Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Federico Gaeta

Dual Jacobians and correspondences (p, p) of valency -1

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 57 (1974), n.6, p. 542-547.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1974_8_57_6_542_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometria algebrica. - Dual Jacobians and correspondences (p, p) of valency - I. Nota I di Federico Gaeta, presentata ${ }^{(*)}$ dal Socio B. Segre.

RiASSUnto. - La varietà abeliana $\overline{\mathrm{J}}(\mathrm{C})$ duale ${ }^{(1)}$ della Jacobiana $\mathrm{J}(\mathrm{C})$ di una curva algebrica di genere $p>2$ è rappresentata naturalmente da corrispondenze di indici (p, p) con valenza - 1 sul prodotto $\mathrm{C} \times \mathrm{C}{ }^{(2)}$.

Introduction

The vanishing theory of the function $\Theta_{c} \circ \int_{\mathrm{P}}: \mathrm{C} \rightarrow \mathbf{C}$ with an arbitrarily fixed origin of integration $P \in C$ is replaced successfully with the correspondent vanishing theory of $\Theta_{c} \circ \int: \mathrm{C} \times \mathrm{C} \rightarrow \mathbf{C}$, i. e. $(x, y) \mapsto \theta\left(\cdots, \int_{x}^{y} \omega_{j}, \cdots\right)$ with both x, y, variable in $\mathrm{C}^{(3)} ;\left(\omega_{1}, \omega_{2}, \cdots, \omega_{p}\right.$ is a basis of holomorphic differentials). Algebraic-geometrically speaking this problem is equivalent to the discussion of the intersection of two subvarieties Σ, D_{c} where Σ is the image of $\mathrm{C} \times \mathrm{C}$ by the map $\mathrm{C} \times \mathrm{C} \xrightarrow{\alpha} \mathrm{J}(\mathrm{C})$ in the Jacobian $\mathrm{J}(\mathrm{C})^{(4)}$ of C defined by $\alpha(x, y)=$, $=x-y$ and D_{c} is the principal polar divisor of $\mathrm{J}(\mathrm{C})$ characterized by $\theta(u+c)=0$.

In a second Lincei Note ${ }^{(5)}$ we shall prove that if the intersection $\mathrm{D}_{\boldsymbol{c}} \cdot \Sigma$ exists it is represented (in a suitable way ${ }^{(6)}$) by a correspondence of indices
(*) Nella seduta del 14 dicembre 1974 .
(I) The principal polar divisors of a polarized Abelian veriety A are parametrized by another polarized Abelian variety \tilde{A}, the dual of A. Since the Jacobian has all the elementary divisors equal to one $\tilde{J}(C)$ is isomorphic with $J(C)$ but we need to distinguish both carefully. $\overrightarrow{\mathrm{J}}(\mathrm{C})$ represents the divisors $\theta(u+c)=0$, where $\theta(u)$ is the first order theta and c (defined modulo the lattice of periods L) is variable.
(2) Cfr. Severi, Trattato di Geometria algebrica, Zanichelli, Bologna (1926), Ch. VI, pp. 170-284, for an algebraic treatment of the correspondences with valency. We need also the prior transcendental treatment given by HURWITz, Über algebraische Korrespondenzen und das verallgemeinerte Korrespondenzenprinzip, "Math. Annalen», 3 d., 28 (1887), S. 561-585.
(3) C indicates simultaneously the irreducible, algebraic, non-singular complex curve of genus p and its Riemann surface. Later on we shall assume that C is not hyperelliptic.
(4) As a pure abstract group $\mathrm{J}(\mathrm{C})$ is defined by the exact sequence $o \rightarrow \mathscr{L}_{0}$ (C) \rightarrow $\rightarrow \operatorname{Div}_{0}(\mathrm{C}) \rightarrow \mathrm{J}(\mathrm{C}) \rightarrow \mathrm{o}$ where $\operatorname{Div}_{0}(\mathrm{C})$ is the submodule of divisors of degree zero of the divisor group $\operatorname{Div}(\mathrm{C})$ (additively written in this paper). $\mathscr{L}_{0}(\mathrm{C})$ is the subgroup of principal divisors (f) («zeroes minus poles» of f) attached to a (non identically zero) rational function f over C. Moreover $\mathrm{J}(\mathrm{C})$ has a well known structure as an Abelian variety of dimension p. We say that two divisors F, G of C are linearly equivalent and we write $F \equiv G$ iff $F-G \in \mathscr{L}_{0}(C)$.
(5) F. Gaeta, Geometrical theory of the vanishing of theta functions for complex algebraic curves, «Rend. Acc. Naz. Lincei», 58 (I), 1975.
(6) We prove in (3) that if C is not hyperelliptic Σ is obtained from $\mathrm{C} \times \mathrm{C}$ by collapsing the diagonal Δ to one point o; o is singular for Σ and its infinitesimal neighborhood is an inte-
(p, p) and valency- I ; in the case $\Sigma \subset \mathrm{D}_{c}$ Severi's functional equivalence of Σ in $\Sigma \cdot \mathrm{D}_{c}$ is represented by a linear system of correspondences of the same type ($p, p ;-1$). Conversely any such correspondence on C can be obtained in this way.

