the com pact-open 
subsets of X. Refer to this ultrafilter again as We define a topology on 
the set X U { p  } as follows

(1) If  N D  B for some B e  J 1, then { p  } U N is a neighborhood of p.
(2) If  x  e X and N is a neighborhood of x  in X, then if N D B for some 

B e J ,  { p  }i U N is a neighborhood of x.
(3) If  x  € X and N is a neighborhood of x  in X containing no set 

B e J 1, then N is a neighborhood of x  again in { p  } U X.

PROPOSITION 7. I f  X is a Ti space and  F an irreducible closed set w ith  
more than one po in t, then a generic po int P fo r  F  can be adjoined to X 
(*'•*• ( c l x u w ( P } ) n  X =  F).

Proof. Let ^  be the collection of open subsets of X which m eet F. As 
F is irreducible, 08 is a filter. As X is a Ti space, C)& =  0 .  W e define neigh­
borhoods of points in the space X U { p  } exactly as in the previous result.

PROPOSITION 8. I f  X is a T i space, then X can be extended to a space Y 
in which X is very dense and  every irreducible closed subset o f X has a generic 
poin t in the sense o f Prop. 7 .

Proof. Let S f be the irreducible closed subsets with no generic points in 
X. Let T  -  X U Z  with the cardinality  of Z strictly greater than  the cardi­
nality  of Sf. W e consider the fam ily sé  of topological spaces such th a t for each 
S c sé, X C S  C T  and X is very dense in S. We order sé  under the relation­
ship Si ^  S2 if and only if Si is a subspace of S2. It follows then th a t Si is very 
dense in S2. It can be shown tha t sé  is inductively ordered and contains a 
m axim al element SM. We know (Prop. 3 (c)) that SM consists of generic points 
of irreducible closed subsets of X. It can be shown tha t SM is the space Y of 
the theorem  as follows: Since Z >«9*, SM cannot have exhausted Z. I f  there 
is some F C  X such th a t F  e <9* and F has no generic point in SM, we adjoin 
a point z  € Z to SM as follows.

Lèt be the filter of open subsets of X associated with F  as in Prop. 7. 
For each Oa e @1 let Oa be the unique subset o f  SM such tha t Ôa O X =  Oa . 
We adjoin z  to SM by setting Y =  SMU { ^ }  and defining neighborhoods of 
points in Y by

(1) {A} U N  is a neighborhood of z  in Y if for some 0 «, 0« C N C SM .
(2) If  s e  SM and N is a neighborhood of s such th a t for some Ô*, 

s e  Oa C N ,  then {.s'} U N  is a neighborhood of s.
(3) If  N is a neighborhood of /  in SM and there exists no Oa such 

tha t s c Ôa C N, then N rem ains a neighborhood of s in Y.

It can be shown th a t SM and X are both very dense in Y which violates 
the m axim ality  of SM in T. There are num erous elem entary steps in the veri­
fication of the statem ents of the previous sketch. These are left to the reader

D e fin itio n  3. (a) I f  X  is a Ti space, a Jacobson com pletion o f X  is a 
space \  in which X  is very dense and  every irreducible closed subset o f X  has a 
genetic point.
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(b) I f  X is Ti and  prespectral, a Jacobson completion o f X is called a 
spectral completion.

PROPOSITION 9. A  Jacobson completion exists fo r  every T i space X.
Proof. See Prop. 8

DEFINITION 4. A  T l space X is spectrally complete i f  and  only i f  it is 
prespectral and  admits no proper Jacobson completion.

PROPOSITION 10. A  prespectral Ti space X is spectrally complete i f  and  
only i f  any o f the fo llow ing  are true.

(a) Each filterbase o f compact-open subsets o f X has nonempty inter­
section.

(b) X is not very dense in any proper extension Y.
(c) X contains the generic points o f a ll irreducible closed sets.

In  [5] H öchster has shown th a t a prespectral space which is spectrally 
com plete is topologically equivalent to the prim e ideals of a ring. He called 
such a space a spectral space. We have shown tha t every Ti prespectral space 
X can be enlarged to a m axim al spectral space Y in which it is very dense.

