Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

D. M. Maduram

On special block designs

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 57 (1974), n.6, p. 592-595.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1974_8_57_6_592_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometrie finite. - On special block designs. Nota di D. M. Maduram, presentata ${ }^{(*)}$ dal Socio B. Segre.

Riassunto. - R. H. Schulz ha dimostrato che ogni Block-plane con un gruppo di traslazione transitivo abeliano, che abbia un uguale numero di punti su ogni sua retta, determina una quasi-fibrazione [2]. Qui caratterizziamo le classi di isomorf di tali Blockplane in relazione alle quasi-fibrazioni e definiamo una loro matrice rappresentativa.

I. Introduction

R. H. Schulz proved that every block design with a transitive abelian translation group, which has equal number of points on its lines determines a quasi-congruence [2]. We characterise here the isomorphism classes of these special block designs with respect to quasi-congruences and define a matrix representation of them.

II. Special block designs

Definition. A quasi-congruence S of the vector space $\mathrm{V}_{m n}$ of dimension mn over the Galois field $\mathrm{F}=\mathrm{GF}(q)$ is a set of n-dimensional subspaces, which are called quasi-components, such that each non-zero element of $\mathrm{V}_{m n}$ belongs to exactly $\lambda \geq 1$ quasi-components.

Theorem. Any translational block design which has equal number of points on its lines and whose translation group is abelian can be considered as a block design of the form $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}, \mathrm{~F}\right)$ where points are the vectors of $\mathrm{V}_{m n}$ and the blocks are the quasi-components of S and their translates under the group of translates of V_{mn}.

Proposition I . The block designs $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}, \mathrm{~F}\right)$ and $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}^{\prime}, \mathrm{F}\right)$ corresponding to quasicongruences S and S^{\prime} are isomorphic if and only if there exists a non-singular semilinear transformation of the vector space $\mathrm{V}_{m n}$ mapping each quasi-components of S onto that of S^{\prime}.

Proof. Let $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}, \mathrm{~F}\right)$ and $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}^{\prime}, \mathrm{F}\right)$ be isomorphic. Then there exists an isomorphism f from $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}, \mathrm{~F}\right)$ onto $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}^{\prime}, \mathrm{F}\right)$. Since the block designs have transitive abelian translation group, we assume without loss of generality that f maps the origin of $\mathrm{V}_{m n}$ onto itself i.e. $f(0)=0$.

For any non-zero vector v in $\mathrm{V}_{m n}$, let \boldsymbol{v} denote the translation in $\mathrm{V}_{m n}$ given by $x \rightarrow x+v$. This induces a translation of the block design $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}, \mathrm{~F}\right)$. Now consider the mapping $f \cdot \boldsymbol{v} \cdot f^{-1}$ in $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}, \mathrm{~F}\right)$. Clearly this maps the
(*) Nella seduta del 14 novembre 1974.
blocks of $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}, \mathrm{~F}\right)$ onto the blocks of $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}, \mathrm{~F}\right)$ and we prove that this mapping is indeed a translation of $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}, \mathrm{~F}\right)$. First we note that this collineation is fixed point free; for if $f \cdot \boldsymbol{v} \cdot f^{-\mathbf{1}}(\mathrm{X})=\mathrm{X}$ for some point X , then $\boldsymbol{v} \cdot\left(f^{-1}(\mathrm{X})\right)=f^{-1}(\mathrm{X})$, contrary to the translation \boldsymbol{v} being fixed point free. Now we need only to show that $f \cdot \boldsymbol{v} \cdot f^{-1}$ is a dilatation. If the points X and $f \cdot \boldsymbol{v} \cdot f^{-1}(\mathrm{X})$ belong to the same block b, then $f^{-1}(\mathrm{X})$ and $\boldsymbol{v} \cdot\left(f^{-1}(\mathrm{X})\right)$ belong to the block $f^{-1}(b)$. Since any translation is again a dilatation, the block $f^{-1}(b)$ is fixed. Hence $\boldsymbol{v} \cdot\left(f^{-1}(b)\right)=f^{-1}(b)$ and so we have $f \cdot \boldsymbol{v} \cdot f^{-1}(b)=b$. Thus the collineation $f \cdot \boldsymbol{v} \cdot f^{-1}$ fixes the block b and so it is a dilatation.

Since $f \cdot \boldsymbol{v} \cdot f^{-1}$ is a translation and $f \cdot \boldsymbol{v} \cdot f^{-1}(0)=f(v)$, we have $f \cdot \boldsymbol{v} \cdot f^{-1}(\mathrm{X})=f(v)+\mathrm{X}$. Hence

$$
\begin{aligned}
& f\left(v_{1}+v_{2}\right)=f \cdot \boldsymbol{v}_{1} \cdot \boldsymbol{v}_{2} \cdot f^{-1}(0)=f \cdot \boldsymbol{v}_{1} \cdot f^{-1} \cdot f \cdot \boldsymbol{v}_{2} \cdot f^{-1}(0)= \\
& =f \cdot \boldsymbol{v}_{1} \cdot f^{-1}\left(f\left(v_{2}\right)\right)=f\left(v_{1}\right)+f\left(v_{2}\right) . \quad \text { Thus } f \text { is linear. }
\end{aligned}
$$