These results enable us to reconstruct completely the discussion of the vanishing of the theta. In order to make a clear exposition we decided to study first these correspondences ($p, p ;-\mathrm{I}$) (in the present paper) as a natural model of $\tilde{J}(\mathrm{C})$ (or of $\mathrm{J}(\mathrm{C})$). Cfr. § 3 .

I. Recall on correspondences with valency

A divisor $\mathrm{E}(\Leftrightarrow \mathrm{I}$-cycle) on the surface $\mathrm{C} \times \mathrm{C}$ is the graph of an algebraic correspondence of indices α, β iff $\alpha=\operatorname{deg} \mathrm{E}(x), \beta=\operatorname{deg} \mathrm{E}^{-1}(y)$ whenever $x \mapsto \mathrm{E}(x), y \mapsto \mathrm{E}^{-1}(y)$ are defined by:

$$
\begin{equation*}
\mathrm{E}(x)=p_{2}((x \times \mathrm{C}) \cdot \mathrm{E}) \quad, \quad \mathrm{E}^{-1}(y)=p_{1}((\mathrm{C} \times y) \cdot \mathrm{E}) \tag{I}
\end{equation*}
$$

where p_{1}, p_{2} are the projections $\mathrm{C} \times \mathrm{C} \rightarrow \mathrm{C}$.
E should be distinguished from the inverse correspondence $\mathrm{E}^{-1}=$ the image of E by $\mathrm{S}:(x, y) \mapsto(y, x)$. If E is irreducible the intersection cycles $(x \times \mathrm{C}) \cdot \mathrm{E}$ and $(\mathrm{C} \times y) \cdot \mathrm{E}$ are defined for arbitrary $x, y \in \mathrm{C}$. We shall assume E to be irreducible for the sake of simplicity ${ }^{(7)}$.

Definition i. We say that E has valency $v(\epsilon \mathbf{Z}, v \gtreqless 0)$ iff there exists a linear equivalence class $\mathrm{D}(\mathrm{E})=\mathrm{D}+\mathscr{L}(\mathrm{C})$ in C such that for any $x \in \mathrm{C}$ we have

$$
\begin{equation*}
v x+\mathrm{E}(x) \equiv \mathrm{D} \tag{2}
\end{equation*}
$$

The integer v is uniquely determined by E whenever $p>0$.
DEfinition 2. We say that an irreducible correspondence E on C has a valency iff (2) holds for a suitable v, in other words iff for any pair of points $x, x^{\prime} \in \mathrm{C}$ we have $v x+\mathrm{E}(x) \equiv v x^{\prime}+\mathrm{E}\left(x^{\prime}\right)$.