By the results of Section 3 (Prop. 17) it will be seen th a t Y constitutes 
the prim e ideals of a Jacobson ring for which X constitutes the m axim al ideals. 
Hence every prespectral Ti space X is the m axim al ideals of a Jacobson ring. 
In  Section 3 (Prop. 13), it will emerge th a t the converse of this is also true.

Section 2. Lattices and the Jacobson Completion

In this section we essentially, reproduce the m aterial of Section 1 utili­
zing lattice theory. W e show tha t any Jacobson completion of a com pact 
Ti space X is a W allm an type compactification of X and is unique (Prop. 12). 
Com pactness of W  was not assumed in Prop. 8. As we are most interested in 
the applications of these results to ring theory in which the compact Ti space 
J l  (A) of m axim al ideals of the ring A plays the role of X, we clonot regard 
this as a serious draw back.

DEFINITION 5. L et L  be a distributive lattice w ith  o and  1. A prim e f i l ­
ter 0  in  L is a filter  such that i f  a , b e L  and a +  b =  0 ,  then a e 0  or b e 0 . 
A  Jacobson filter ß  is a prim e filter  such that ß  is the intersection o f all the 
ultrafilters containing it. We adopt the fo llow ing notations.

W (L)— the set o f a ll ultrafilters ;
J (L)— the set o f Jacobson filters  ;
P (L)— the set o f prim e filters.

If  a e L, then we set ßÄ =  { 0 e P(L) \a  e 0 ). On P (L ) it is readily 
shown th a t ßö+3 =  ß*Uß* and ß«, =  ß* O ß*. Hence the sets { $ a/ a e  L }  
are a base for the closed sets of a topology on P(L) which we refer to as the 
W allm an topology.
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If  we restrict our attention to W  (L) we find th a t Cßa D W  (L) =  
{ t  W  (L) /th e re  exists b t  2£ w ith ab =  o}. This is no longer true once 
we leave W(L) and in fact if ^ 6  P (L) — W  (L), then as 0  can be extended 
to an ultrafilter 2? and letting « 6  ^ — 0>, then 0>t Cßa but ab=j= o for all 
b t 0 .

From  this point on in the section we assume that X is a Ti space and ^  
the lattice of all closed subsets of X. The spaces W (# ) , J('g’), and Pf'g’) will 
be denoted by W  (X , &), J (X , ^f), and P (X , respectively.

P roposition  i i. (a ) A filter  # r =  { K e f / F C K }  where F  is closed, 
is a prim e filter  i f  and  only i f  F  is irreducible

(b) When X is compact, a filter if  and only i f  2£ =  2fx =
=  { K e ^ / r e K }  fo r  some x  t  X .

(c) When X is compact, a filter  f t  J ( X , <g) i f  and  only i f  f  =  0>Y fo r  
some irreducible closed set F C X .

Proof, (a) 0*p is prim e if  and only if when F C F iU F 2, then F C Fi or 
F C F2, th a t is, if  and only if  F  is irreducible.

(b) Suppose X is com pact and 2£ is an ultrafilter. Then f i  K =4= 0 . 
Thus for some x  t  X , r e f i K  and it readily  follows that 2£ =  2£x .sx

(c) Suppose X is compact. Let f t  J ( X , % ) .  Then f  =  n  &x and
sc* x

let F =  { r l X / / C ^ } .  Then clx F C S ,  for all Z x such th a t f  C 2£x and 
d x F t  f .  I f  K  t f ,  then K e f ,  for all * such th a t f< L 2£x . Hence
F C clx F C K  and it follows th a t f d _  { H e ^ / c l x F C H }  However, as
clx F 6 / ,  it follows th a t { H t  /c lx F C H } C /  and therefore tha t
f  =  ^cixf-  Clearly then F  =  clx F and by (a), Fis irreducible.

Conversely, if  f  =  where F is an irreducible closed set, then 
■ f  — =  H  f ,  and clearly f t  J(X  , <ß).

