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Geometria differenziale. — Hyperasymptotic and hypergeodesic
curvatures of a curve in special Kawagucht spaces. Nota di Upal
Pratap SiNGH e SHR1 Krisuna Deo Dusgy, presentata  dal Socio
E. Bowmriant. |

RI1ASSUNTO. — Studio delle curvature iperasintottiche e ipergeodetiche di una curva
appartenente ad uno spazio di Kawaguchi di ordine due.

I. INTRODUCTION

Consider an #-dimensional special Kawaguchi space of order 2 such
that the arc length of a curve 2 = %% () @ is given by the integral

(1.1) S=f[A,~ (x,%) %"+ B(x, )" dz, - p=o0,3/2

where % = da?/d¢, x* = d22%/d22 and A;, B are differentiable functions
of 2 and x?. In order that the arc length be related intrinsically to the curve

that is, it remains unaltered by a transformation of the parameter #, we must
have (Kawaguchi [1]®)

(1.2) A;xi=o0,
(-3) 282 + (A ¥4 + By) 7 = p(Ai 37 + B),
where

Ay =A4ax B, = aBjar’.

Equation (1.3) implies
(1.4) Ay =(p—2)Ar , Byai=B.

Thus A; are homogeneous of degree p — 2 with regard to the #7 and B is
homogeneous of degree p.

We consider an m-dimensional subspace K,, of K, represented as
#*= ' (%) and the matrix of the projection factor pi = 3x*/3x* has rank .
If we denote by 2, and 4 the quantities in K,, corresponding to A, and B in K,

(*) Nella seduta del 14 dicembre 1974.

(1) Latin indices run from 1 to 7, Greek ones o ,B,v,8,&, p from 1 to s and @, v
from m 4+ 1 to .

(2) Numbers in the brackets refer to the references at the end of the paper.
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then it follows that the equations similar to (1.2), (1.3) and (1.4) hold for a,
and é. Putting

def def
Gy =2M,0 —Ajiy  ,  Gop = 28 — 23
it has been shown (Yoshida [3]) that
(1.5) Gy 2 2% = Gug .

The covariant differential of a contravariant vector field o (x , %) homo-
geneous of degree zero with respect to x? is defined as (Kawaguchi [1])

(1.6) 8 = dvf + T o’ dat,

where

2T = (2A,, 2" — B,) G”,
Iy = jox’ ox® | A, = aA,fx.

If v* be a vector field in K,, such that 2% = p.f‘ 2%, then the induced covariant
differential d2* (= p#8¢") is given by (Yoshida [3])

(1.7) 8§ = do” + 1%, 0" du”,
where

The= 1 G+ T 2 55,

25 =G"Gypk , ph=opplou’ .
Further, Yoshida ([3]) has defined

(1.8)

Oy def o ; def : . > ;
(1.9) Hiw = Dy p2 = s + T 24 16 — Do 2%
and expressed
(I.IO) Ifléoc = 2 Hﬁa ni )
[ ©w [

in which #* are vectors normal to K,, and Hg, are second fundamental tensors.
1 ©w

For a curve C:x=2'(s) of the subspace K,,, it has been shown

(Yoshida [3]) that

: ‘ i i o Al du? ; AP
(r-11) ¢ =0t =Hoy g 5 = DM 5 S0

where

R AT RS N T)
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It has been proved that the necessary and sufficient condition that the curve
be an asymptotic line is that

du®  du¥
(I.I3> IEBY_({Y_.?ZO’ for E}.=m+l,"',n.
2. HYPERASYMPTOTIC CURVATURE

Consider a congruence of curves on K,, given by the vector field ». At
a point of the subspace this can be expressed as

(2.1) N o= fapé + g P(u) 1;'. .
Let this vector be normalized by the condition
(2.2) G (x, NN =1,

which gives

(2.3) Gag (0 2 + 2 T
where
(2.4) 4: G (x, x) n’ nf

Let b{y (= dx’/ds), &fy and bie (@ =2, -+,7n—1) be the unit tangent,
unit principal normal and (z— 2) unit binormal vectors of a curve C: 2* = 2%(s)
(of K,,) which is not an autoparallel curve in K,,.