If E has a valency v, E^{-1} has also a valency and moreover $v(\mathrm{E})=v\left(\mathrm{E}^{-1}\right)$. Hurwitz proved (cfr. loc. cit.) that if C has general moduli any (α, β)-correspondence on C has a valency v. This property implies that ($\mathrm{X}, \mathrm{Y}, \Delta$) with $\mathrm{X}=x \times \mathrm{C}, \mathrm{Y}=\mathrm{C} \times y$ and $\Delta=\{(x, y) \in \mathrm{C} \times \mathrm{C}) \mid x=y\}$ form a minimal basis for the algebraic equivalence $(\equiv)^{(8)}$ on $\mathrm{C} \times \mathrm{C}$. In other words, for any given
resting infinitesimal model of C lying in the tangent vector space $\mathrm{T}_{0}(\mathrm{~J})$ at o . The singularity at o can be removed by "blowing up" with theta functions of any order $d \geq 2$ vanishing at o. For $d \geq 3$ we recover Δ as a curve on a projective model of $\mathrm{C} \times \mathrm{C}$. For $d=2$ we recover Δ as well as the branch curve of the symmetric square $\mathrm{C}^{(2)}$ of C .
(7) We leave the easy task of extending the statements to the general case.
(8) The alsebraic equivalence (indicated by \equiv) was treated by Severi and several other mathematicians in a long series of papers. The last recent global formalization seems to be Chevalley, Anneaux de Chow, Sem. E.N.S., Paris, $\mathrm{A} \equiv \mathrm{B} \Rightarrow \mathrm{A} \equiv \mathrm{A}$ but not conversely ($\mathrm{A}, \mathrm{B} \in$ $\epsilon \operatorname{Div}(\mathrm{C} \times \mathrm{C})$). The distinction of \equiv and \equiv is important because $\mathrm{C} \times \mathrm{C}$ is an irregular surface.
divisor E on $\mathrm{C} \times \mathrm{C}$ there exist integers r, s, t such that:

$$
\begin{equation*}
\mathrm{E} \equiv r \mathrm{X}+s \mathrm{Y}+t \Delta \tag{3}
\end{equation*}
$$

The integers r, s, t are uniquely determined by E ; they are related to v by $r=\beta+v, s=\alpha+v, t=-v$ because of certain well known intersection numbers ${ }^{(9)}$, i.e. we can rewrite (3) as

$$
\begin{equation*}
\mathrm{E} \equiv(\beta+v) \mathrm{X}+(\alpha+v) \mathrm{Y}-v \Delta \tag{4}
\end{equation*}
$$

Severi (loc. cit.) proved the existence of correspondences with any prescribed valency $v(\gtrless 0)$ on any curve of genus $p>0$.

Let us interpret the previous result and find an obvious converse property:

Proposition i. Any correspondence E with valency v satisfies a linear equivalence of type:

$$
\begin{equation*}
\mathrm{E} \equiv p_{1}^{-1}(\mathrm{~B})+p_{2}^{-1}(\mathrm{~A})-v \Delta \tag{5}
\end{equation*}
$$

where B, A, are divisors of C of degree $r=\beta+v, s=\alpha+v$.
Conversely: Let A, B, be any pair of divisors of C. Then (5) defines a linear equivalence class $\mathrm{E}+\mathscr{L}_{0}(\mathrm{C} \times \mathrm{C})$ of corespondences whith valency v.

Definition 3. We say that the linear equivalence class (1.e.c.) $|\mathrm{E}|$ in $C \times C$ is defined by the ordered pair $(|A|,|B|)$ of l.e.c. in C and that $|E|$ determines ($|\mathrm{A}|,|\mathrm{B}|$).

Proposition 2. The coincidence divisor $\mathrm{E} \cdot \Delta$ (intersection cycle of E and $\Delta)$ satisfies the linear equivalence

$$
\begin{equation*}
\mathrm{E} \cdot \Delta \equiv \mathrm{~A}+\mathrm{B}+v \mathrm{~K} \tag{6}
\end{equation*}
$$

where K is a canonical divisor of C . The degree $\operatorname{deg}(\mathrm{E} \cdot \Delta)$ is given by the Cayley-Brill-Hurwitz formula:

$$
\begin{equation*}
\operatorname{deg}\left(p_{1}(E \cdot \Delta)\right)=\operatorname{deg}(E \cdot \Delta)=\alpha+\beta+2 p v \tag{7}
\end{equation*}
$$