PROPOSITION 12. L et X  be a compact Tl space and  X  very dense in  Y. 
Then w ith I f  =  clY { y  } f i  X,

c : Y -----► J (X , T)

y  — »-

is a homeomorphism such that a restricted to X establishes a homeomorphism  
between X  and  W  (X , eê). g is onto J (X , # )  i f  and only i f  every irreducible 
closed set F C X  has a generic po in t in  Y.

Proof. As Fy — (cly { y  }) Cl X is irreducible, a (y ) =  0*Y J (X , <ÿ). 
As Y is a do space, clY { y 1 } =j= clY { y 2 } if 'y-y y% and as X is very dense 
in Y, is follows th a t F* 4 = F* and o- is a 1 —■ 1 m apping.

By Prop. 11 (b), a (y) t  W (X <g) if and only if  a (y ) =  =  2£x =  g(x).
Thus <7 X - • W (X , <%). "

Suppose now th a t a is onto. Then for each irreducible closed set F C X ,  
^ F - { K e ? / F C K } e  J ( X , f )  and there exists y  such th a t 
Hence F  =  F ,.  *'
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Conversely it is clear th a t if for each irreducible closed set F  C X, 
F =  for some y e  Y, then g is an onto map.

To show tha t g is a hom eom orphism  we sim ply note tha t if F is closed 
in Y, then cr (F) =  { 0 >¥y / y  e F  } =  { / F D X e 0>Vy} =  ßFnx D J (X , V).

COROLLARY. I f  X is a compact Ti space, the Jacobson compactification 
o f X, exists, is unique , and  is equivalent to J (X , fé7).

Corollary. I f  X is a prespectral Tl space, J (X , ^) is the spectral com­
pletion o f X.

Section 3. Applications to R ing Theory.

In  this section we apply the m aterial of the previous two sections to 
relationships between the prim e and m axim al ideals of a com m utative ring 
with identity. Denoting the m axim al ideals of A  as Jt(JA) and the hull of 
{ a± , • • • , an } C A as H ^ (A) (ax , • • • , an) =  {M e JKJA) / a{ e M }, L ^ (A) as, 
the lattice of all such hulls, ß  (A) as the set of all Jacobson prim e ideals, 
we show tha t if is the lattice of all bull-kernel closed subsets of ^#(A), then 
ß (A) -  J (**(A) , L ^ (A)) -  J ( Æ A )  , V).

In  [3] Grothedieck showed tha t the points of Spec A (the set of all prim e 
ideals of A) can be put in 1 — 1 correspondence with the irreducible closed 
subsets of Spec A under the m apping p->  clspec a {p}- In [2] it was shown that 
if A  is a Jacobson ring ( ß ( A )  =  Spec A), this correspondence can be establi­
shed between the points of SpecA and the irreducible closed sets in <Æ(A) under 
the m apping p  -> fclspeca  { P } ) (A). Critical in proving the result is the
fact J t(A )  is very dense in Spec A  when A is a Jacobson ring. We are interested 
in locating the generic points of the irreducible closed subsets of J i ( A) when 
A is not a Jacobson ring. Here, having shown (Prop.  15) that ß ( A )  is the 
Jacobson completion of ^ f A ) ,  we find fProp. 16) that these generic points 
are located in ß ( A).

In addition, we prove (Trop. 17) that a topological space X is identifiable 
as the m axim al ideals of a Jacobson ring A if and only if X is a prespectral 
Ti space. In  such a case it is shown th a t the Jacobson completion of X is 
identifiable as SpecA.

Definition 6. Let S C SpecA. Then

' H s (a1 , • • •, an) =  { p  e S / az- e p  }

L s =  { H s ( & i , ‘ ‘ > # n )  I  & i E A  } .

The sets H s (ax , • • •, an) are a base for a topology on S referred to as the 
hull-kernel topology. A ny closed subset of S in the hull-kernel topology is 
of the form cls F =  H s (kF) =  { p  e S / k ¥  C p }  where F C S and k ¥  =  O p.
' f t  G F
The space (A) is a com pact Ti space and SpecA  is a com pact To space.
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Proposition  13. (fa) I f  p  £ S, then cls { p  } =  { p ' e S \p  C p r }.
(b) I f  F C S ,  cls F =  { p e S / k F C p } .
(c) I f  jM(A) C S C Spec A, then S is compact.
(d) I f  J£(A) C S C Spec A, then J t(A ) is very dense in S i f  and only 

i f  S C  / ( A ) .
Proof, (d) I f  then cls { p  } n J ( A )  =  {M e /M  D p  }.