Since each non-zero element of the basic field can be considered as a central dilatation of $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}, \mathrm{~F}\right)$, we have for each element k of F , $\boldsymbol{k} \cdot \boldsymbol{v}=\boldsymbol{k} \cdot \boldsymbol{v} \cdot \boldsymbol{k}^{-1}(\mathrm{o})$, where \boldsymbol{k} denotes the dilatation induced by the left multiplication of the vectors of $\mathrm{V}_{m n}$ by k in $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}, \mathrm{~F}\right)$. Also $f \cdot \boldsymbol{k} \cdot f^{-1}$ induces a dilatation on $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}, \mathrm{~F}\right)$ fixing each of the quasi-components of S and so it represents a non-zero element of the field, say k^{α} in F. If we further let $\mathrm{o}^{\alpha}=\mathrm{o}$, then the mapping α is indeed an automorphism of the field F . In fact, we have for any v in $\mathrm{V}_{m n} ; f \cdot\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right) \cdot f^{-1}(v)=f \cdot \boldsymbol{k}_{1} \cdot f^{-1}+$ $+f \cdot \boldsymbol{k}_{2} \cdot f^{-1}(v)$ and so $\left(k_{1}+k_{2}\right)^{\alpha}=k_{1}^{\alpha}+k_{2}^{\alpha}$ and similarly $\left(k_{1} \cdot k_{2}\right)^{\alpha}=k_{1}^{\alpha} \cdot k_{2}^{\alpha}$.

Finally,

$$
\begin{gathered}
f(k \cdot v)=f \cdot \boldsymbol{k} \cdot \boldsymbol{v} \cdot \boldsymbol{k}^{-1}(0)=f \cdot \boldsymbol{k} \cdot \boldsymbol{v} \cdot \boldsymbol{k}^{-1} \cdot f^{-1}(\mathrm{o})= \\
=f \cdot \boldsymbol{k} \cdot f^{-1} \cdot f \cdot \boldsymbol{v} \cdot f^{-1} \cdot f \cdot \boldsymbol{k}^{-1} \cdot f^{-1}(\mathrm{o})=\boldsymbol{k}^{\alpha} \cdot f \cdot \boldsymbol{v} \cdot f^{-1} \cdot \boldsymbol{k}^{-1 \alpha}(\mathrm{o})= \\
=\boldsymbol{k}^{\alpha} \cdot f(v)=k^{\alpha} \cdot f(v)
\end{gathered}
$$

Since f is also one to one, it is a non-singular semi-linear transformation of the vector space $\mathrm{V}_{m n}$.

Converse follows directly. The above proof also yields the following result:
Proposition 2. Every collineation fixing a point of the block design $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}, \mathrm{~F}\right)$ is induced by a non-singular semilinear transformation of thevectorspace $\mathrm{V}_{m n}$ preserving the quasi-congruence S .

Proposition 3. Suppose $\mathrm{D}_{1}, \mathrm{D}_{\mathbf{2}}, \cdots, \mathrm{D}_{k}$ are the totality of non-isomorphic block designs containing $p^{m n}$ points, where p is a prime number and having equal number of points on each line and having transitive abelian translation group, then

$$
\mathrm{N} /\left(p^{m n}-\mathrm{I}\right)\left(p^{m n}-p\right) \cdots\left(p^{m n}-p^{m n-1}\right)=\mathrm{I} / h_{1}+\mathrm{I} / h_{2}+\cdots \mathrm{I} / h_{k} ;
$$

where N is the total number of distinct quasi-congruences in $\mathrm{V}_{m n}$ over $\mathrm{GF}(p)$ and h_{i} is the order of the collineation subgroup fixing a point of the block design D_{i}.

Proof. By Proposition 2, the number of distinct quasi-congruences representing isomorphic block designs $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}, \mathrm{~F}\right)$ is equal to the index of the group of non-singular linear transformations fixing the quasi-congruence S in the full group of all non-singular transformations of $\mathrm{V}_{m n}$. Hence the result.

III. Matrix representation of block designs

We first consider the matrix representation of the lines through origin of the block designs $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}, \mathrm{~F}\right)$.

Proposition 4. To the lines through origin of the block design $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}, \mathrm{~F}\right)$ corresponds a set of rows of $i \times i$ square matrices $\left(\mathrm{A}_{1}^{p}, \mathrm{~A}_{2}^{p}, \cdots, \mathrm{~A}_{k}^{p}\right)$ containing also unit row k-tuples $(\mathrm{I}, \mathrm{o}, \mathrm{o}, \cdots, \mathrm{o}), \cdots,(\mathrm{O}, \mathrm{o}, \cdots, \mathrm{o}, \mathrm{I})$ with $m n=i k$, where i is some fixed divisor of n; such that for any two k-tuples of theform A^{p} and A^{q},

$$
\operatorname{Rank}\left(\begin{array}{cccc}
\mathrm{A}_{1}^{p} & \mathrm{~A}_{2}^{p} & \cdots & \mathrm{~A}_{k}^{p} \\
\mathrm{~A}_{1}^{q} & \mathrm{~A}_{2}^{q} & \cdots & \mathrm{~A}_{k}^{q}
\end{array}\right)=2 i .
$$