DEFINITION 2.1. A curve (of K,) is said to be hyperasymptotic curve
(of order (¢ — 1)) of the subspace relative to ¥ if the surface determined by
&) and the binormal vector 4(, contains the vector field ¥. In other words,
we have (Singh [4])

(2.5) kizubfo)—l—vw)éap), (p=12 or 3 or ---or n—I).
On comparing the equation (2.5) with the equation (2.1), we get

(2.6) £ pu g Ly ffz = ubo) + v o) -

After multiplying (2.6) by G,;¢’ and using the facts

(.7 Gybog =0 , Gybng=o,

we obtain

(2.8) G, ¢t pi + ; Pw G, ¢/ Zf" =o0.
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Using the equations (1.5), (1.11), (2.4), (2.8) and G,; pi #/ = o, we get
w

daP  du
(2.9) Gug #* P + 2 Ty ¥ Hey, - T =00,
w ®oe

which represents hyperasymptotic curve relative to ». The equation (2.5)
and (2.7) give

(2.10) G (x,x') Ng¢g'=o,

therefore we have the following

THEOREM 2.1. For a hyperasympiotic curve, the first curvature vector
¢ is normal to N.

DEFINITION 2.2. The scalar K* is defined by
(2.11) K*= Gy (x,x) X(u,u)q

is called the hyperasymptotic curvature (of a curve) relative to M (u, %).
It is obvious that the hyperasymptotic curvature of a curve vanishes
(Prasad [2]) 1f and only if it is an hyperasymptotic line.
After using equations (1.11) and (2.1), we obtain

deP  duY
(2.12) K* = Gap#*p* + 2T § Hey o S,
[ vow

which yields

THEOREM 2.2. [If a hyperasymptotic line is an asymptotic line then either
() the congruence is normal to K,, or (ii) the first curvature vector of the curve
with respect to K,, is orthogonal to the component of the congruence tangential
o K,,.

Proof. If the hyperasymptotic line is asymptotic, then using equations
(1.13), (2.12) and the fact that K* = o we get

(2.13) Gup 2 p* = 0.
Since the curve is asymptotic and not an autoparallel curve in K,,, p*=Fo.

Therefore, equation (2.13) implies that either (i) #* = o or (ii) p* is ortho-
gonal to #*. ‘This proves the theorem.

3. HYPERGEODESIC CURVATURE

For a curve C: #* = #u*(s) of the subspace K,,, the vector with the com-
ponents

d ¢} d Y\2 1/2 d ay\
G == B G ][R (r 2 4
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is called the union curvature vector relative to X (Singh and Dubey [5])

def dx?
where A = G,; — R M.

The scalar 2, defined by
P} = Gog (u, 40) 17 7P

is called the union curvature of the curve and this can be expressed as
8
du® du”
;(HBY “ds ds >/2 *)

X’oﬁp+§§(Hev W dy)/ZF?u)g@wﬁ—ﬂ),

1/2
(3.2) B=F—2

in which we have used the relations

du*  duP N L du®
(3'3) aﬂ(u u) dZ:\ dZ; =1 ’ Gaﬁ(”,u)ﬁ *ali—zo

and 2 = G (u , 1) p* p° (#£,is the first curvature of the curve).
From equations (1.13) and (3.2), we have

THEOREM 3.1. The union and first curvatures are identical along an asym-
Dtotic line of the subspace.

Let us suppose that /* i—-e—fp“/,ég, multiplying (3.1) by Gug (2, %) /* and
using the fact that

N dou®
Gaﬂ<%,u>—a;—p(3=0,

we get
G PN ‘ du® du” 2
(3-4) op (20, 2) 0 [ _’ég'—' Z HEY & ds Z ()
w
DEFINITION. The scalar K, defined by
d
%{ (HBY dl; ds \/Z P(l")

is called the hypergeodesic curvature of the curve in K,,.
If K; vanishes along a curve in K,,, then the curve is called a hyper-
geodesic. Therefore, a hypergeodesic is given by

(3'6> Gaﬂ (u, d) Ui FP=o.

12
(Gop (22, 2) t*1P).

* 1/2 i
(35)  Ki=4— (G () £ 9)

This equation yields the following theorems:

THEOREM 3.2. A wunion curve is a hypergeodesic but the converse is not
necessarily true.

THEOREM 3.3. A non-union hypergeodesic curve is characterised by the

property that its union curvature vector is ovthogonal to the first curvature vector
in K,,.
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Also, we have

THEOREM 3.4. The hypergeodesic and first curvatures of a curve are equal
of and only if either (i) the curve is the asymptotic line or (i7) the congruence N
is normal to K,,.

The proof is obvious from equation (3.5).
Theorem 3.1 and Theorem 3.2 yield

THEOREM 3.5.  The hypergeodesic and union curvatures of an asymptotic
line are identical, each being equal to the first curvature.

Finally, we conclude with the following:

THEOREM 3.6. Along a asymptotic line of the subspace union, first and
hypergeodesic curvatures are identical.

Remark. Since the curve under consideration is not an autoparallel
curve of the embedding space, the above theorem reveals that an asymptotic
line can not be a union curve or a hypergeodesic.
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