As p  =  O M, if p  e C H S («■, , ■ • - , a„), then <2,- for some i. Hence there
PCM

exists M e J t(N )  such tha t / C M  and æ,-€M for some 7 Thus C H S , • • •, ^w) 0  
O cls { p  } O M (A )  =|= 0  and p £ cls (cls { /  } 0«/#(A)). Hence by Prop, i, 
JtfiA) is very dense in S under the assum ption S C f i  (A).

Conversely if p  £ S and p  € f i  (A),. then /  =f= H M and there exists
PCM

a e D M with a & p. Hence p  £ C H S (<z) but for any M such that M I ) / ,
PCM

M £ H s (<z). Thus C H S fy) n  cls { /  } O J t{A )  =  0 .

Definition 7. Let S such that J t  (A) C S C  Spec A. 77z ^  S satisfies 
condition Hs i f  cls FLr(A) (tf x , • • •, afi) =  Hs (a±, • • •, a«) fo r  any {a±, • • •, a f i  Ç A.

Proposition 14. (0) I f  J t(A )  C S C  /(A ) , S satisfies condition Hs . 
(b) I f  C S C /  (A) F <3 closed subset of JK A ), then cls F =

=  { / e S / £ F C / }  and every closed, set in f i  (A) is of this form .

Proof, (a) I f  A) C S C / ( A ) ,  then as J t(A )  is very dense in S and 
H s (a1 , • • •, a fi) C \Jt(A) =  Ĥ #(A) (a± , • • •, a fi), the proof is done.

(b) Let F be a closed subset of Jt(K ). Then F — D H ^ (A)(^a).
aa ekF

As JKK ) C S C  f i  (A), then Jt(JA) is very dense in S and S satisfies condition 
H s . Then cls F — O cls H ^ (A) (afi) =  O H s(^a). Hence /  £ cls F if and only

aa ekF aa ek F
if  for all aa £ k¥, p  £ H s (^a). Equivalently, /  e cls F if and only if kF C / .  
As d t(A) is very dense in S, the rem ainder of the statem ent of (b) follows 
im mediately.

W e establish notation here which is in force for the rem ainder of 
the paper. Let /  6 Spec A. Then a ( / )  =  { H ^ (A) (a1 , • • • , afi) / a{ G /  }. 
Clearly by Prop. 14, cr ( / )  =  { H ^ (A) (ax , • • • , «„) / /  e H ^ (A) , • • •, afi) =
=  c V (A) H ^ (A) , • • •, afi)} for all /  e ^ (A ) . If /  £ Spec A, then $ ( / )  =
=  {F e <£ j k F C p }  . If  /  £fi(A ), then by Prop. 14(b) a(p)  =  (F  € # / /  c cljzr(A) F}.

PROPOSITION 15. (a) The M apping a establishes a homeomorphism bet­
ween [fi (A) and  J (Jl(A ) , L ^ (A)) with a (Jt(A j) =  W  (Jt(A ) , L ^ (A)).

(b) The mapping a establishes a homeomorphism between, f i  (A) and 
}{Jt(JA) , V) with a fiM(A)) =  W  (J l(K )  , <€).

Proof, (a) We first show th a t if /  e f i  (JA ), then a ( / )  e J (J ((A )  , L„//(A)). 
If  H #(A) ( %, • • • ,  tf*) C Hur(A) (^1 0  • *, O  with H ^ (A) , • • •, afi) £ or ( /) ,  then
as p  £ cljf(A) H ^ (A) (^ i, • • •, afi) — Hj?(A) (^10 • •, afi) C cl r̂(A) H^r(A) (b\ , • • •, bm) — 
=  H^r(A) (^1 , • • •, ^w) it follows that H ^ (A) (b\ , • • •, bM) £ a ( / )  and clearly <j(/) 
is a filter. As /  is a prim e ideal, it follows readily tha t cr(/) is a prim e filter.
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To show th a t <s(p) is a Jacobson filter, we first characterize the ultrafil­
ters. We show th a t is an ultrafilter if and only if =  <j(M) where M 
is a m axim al ideal. I f  H ^ (A) (a) € a (M), then there exists « 6  M such 
that ab . + m  =  e for some b e  A. Then H ^ (A) (a) O H ^ (A) (m) =  0  and it 
follows that cr (M) is an ultrafilter. Conversely if ££ is an ultrafilter and 
P — { a e A /H ^ ( A) (a) e J?}, it follows readily that p  is a m axim al ideal 
and that a(p)  =