Further, any quasi-component can be represented by a set of $n / i=c$ lines $\mathrm{A}^{\mathbf{1}}, \mathrm{A}^{2}, \cdots, \mathrm{~A}^{c}$ such that

$$
\operatorname{Rank}\left(\begin{array}{cccc}
\mathrm{A}_{1}^{1} & \mathrm{~A}_{2}^{1} & \cdots & \mathrm{~A}_{k}^{1} \\
\mathrm{~A}_{1}^{2} & \mathrm{~A}_{2}^{2} & \cdots & \mathrm{~A}_{k}^{2} \\
\cdots & \cdots & \cdots & \cdots \\
\mathrm{~A}_{1}^{c} & \mathrm{~A}_{2}^{c} & \cdots & \mathrm{~A}_{k}^{c}
\end{array}\right)=n
$$

Proof. The lines through origin of the block design $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}, \mathrm{~F}\right)$ determine mutually disjoint (except for the zero vector) i-dimensional subspaces covering each of the quasi-components of the quasi-congruence S. Now i divides n. Let $m n=i k$. We choose a basis of $m n$ vectors $e_{1}, e_{2}, \cdots, e_{m n}$ where the first i vectors lie in one line, the second subset of i vectors lie in another line and so on. Now each vector $x_{1} e_{1}+\cdots+x_{m n} e_{m n}$ can be expressed as an ordered k-tuple ($\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{k}$) where each $\boldsymbol{x}_{p}=\left(x_{p i+1}, \cdots, x_{p i+i}\right)$ and our choice of the first k fundamental lines given by the unit row k-tuples. For any other line, let us choose a basis on $i k$-tuples, $\left(\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{k}\right), \cdots,\left(\boldsymbol{z}_{1}, \cdots, \boldsymbol{z}_{k}\right)$. Now

$$
\left(\begin{array}{c}
x_{1} \\
\vdots \\
z_{1}
\end{array}\right),\left(\begin{array}{c}
x_{2} \\
\vdots \\
z_{2}
\end{array}\right), \cdots,\left(\begin{array}{c}
x_{k} \\
\vdots \\
z_{k}
\end{array}\right)
$$

are all $i \times i$ matrices and we denote this ordered set of matrices as A^{i}. Now the first condition of the proposition follows from the fact that any pair of distinct lines have only zero in common. Since each quasi-components contains exactly n independent vectors, we get the second condition also.

Note: If $i=n$, then the block design is just a translation plane and we get the usual matrix representation by taking $\left(\mathrm{A}_{1}^{r}\right)^{-\mathbf{1}} \mathrm{A}_{2}^{r}$ for $\mathrm{A}_{1}^{r} \neq 0$.

If, in each fundamental line, we change the basic vectors $e_{p i+1}, \cdots, e_{p i+i}$ to $e_{p i+1}^{\prime}, \cdots, e_{p i+i}^{\prime}$ given by a non-singular matrix C_{i}, then each line represented by A^{r} has a new representation of the form $\mathrm{A}^{r} \mathrm{C}_{\boldsymbol{i}}$. Further choosing a different basis of this line given by a non-singular matrix B_{r}, we get the most general representation of the same line as $\mathrm{B}_{r} \mathrm{~A}^{r} \mathrm{C}_{i}$. Thus we have:

Proposition 5. If a set of k-tuples of $i \times i$ matrices, $\left(\mathrm{A}_{1}^{r}, \mathrm{~A}_{2}^{r}, \cdots, \mathrm{~A}_{k}^{r}\right)$ correspond to the lines through origin of the block design $\mathrm{D}\left(\mathrm{V}_{m n}, \mathrm{~S}, \mathrm{~F}\right)$, then for arbitrary choices of fixed non-singular matrices $\mathrm{C}_{1}, \mathrm{C}_{2}, \cdots, \mathrm{C}_{k}$ and B_{r} : the set of k-tuples ($\left.\mathrm{B}_{r} \mathrm{~A}_{1}^{r} \mathrm{C}_{1}, \mathrm{~B}_{r} \mathrm{~A}_{2}^{r} \mathrm{C}_{2}, \cdots, \mathrm{~B}_{r} \mathrm{~A}_{k}^{r} \mathrm{C}_{k}\right)$ represent lines of an isomorphic block design.

Acknowledgement. The Author wishes to thank his supervisor, Prof. M. Venkataraman, for his helpful guidance.

Bibliography

[1] P. Dembowski (1968) - Finite Geometries, Springer.
[2] R. H. Schulz (1967) - Über Blockplane mit transitiver Dilatations-gruppe, "Math. Zeit.", 98, 60-82.
[3] B. Segre - Teoria di Galois, fibrazioni proiettive e geometrie non Desarguesiane, «Annali Mat. pura Appl.) (IV), 9 (4), i-76.

