Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

David Lowell Lovelady
 A sufficient condition for an exponential dichotomy

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 57 (1974), n.6, p. 525-529.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1974_8_57_6_525_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Equazioni differenziali ordinarie. - A sufficient condition for an exponential dichotomy. Nota di David Lowell Lovelady, presentata (*) dal Socio G. Sansone.

RIaSSUnTo. - L'Autore dà condizioni sufficienti su $\mathrm{A}(t)$ perché l'equazione $u^{\prime}(t)=$ $=f(t)+\mathrm{A}(t) u(t)$ abbia soluzioni limitate.

I. InTRODUCTION AND RESULTS

Let Y be a finitedimensional linear space with norm | |, and let $\mathrm{R}^{+}=[0, \infty)$. Let A be the algebra of linear functions from Y to Y , with induced norm \|\|, let I be the identity in A, and let A be a locally integrable function from R^{+}to A, We propose to study the differential equations

$$
\begin{equation*}
v^{\prime}(t)=\mathrm{A}(t) v(t) \tag{I}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{\prime}(t)=f(t)+\mathrm{A}(t) u(t) \tag{2}
\end{equation*}
$$

on R^{+}, where f is always at least locally integrable.
Let Φ be the fundamental solution of (i), i.e., Φ is that locally absolutely continuous function from R^{+}to A such that

$$
\Phi(t)=\mathrm{I}+\int_{0}^{t} \mathrm{~A}(s) \Phi(s) \mathrm{d} s
$$

whenever t is in R^{+}, and recall that each value of Φ is invertible. Let M_{1} be the subspace of Y to which x belongs if and only if the function from R^{+}to Y described by $t \rightarrow \Phi(t) x$ is bounded. Let M_{2} be a subspace of Y such that $\mathrm{Y}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$, and let P_{1} and P_{2} be supplementary projections in A with ranges M_{1} and M_{2} respectively. Finally, let L from $\mathrm{R}^{+} \times \mathrm{R}^{+}$to A be given by $\mathrm{L}(t, s)=\Phi(t) \mathrm{P}_{1} \Phi(s)^{-1}$ if $\mathrm{o} \leq s \leq t$ and $\mathrm{L}(t, s)=-\Phi(t) \mathrm{P}_{2} \Phi(s)^{-1}$ if $s>t$.

We shall say that A admits an exponential dichotomy if and only if there are positive numbers J and α such that $\|\mathrm{L}(t, s)\| \leq \mathrm{J} e^{-\alpha|t-s|}$ whenever (t, s) is in $\mathrm{R}^{+} \times \mathrm{R}^{+}$. In [I$], \mathrm{T} . \mathrm{F}$. Bridgland, Jr. has shown that if there are positive numbers K and M such that

$$
\begin{equation*}
\|\mathrm{L}(t, s)\| \leq \mathrm{K} \tag{3}
\end{equation*}
$$

whenever (t, s) is in $\mathrm{R}^{+} \times \mathrm{R}^{+}$and

$$
\begin{equation*}
\int_{0}^{\infty}\|\mathrm{L}(t, s)\| \mathrm{d} s \leq \mathrm{M} \tag{4}
\end{equation*}
$$

whenever t is in R^{+}, then A admits an exponential dichotomy. W. A. Coppel [3, Theorem 3, p. 134] has shown that (4) and the boundedness of A yield the same conclusion. The main effort of the present work is to extend Bridgland's result to the following theorem.

Theorem. Suppose that if c is a positive number then there is a positive number K_{c} such that $\|\mathrm{L}(t, s)\| \leq \mathrm{K}_{c}$ whenever (t, s) is in $\mathrm{R}^{+} \times \mathrm{R}^{+}$and $|t-s| \leq c$. Suppose also that there exists a number q of $[\mathrm{I}, \infty)$ such that

$$
\sup _{t \geq 0} \int_{0}^{t}\|\mathrm{~L}(t, s)\|^{q} \mathrm{~d} s<\infty .
$$

Then A admits an exponential dichotomy.
Bridgland's hypotheses are known [3, p. i3I] to be equivalent to requiring that if f is in either $\mathrm{L}^{1}\left[\mathrm{R}^{+}, \mathrm{Y}\right]$ or $\mathrm{L}^{\infty}\left[\mathrm{R}^{+}, \mathrm{Y}\right]$ then (2) has bounded solution. Our present hypotheses have similar interpretations. If $q=\mathrm{I}$, our second hypothesis is the same as Bridgland's. If $q>\mathrm{I}$, and $p=q /(q-\mathrm{I})$, then R. Conti [2] has shown that our second condition is equivalent to requiring that if f is in $L^{p}\left[\left(\mathrm{R}^{+}, \mathrm{Y}\right]\right.$ then (2) has a bounded solution. Techniques similar to those of Bridgland, Conti, and Coppel can be used to show that our first condition is equivalent to the following: If c is a positive number and F is a bounded subset of $L^{1}\left[\mathrm{R}^{+}, \mathrm{Y}\right]$, each member of which has its support in an interval of length c, then there is a bounded subset G of $L^{\infty}\left[\mathrm{R}^{+}, \mathrm{Y}\right]$ such that if f is in F there is a solution u of (2) in G.