To complete the proof tha t when p e ß ( A ) ,  g (p) e J , L  ̂ #(A)),
we show tha t =  O <s(M) =  n  a (M). This follows readily from the

o ( / ) C o ( M )  p c .  M
fact th a t p  is a Jacobson prim e ideal for if H ^ (A) , • • •, an) e cr (M) for
all M such that p  C M , then {a± , • • •, an} C M  for all M such tha t p  C M . 
Thus { a± , • • • , an } C p  and therefore H ^ (A) (ax , • • • , an) e g (J>). Thus 
g(P)  =  H a(M ).

To show that cr is onto, let ß e  ](J t(K )  , L^/(A)). Then ß  =  O cr(M).
/ C o ( M )

Let p  =  {a  e A / H j (A)(ö) e </}. Clearly is a prim e ideal and g (p) =  ß .  
It is clear th a t g (p) C a (M ) (M a m axim al ideal) if and only if p  C M . Thus 
to show th a t p  is a Jacobson ideal we m ust show that p  =  O M. But if a gM

/ C M
for all M such tha t p  CM , then H ^ (A) (a) e a (M) for all er (M) such that 
ß C  g (M ). Therefore H ^ (A) (a) e ß  and a  e p.

To show th a t cr is a i —  i m apping we assume p x j=. p 2 and a e p x w ith
a $ p 2 . Clearly H ^ (A) (a) e g (p±) but if H ^ (A) (a) e g (p2), then H ^ (A) (a) =
— H^/(A) (a1 , r • • , an) where e p 2 . Thus cl/-(A) H ^ (A) (a) =  (ß) =
=  CV(A) , • • •, an) =  H ^ (A) («! , • • • ,  an) and as p 2 e Uj f (A) (a± , • • •, an),
Pi 6 iri'fiA) ß )  and a e p 2 but this is a contradiction.

As g (Hj*r(A) (ai r  * • ,< ) )  -  { ß e JC # (A ), L ^ (A)) / H ^ (A) (ai r - - , an) e ß }  =  
=  ßĤ ( A) (ai > • ' • » an) n  ß (A), and or" 1 ( / ( A )  D H U (A) (aq , • • • , #*)) =
H ^(A) , • • •, æ„), then <7 is clearly a homeomorphism.

(b) Si nice J t(A )  is very dense in /"(A ), if p  e cl j?(A) F and p  e cl jr{A) K, 
it follows tha t p  e cljf(A) F D K and therefore it is readily  seen tha t g (p) is 
a prim e filter.

Once again, we begin by showing th a t ^  is an ultrafilter if and only if 
ÊP ~  5 (M) where M is a m axim al ideal. IfM  is a m axim al ideal and F € a(M ), 
then M € cljr(A) F =  D Hjr(A) (a). Thus for some a e kF,  M € cljr(A) H ^ (A) (a) =

, aek F
=  Hj~(A)(a) and M. Consequently for some m e  M and b e A, ab-\-m  =  e 
and H ^ (A) (a) O H ^ (A) (/^) =  0 .  Thus F H H ^ (A) (m) =  0 .  O f course 
S(M) O L jt(A) =  cr (M) and therefore Flj?(Aß m ) e a(M ). Suppose now th a t ££ 
is an ultrafilter in J ( J t (A) , <g). Let p  — { p  e A  / H ^ (A) (^) e ^T}. As &  
is an ultrafilter in fé7, then J f n L ^ A) is an ultrafilter in L^#(A) and by part (a), 
M =  cr 1 H  L j?(A)) is a m axim al ideal. By the strong properties of the closure
operator in very dense spaces (Prop. 2), as M is in the closure of every set 
in g (M) =  ££O L j ( A) by (a), and every set in «3T is an intersection of sets in 
g  (M), M is in the closure of every set in ££ and we are done.
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To show tha t if p e ß ( A ) ,  then g (p) e J(uF(A ) , * ’), we need only 
show that è(J>) =  D 5 (M). But if F e S(M) for all M such that p  CM ,

M e  cljr(A) F for all such M and equivalently kF  C M  for all such M. Hence 
k ¥  C p  =  H M and F e J  (p).