giving the " number of fixed points of the correspondence", see loc. cit. in (3).
Remark. We are particularly interested in the correspondences E with $\alpha=\beta$ and "without fixed points" (precisely those with $\operatorname{deg}(\Delta \cdot E)=0$) because the " blown up" intersections of a D_{c} with Σ (cfr. Introduction) have this property. However, this property is not characteristic. We need the stronger requirement of next
${ }^{\prime}(9)[\mathrm{X}, \mathrm{X}]=[\mathrm{Y}, \mathrm{Y}]=\mathrm{o} ;[\mathrm{X}, \Delta]=[\mathrm{Y}, \Delta]=\mathrm{I},[\Delta, \Delta]=2-2 p$.
(ro) We used the well-known property that if a virtual Δ^{\prime} is linearly equivalent to Δ in $\mathrm{C} \times \mathrm{C}$, then $\left[\Delta^{\prime}, \Delta\right]$ is an anticanonical divisor -K , where $|\mathrm{K}|$ is the canonical equivalence class in Δ.

Definition 4. A correspondence E on $\mathrm{C} \times \mathrm{C}$ is said to be of the Jacobian type iff E has both indices equal to p and the two attached l.e.c. $|\mathrm{A}|,|\mathrm{B}|$ of Definition 3 are complementary with respect to the canonical class $|\mathrm{K}|: \mathrm{A}+\mathrm{B} \equiv \mathrm{K}$ in C .

Obvious consequences of Definition 4 are the following two propositions:
Proposition 3. A correspondence E of the Jacobian type on $\mathrm{C} \times \mathrm{C}$ has the following properties:
I) E satisfies the algebraic equivalence (see footnote ${ }^{(8)}$):

$$
\begin{equation*}
\mathrm{E} \equiv(p-\mathrm{I}) \mathrm{X}+(p-\mathrm{I}) \mathrm{Y}+\Delta \tag{8}
\end{equation*}
$$

2) The intersection divisor $\mathrm{E} \cdot \Delta$ is linearly equivalent to zero in Δ;
3) The "number of fixed points" of E is equal to zero;
4) The valency of E is equal to - I (cfr. (7)).

Proposition 4. There exists a (1-1)-mapping j between the set $\mathscr{L}_{p-1}(\mathrm{C})$ of l.e.c. of divisors of degree $p-\mathrm{I}$ in C and the set $\overline{\mathrm{J}}(\mathrm{C})$ of l.e.c. of ($p, p ;-\mathrm{I}$) - correspondences of the Jacobian type (cfr. Definition. 5); j is defined by:

$$
\begin{equation*}
\left|\mathrm{L}_{p-1}\right| \longleftrightarrow\left|p_{2}^{-1}\left(\mathrm{~L}_{p-1}\right)+p_{1}^{-1}\left(\mathrm{~K}-\mathrm{L}_{p-1}\right)+\Delta\right| \tag{9}
\end{equation*}
$$

where $\left|\mathrm{L}_{p-1}\right| \in \mathscr{L}_{p-1}(\mathrm{C})$ and $\left|p_{2}^{-1}\left(\mathrm{~L}_{p-1}\right)+p_{1}^{-1}\left(\mathrm{~K}-\mathrm{L}_{p-1}\right)+\Delta\right|$ lies in $\mathrm{C} \times \mathrm{C}$.
Definition 5. A 1.e.c. $|\mathrm{E}|$ of correspondences of the Jacobian type (an $\mid L_{p-1} \in \mathscr{L}_{p-1}$) define $\left|L_{p-1}\right|$ (resp. $|\mathrm{E}|$) iff they correspond to each other as described in Proposition 4.

Corollary. If $|\mathrm{E}| \in \tilde{\mathrm{J}}(\mathrm{C})$ and it is attached to L_{p-1}, then the inverse $\mathrm{S}(\mathrm{E})$ is also of the Jacobian type and attached to $\left|\mathrm{K}-\mathrm{L}_{p-1}\right|$. In particular:

A symmetric correspondence E of the Jacobian type is attached to a halfcanonical $\left|\mathrm{H}_{p-1}\right|$ (i.e. $2 \mathrm{H}_{p-1} \equiv \mathrm{~K}$); conversely any half-canonical l.e.c. H_{p-1} defines a symmetric correspondence of the Jacobian type.