II. Proofs

First we shall show that it suffices to consider the case $q=\mathrm{I}$, and then we shall prove the theorem in this case.

Let ω be a positive number such that $\|\mathrm{L}(t, s)\| \leq \omega$ whenever (t, s) is in $\mathrm{R}^{+} \times \mathrm{R}^{+}$and $|t-s| \leq \mathrm{I}$. Suppose $q>\mathrm{I}$, and let Γ be a positive number such that

$$
\int_{0}^{t}\|\mathrm{~L}(t, s)\|^{q} \mathrm{~d} s \leq \Gamma^{q}
$$

whenever t is in R^{+}. Let $\gamma=\mathrm{r} / \Gamma$, and let $p=q /(q-\mathrm{I})$.
We now claim that if (t, s) is in $\mathrm{R}^{+} \times \mathrm{R}^{+}$and $t-s \geq \mathrm{I}$ then

$$
\begin{equation*}
\|\mathrm{L}(t, s)\| \leq \omega \Gamma(t-s)^{1 / p} \exp \left[\gamma q-\gamma q(t-s)^{1 / q}\right] \tag{5}
\end{equation*}
$$

If $\mathrm{P}_{1}=\mathrm{o}$ this is obvious, so assume $\mathrm{P}_{1} \neq \mathrm{o}$. Let s be in R^{+}, and let φ be given on $[s, \infty)$ by $\varphi(t)=|\mathrm{L}(t, s)|^{-1}$. Now, if t is in $[s, \infty)$,

$$
\begin{aligned}
\varphi(t)^{-1} \int_{s}^{t} \varphi(r) \mathrm{d} r & =\left\|\left(\int_{s}^{t} \varphi(r) \mathrm{d} r\right) \mathrm{L}(t, s)\right\| \\
& \leq \int_{s}^{t} \varphi(r)\|\mathrm{L}(t, r) \mathrm{L}(r \cdot s)\| \mathrm{d} r \\
& \leq \int_{s}^{t}\|\mathrm{~L}(t, r)\| \mathrm{d} r \\
& \leq\left(\int_{s}^{t}\|\mathrm{~L}(t, r)\|^{q} \mathrm{~d} s\right)^{1 / q}(t-s)^{1 / p} \\
& \leq \Gamma(t-s)^{1 / p}
\end{aligned}
$$

For convenience, put $\sigma=s+\mathrm{I}$. Now, if $t \geq \sigma$,

$$
\begin{aligned}
\Gamma(t-s)^{1 / p} \varphi(t) & \geq \int_{s}^{t} \varphi(r) \mathrm{d} r \\
& =\int_{s}^{\mathrm{o}} \varphi(r) \mathrm{d} r+\int_{\sigma}^{t} \varphi(r) \mathrm{d} r \\
& \geq \mathrm{I} / \omega+\int_{\sigma}^{t} \varphi(r) \mathrm{d} r
\end{aligned}
$$

so

$$
\varphi(t) \geq(\gamma / \omega)(t-s)^{-1 / \phi}+\gamma(t-s)^{-1 / p} \int_{\sigma}^{t} \varphi(r) \mathrm{d} r
$$

Thus, if $t \geq \sigma, \varphi(t) \geq \psi(t)$, where ψ solves

$$
\psi(t)=(\gamma / \omega)(t-s)^{-1 / \phi}+\gamma(t-s)^{-1 / \phi} \int_{\sigma}^{t} \psi(r) \mathrm{d} r
$$

on $[\sigma, \infty)$. Bur ψ is given by

$$
\psi(t)=(\gamma / \omega)(t-s)^{-1 / p} \exp \left[-\gamma q+\gamma q(t-s)^{-1 / q}\right]
$$

so

$$
\|\mathrm{L}(t, s)\|=\varphi(t)^{-1} \leq \psi(t)^{-1}
$$

yields (5), and our claim is verified.

Next we claim that if $s-t \geq 1$ then

$$
\begin{equation*}
\|\mathrm{L}(t, s)\| \leq \psi \Gamma(s-t)^{1 / p} \exp \left[\left(\gamma q-\gamma q(s-t)^{1 / q}\right] .\right. \tag{6}
\end{equation*}
$$