PC.M
To show that g is onto, let / e  J ( i r ( A ) , (87). Then ß  =  O o’(M)

«̂ CÔ(M)
and ß  O L^t(A) = 0 5  (M) H T^#(A) = 0 ( 7  (M) and ß  O L ^ (A) == a (J>)

^ n L^ (A)Ca(M)
for some 7) e ß  (A).  Once again as 7) is in the closure of each set in 
/ f l L / ( A) and every set in ß  is an intersection of sets in / O L ^ a ) ,  p  is in 
the intersection of each set in ß  and it readily follows that g (p) =  ß .

The proofs of the facts that g is a 1 — 1 bicontinuous m ap are straight 
forward and left to the reader.

PROPOSITION 16. I f  A  is a commutative ring w ith identity , then there 
is a I —  I correspondence between the ideals p  e ß  (A) and  the irreducible closed 
subsets o f J l(A )  where p  —> ( c l { p  }) O A) establishes the correspondence.

Proof. See Prop. 12 and Prop. 15.

Noting tha t we have now shown that ß ( A )  is the Jacobson completion of 
*#(A), as ß (A) is spectral when A is Jacobson, M (A )  is therefore prespectral. 
We m ay now state the following proposition.

PROPOSITION 17. A  topological space X is the m axim al ideals o f a facob- 
son ring i f  and  only i f  it is a prespectral Ti space.

We close the paper with a few examples.

E xam ple I .  If  X is a compact Hausdorff space, then J (X , fé7) =  W  (X , <#), 
This follows from Prop. 11 and the fact that every closed subet of X with more 
than  one point is reducible. It follows that a regular semi-simple Banach 
algebra [2] is not an integral domain, for the ideal consisting of the zero vector 
would then be a Jacobson prim e ideal and this cannot be by Prop. 15.

E xam ple 2. Let X be an infinite set with cofinite topology. Then the follo­
wing are all true:

(a) X is a prespectral Ti space;
(b) W  (X , ^ )  =  'X;
(c) J (X , ^ )  =  X U { } where iFx =  { X }.

These three statem ents lead to the conclusion that any Jacobson ring for 
which X is the m axim al ideals will have a unique prim e ideal which is the 
radical of the ring. This prim e ideal will be the zero ideal if and only if the 
ring is an integral domain. A result of this sort can be found in [2].

E xam ple 3. Let X be a O -dim ensional H ausdorff space [1] and F  a 
rank  one nontrivially nonarchim edean valued-field of characteristic zero. 
Let C (X , F) denote the continuous F-valued functions on X and I* the ideal
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in C (X , F) generated by all characteristic functions of closed and open (clopen) 
sets O such th a t x  c CO. The m axim al ideal of all functions in C (X , F) 
which vanish at x  will be denoted by M* . In X, the zero sets of functions of 
C (X , F) are the C§ sets (denum erable intersections of clopen sets). See [1] 
for a proof of this. The following statem ents are all true.

(a) If  X is compact, then clc(x,F)I* = M * .
(b) If  p  is a prim e ideal in C (X , F), then if X is compact, there 

exists a unique j f X  such th a t clc(x, f> p  — M *.
(c) C (X , F) is biregular [6] if and only if all C§ sets in X are clopen. 

In  this case with A =  C (X , F), P (J l(K )  , L ^ (A>) =  W  , L ^ (a>) =  
=  J («/#(A) , L) =  ßo(X) where ßo (X) is the Banaschewski compactification 
of X, and every prim e ideal of C (X , F) is maxim al.
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