2. Models $\mathrm{J}_{n}(\mathrm{C})(n \gtrless \mathrm{o})$ of the Jacobian

Let $\mathrm{D}_{n}(\mathrm{C})$ be the coset of $\operatorname{Div}(\mathrm{C}) \bmod \operatorname{Div}_{0}(\mathrm{C})$ consisting of all the divisors of degree $n: \mathrm{D}_{n}(\mathrm{C})=\{\mathrm{G} \in \operatorname{Div}(\mathrm{C}), \operatorname{deg}(\mathrm{G})=n\}$.

The quotient set $\mathrm{D}_{n}(\mathrm{C}) \mid \mathscr{L}_{0}(\mathrm{C})=\mathrm{J}_{n}(\mathrm{C})$ is equipotent with $\mathrm{J}_{0}(\mathrm{C})=\mathrm{D}_{0}(\mathrm{C}) / \mathscr{L}_{0}(\mathrm{C})$, as we can see using the bijection $\mathrm{J}_{n} \longleftrightarrow \mathrm{~J}_{0}$ defined by $\mathrm{G} \longleftrightarrow \mathrm{G}-\mathrm{O}_{n}\left(\mathrm{O}_{n}\right.$ arbitrarily fixed origin in $\mathrm{D}_{n}(\mathrm{C})$).

DEFINITION. 6. We call $\mathrm{J}_{n}(\mathrm{C})$ the $n^{\text {th }}$-model of the abstract Jacobian.
The choice of n is a matter of mathematical taste depending on the kind of structure that we want to endow $\mathrm{J}(\mathrm{C})$ with. For instance $\mathrm{J}_{0}(\mathrm{C})$ shows the abelian group structure of $J(C)$ very well.
39. - RENDICONTI 1974, Vol. LVII, fasc. 6.

The classical model $\mathrm{J}_{p}(\mathrm{C})$ is good because any l.e.c. $\mathrm{G}_{p}+\mathscr{L}_{0}(\mathrm{C})$ of degree p contains at least one effective divisor E_{p}. Moreover this effective E_{p} is " almost always" unique; precisely E_{p} is unique iff the specialty index of $\mathrm{G}_{p}+\mathscr{L}_{0}(\mathrm{C})$ is equal to zero. Thus we can identify $\mathrm{J}_{p}(\mathrm{C})$ with the quotient set $\mathrm{C}^{(p)} / \equiv$ where $\mathrm{C}^{(f)}$ is the set of all effective p-divisors \Leftrightarrow the p-fold symmetric power $\mathrm{C}^{(p)}$ of C).

It is well-known and easy to show that $\mathrm{C}^{(f)}$ is a projective algebraic variety, and from this fact we can deduce that $\mathrm{C}^{(p)} / \equiv$ is also a projective algebraic variety, which can be built with theta functions of any fixed degree $d \geq 3$.

We are going to show in § 3 that the model $\mathrm{J}_{p-1}(\mathrm{C})$ deserves a particular attention also in spite of the fact that a non special class $\mathrm{G}_{p-1}+\mathscr{L}_{0}(\mathrm{C})$ contains no effective divisors at all (Riemann-Roch Theorem). We are going to see that we can attach bijectively to any point of $\mathrm{J}_{p-1}(\mathrm{C})$ a linear equivalence class of correspondences ($p, p ;-1$) of the Jacobian type (cfr. Definition 4) which contains "almost always" a unique effective correspondence.

3. The model $\mathrm{J}_{p-1}(\mathrm{C})$ of the Jacobian

Proposition 4 shows how we can establish a bijection (9) which gives an alternative definition of $\mathrm{J}_{p-1}(\mathrm{C})$; But in Proposition 4 we obtain a linear equivalence class of correspondences rather that a unique one. We can sharpen this result by proving next Theorem.