If $\mathrm{P}_{2}=\mathrm{o}$, this is obvious, so assume $\mathrm{P}_{2} \neq \mathrm{o}$. Let s be in R^{+}, and let φ be given on $[0, s]$ by $\varphi(t)=\|\mathrm{L}(t, s)\|^{-1}$. As before,

$$
\varphi(t)^{-1} \int_{t}^{\sigma} \varphi(r) \mathrm{d} r \leq \Gamma(s-t)^{1 / p}
$$

if t is in $[0, s]$, so if $\sigma=s-\mathrm{I}$,

$$
\varphi(t) \geq(\gamma / \omega)(s-t)^{-1 / p}+\gamma(s-t)^{-1 / p} \int_{t}^{\sigma} \varphi(r) \mathrm{d} r
$$

whenever t is in $[\mathrm{o}, \sigma)$. This last integral inequality is somewhat unorthodox, so we shall give more detail to solving it. Let β be given on $[\mathrm{o}, \sigma]$ by

$$
\beta(t)=\int_{i}^{\sigma} \varphi(r) \mathrm{d} r
$$

Now $\beta(\sigma)=0$, and if t is in $[0, \sigma)$,

$$
\begin{aligned}
& -\beta^{\prime}(t) \geq(\gamma / \omega)(s-t)^{-1 / \phi}+\gamma(s-t)^{-1 / p} \beta(t) \\
& \beta^{\prime}(t) \leq-(\gamma / \omega)(s-t)^{-1 / \phi}-\gamma(s-t)^{-1 / p} \beta(t) \\
& \beta^{\prime}(t)+\gamma(s-t)^{-1 / \phi} \beta(t) \leq-(\gamma / \omega)(s-t)^{-1 / p}, \\
& \left(\beta(t) \exp \left[-\gamma q(s-t)^{1 / q}\right]\right)^{\prime} \leq-(\gamma / \omega)(s-t)^{-1 / p} \exp \left(-\gamma q(s-t)^{1 / q}\right] .
\end{aligned}
$$

Integrating this last inequality yields

$$
\begin{aligned}
-\beta(t) \exp \left[-\gamma q(s-t)^{1 / q}\right] & \leq-(\gamma / \omega) \int_{i}^{\sigma}(s-r)^{-1 / \phi} \exp \left(\gamma q(s-r)^{1 / q}\right] \mathrm{d} r \\
& =-(\mathrm{I} / \omega) e^{-\gamma q}+(\mathrm{I} / \omega) \exp \left[-\gamma q(s-t)^{1 / q}\right]
\end{aligned}
$$

$$
\beta(t) \geq(\mathrm{I} / \omega) \exp \left(\gamma q+\gamma q(s-t)^{1 / q}\right]-(\mathrm{I} / \omega) .
$$

Thus, if t is in $[0, \sigma)$,

$$
\begin{aligned}
\varphi(t) & \geq(\gamma / \omega)(s-t)^{-1 / p}+\gamma(s-t)^{-1 / p} \beta(t) \\
& \geq(\gamma / \omega)(s-t)^{-1 / p} \exp \left[-\gamma q+\gamma q(s-t)^{1 / q}\right]
\end{aligned}
$$

(6) follows, and our second claim is verified.

Suppose that $t \geq$ I. From (5) we have

$$
\begin{aligned}
\int_{0}^{t-1}\|\mathrm{~L}(t, s)\| \mathrm{d} s & \leq \omega \Gamma e^{\gamma q} \int_{0}^{t-1}(t-s)^{1 / p} \exp \left[-\gamma q(t-s)^{1 / q}\right] \mathrm{d} s \\
& =\left(\omega \Gamma^{2} / q\right) e^{\gamma q}\left(e^{-\gamma q}-\exp \left(-\gamma q t^{1 / q}\right)\right) \\
& \leq \omega \Gamma^{2} / q
\end{aligned}
$$

Similarly, from (6), if t is in R^{+}then

$$
\int_{t+1}^{\infty}\|\mathrm{L}(t, s)\| \mathrm{d} s \leq \omega \Gamma^{2} / q
$$

It is now clear that if t is in R^{+}, then

$$
\int_{0}^{\infty}\|\mathrm{L}(t, s)\| \mathrm{d} s \leq 2 \omega+2 \omega \Gamma^{2} / \mathrm{q}
$$

and it suffices to consider our theorem in the case $q=\mathrm{I}$.
Let M be a positive number such that (4) is true whenever t is in R^{+}, and let $m=\mathrm{I} / \mathrm{M}$. Now differential inequality methods virtually identical to those used in establishing (5) and (6) can be used to show that

$$
\|\mathrm{L}(t, s)\| \leq \omega \mathrm{M} e^{m} e^{-m|t-s|}
$$

whenever (t, s) is in $\mathrm{R}^{+} \times \mathrm{R}^{+}$and $|t-s| \geq \mathrm{I}$. Since $e^{m} e^{-m|t-s|} \geq \mathrm{I}$ if $|t-s| \leq \mathrm{I}$, it follows that if $\mathrm{J}=\max \{\omega \mathrm{M}, \mathrm{I}\}$ and $\alpha=m$, we have our exponential dichotomy. This completes the proof.

References

[I] T. F. Bridgland Jr. (1965) - On the boundedness and uniform boundedness of solutions nonhomogeneous systems, "J. Math. Anal. Appl.», 12, 471-487.
[2] R. Conti (1966) - On the boundedness of solutions of ordinary differential equations, «Funkcialaj Ekvacioj», 9, 23-26.
[3] W. A. Coppel (1965) - Stability and asymptotic behavior of differential equations, D. C. Heath and Co., Boston.