Theorem i. Any non special l.e.c. $\left|\mathrm{L}_{p-1}\right| \in \mathrm{J}_{p-1}(\mathrm{C})$ defines a unique correspondence E of the Jacobian type (cfr. Definition 5) of indices p, p and valency - I . The graph of E does not meet the diagonal Δ.

The proof consist in an explicit construction of $x \mapsto \mathrm{E}(x)$ but before proving the Theorem let us state and prove the following lemmas:

Lemma i. $\mathrm{A}(p-1)$ - l.e.c. $\left|\mathrm{L}_{p-1}\right|$ is non special iff $\left|\mathrm{L}_{p-1}\right|$ does not contain any effective divisor (11).

In fact if $\mathrm{E}_{p-1}>0$ belongs to $\left|\mathrm{L}_{p-1}\right|, i\left(\mathrm{E}_{p-1}\right) \geq \mathrm{I}$ and $i\left(\mathrm{E}_{p-1}\right) \geq \mathrm{I}$ implies $\operatorname{dim}\left|\mathrm{L}_{p-1}\right|=-\mathrm{I}+i \geq \mathrm{o}$ (R-R Theorem again).

Lemma 2. Let x be any point of C . Let $\left|\mathrm{L}_{p-1}\right|$ be any non special l.e.c. of degree $p-\mathrm{I}$. Then the l.e.c. $\left|x+\mathrm{L}_{p-1}\right|$ of degree p contains a unique effective divisor which does not contain x.

In fact $\left|x+\mathrm{L}_{p-1}\right|$ contains at last one effective divisor. If there are two $\left|x+\mathrm{L}_{p-1}\right|$ defines an special $g_{p}^{i}(i>0)$ and there is al least one $\widetilde{\mathrm{G}}_{p}$ of the g_{p}^{i} containing x, thus $\overline{\mathrm{G}}_{p}-x$ is effective against Lemma I .
(II) We recall that a divisor $\mathrm{D}=\sum_{\mathrm{I} \in \mathscr{\mathscr { F }}} n_{\mathrm{I}} \mathrm{I}$ on an algebraic variety V is an element of the free module over \mathbf{Z} generated by the of irreducible subvarieties of V of codimension one. D is called positive \Leftrightarrow effective iff $\mathrm{D} \neq \mathrm{o}$ and $n_{\mathrm{I}} \geq 0$ for every $\mathrm{I} \in \mathscr{I}$. Of course $\mathrm{A}>\mathrm{B}$ is equivalent to $\mathrm{A}-\mathrm{B}>\mathrm{o}$. To recall that a divisor D is not necessarily effective we say that it is virtual.

Proof of the Theorem. Let E be the correspondence $x \mapsto \mathrm{E}(x)$, where $\mathrm{E}(x)$ is the unique $\mathrm{G}_{p} \equiv x+\mathrm{L}_{p-1}$ constructed before. $\mathrm{E}(x)$ is well-defined for any x and $\mathrm{E}(x)-x$ cannot be effective \Leftrightarrow the graph of $\mathrm{E}(x)$ does not meet the diagonal.

In order to prove that E has type $(p, p ;-1)$ it is convenient to rephrase the definition of E as follows:

The pair $(x, y) \in \mathrm{C} \times \mathrm{C}$ belongs to E iff there exists an effective $\mathrm{E}_{p-1} \in \operatorname{Div}_{p-1}(\mathrm{C})$ such that

$$
\begin{equation*}
y+\mathrm{E}_{p-1}-x \equiv \mathrm{~L}_{p-1} \tag{io}
\end{equation*}
$$

If K is a canonical divisor we have:

$$
\begin{equation*}
x+\left(\mathrm{K}-\mathrm{E}_{p-1}\right)-y \equiv \mathrm{~K}-\mathrm{L}_{p-1} \tag{II}
\end{equation*}
$$

where $\mathrm{K}-\mathrm{E}_{p-1}$ contains also an effective $\mathrm{E}_{p-1}^{\prime}$. Thus E has indices (p, p) and $\mathrm{L}_{p-1}+\left(\mathrm{K}-\mathrm{L}_{p-1}\right) \equiv \mathrm{K}$ is trivially true thus E has the Jacobian Type. This completes the proof.
We know already from § I) that the converse is true:
Let E be a ($p, p ;-1$) correspondence of the Jacobian type attached to $\left(\mathrm{L}_{p-1}, \mathrm{~K}-\mathrm{L}_{p-1}\right)$ (cfr. Definition 4) such that graph $\mathrm{E} \cap \Delta=\varnothing$. Then $\left|\mathrm{L}_{p-1}\right|$ has specialty index $=0$.

Otherwise we could construct a degenerate model $\mathrm{L}_{p-1}+\tilde{\mathrm{L}}_{p-1}+\Delta$ with both $\mathrm{L}_{p-1}, \stackrel{\mathrm{~L}}{p-1}\left(\equiv \mathrm{~K}-\mathrm{L}_{p-1}\right)$ effective against the hypothesis graph $\mathrm{E} \cap \Delta=\varnothing$.

Discussion of the case $s\left(\mathrm{~L}_{p-1}\right)>0$. In the previous case $s\left(\mathrm{~L}_{p-1}\right)=0$ to equivalent to " $\left|\mathrm{L}_{p-1}\right|$ does not contain any $\mathrm{L}_{p-1}>0$)" there exist a unique effective correspondence E linearly equivalent to $p_{2}^{-1}\left(\mathrm{~L}_{p-1}\right)+p_{1}^{-1}\left(\mathrm{~K}-\mathrm{L}_{p-1}\right)+\Delta$ and it is not difficult to prove that E is irreducible. For any $s>0, s-\mathrm{I}=$ $=\operatorname{dim}\left|\mathrm{K}-\mathrm{L}_{p-1}\right|=\operatorname{dim}\left|\mathrm{L}_{p-1}\right|$. In particular for $s=\mathrm{I}$ there exists a unique effective $\mathrm{E}_{p-1} \equiv \mathrm{~L}_{\dot{p-1}}$; then the previous construction still defines the unique effective correspondence $\Delta+p_{2}^{-1}\left(\mathrm{E}_{p-1}\right)+p_{1}^{-1}\left(\widetilde{\mathrm{E}}_{p-1}\right)$ where $\tilde{\mathrm{E}}_{p-1}>0$ is uniquely determined as the rest of E_{p-1} with respect to the unique canonical divisor $\mathrm{K}>\mathrm{E}_{p-1}$

$$
\begin{equation*}
\mathrm{K}=\mathrm{E}_{p-1}+\tilde{\mathrm{E}}_{p-1} \tag{I2}
\end{equation*}
$$

For $s>\mathrm{I}\left|\mathrm{L}_{p-1}\right|$ is an infinite dimensional g_{p-1}^{s-1}, then there is not a unique effective E but we can select a natural representative, as follows: for a generic $Q \in C$ there exist a unique $\mathrm{E}_{p-1-s}>0$ such that $s Q+\mathrm{E}_{p-1-s} \equiv \mathrm{~L}_{p-1}$ then the E_{p-s} describe a well-defined effective correspondence $\stackrel{p}{\mathrm{E}}$ such that

$$
\begin{equation*}
\tilde{\mathrm{E}}+(s-\mathrm{I}) \Delta \equiv p_{1}^{-1}\left(\mathrm{~L}_{p-1}\right)+p_{2}^{-1}\left(\mathrm{~K}-\mathrm{L}_{p-1}\right)+\Delta(12) \tag{I3}
\end{equation*}
$$

The justification of the name dual Jacobians given to the set $\mathrm{J}_{p-1}(\mathrm{C})$ of linear equivalence classes $\mathrm{L}_{p-1}+\mathscr{L}_{0}(\mathrm{C})$ of degree p-I appears in the second note (loc. cit. in (5)) because of the map (9).

These correspondences parametrize naturally the intersection of Σ with the first order theta-divisors $\mathrm{D}_{c}: \theta(c+u)=0$ and c / L describes the torus $\mathbf{C}^{p} / \mathrm{L} \approx \mathrm{J}(\mathrm{C})$.

