A sufficient condition for an exponential dichotomy

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1974_8_57_6_525_0>

RIASSUNTO. — L'Autore dà condizioni sufficienti su A(t) perché l'equazione u'(t) = f(t) + A(t) u(t) abbia soluzioni limitate.

I. INTRODUCTION AND RESULTS

Let Y be a finitedimensional linear space with norm ||, and let $\mathbb{R}^+ = [0, \infty)$. Let A be the algebra of linear functions from Y to Y, with induced norm || ||, let I be the identity in A, and let A be a locally integrable function from \mathbb{R}^+ to A. We propose to study the differential equations

(1) $v'(t) = A(t) v(t)$

and

(2) $u'(t) = f(t) + A(t) u(t)$

on \mathbb{R}^+, where f is always at least locally integrable.

Let Φ be the fundamental solution of (1), i.e., Φ is that locally absolutely continuous function from \mathbb{R}^+ to A such that

$$\Phi(t) = I + \int_0^t A(s) \Phi(s) \, ds$$

whenever t is in \mathbb{R}^+, and recall that each value of Φ is invertible. Let M_1 be the subspace of Y to which x belongs if and only if the function from \mathbb{R}^+ to Y described by $t \mapsto \Phi(t) x$ is bounded. Let M_2 be a subspace of Y such that $Y = M_1 \oplus M_2$, and let P_1 and P_2 be supplementary projections in A with ranges M_1 and M_2 respectively. Finally, let L from $\mathbb{R}^+ \times \mathbb{R}^+$ to A be given by

$L(t, s) = \Phi(t) P_1 \Phi(s)^{-1}$ if $0 \leq s \leq t$ and $L(t, s) = -\Phi(t) P_2 \Phi(s)^{-1}$ if $s > t$.

We shall say that A admits an exponential dichotomy if and only if there are positive numbers J and α such that $\|L(t, s)\| \leq J e^{-\alpha|t-s|}$ whenever (t, s) is in $\mathbb{R}^+ \times \mathbb{R}^+$. In [1], T. F. Bridgland, Jr. has shown that if there are positive numbers K and M such that

(3) $\|L(t, s)\| \leq K$

whenever \((t, s)\) is in \(R^+ \times R^+\) and
\[
\int_0^\infty \| L(t, s) \| \, ds \leq M
\]
whenever \(t\) is in \(R^+\), then \(A\) admits an exponential dichotomy. W. A. Coppel [3, Theorem 3, p. 134] has shown that (4) and the boundedness of \(A\) yield the same conclusion. The main effort of the present work is to extend Bridgland’s result to the following theorem.

THEOREM. Suppose that if \(c\) is a positive number then there is a positive number \(K_c\) such that \(\| L(t, s) \| \leq K_c\) whenever \((t, s)\) is in \(R^+ \times R^+\) and \(| t - s | \leq c\). Suppose also that there exists a number \(q\) of \([1, \infty)\) such that
\[
\sup_{t \geq 0} \int_0^t \| L(t, s) \|^q \, ds < \infty.
\]
Then \(A\) admits an exponential dichotomy.

Bridgland’s hypotheses are known [3, p. 131] to be equivalent to requiring that if \(f\) is in either \(L^1[R^+, Y]\) or \(L^\infty[R^+, Y]\) then (2) has bounded solution. Our present hypotheses have similar interpretations. If \(q = 1\), our second hypothesis is the same as Bridgland’s. If \(q > 1\), and \(p = q/(q - 1)\), then R. Conti [2] has shown that our second condition is equivalent to requiring that if \(f\) is in \(L^p[(R^+, Y]\) then (2) has a bounded solution. Techniques similar to those of Bridgland, Conti, and Coppel can be used to show that our first condition is equivalent to the following: If \(c\) is a positive number and \(F\) is a bounded subset of \(L^1[R^+, Y]\), each member of which has its support in an interval of length \(c\), then there is a bounded subset \(G\) of \(L^\infty[R^+, Y]\) such that if \(f\) is in \(F\) there is a solution \(u\) of (2) in \(G\).

II. PROOFS

First we shall show that it suffices to consider the case \(q = 1\), and then we shall prove the theorem in this case.

Let \(\omega\) be a positive number such that \(\| L(t, s) \| \leq \omega\) whenever \((t, s)\) is in \(R^+ \times R^+\) and \(| t - s | \leq 1\). Suppose \(q > 1\), and let \(\Gamma\) be a positive number such that
\[
\int_0^t \| L(t, s) \|^q \, ds \leq \Gamma^q
\]
whenever \(t\) is in \(R^+\). Let \(\gamma = 1/\Gamma\), and let \(\phi = q/(q - 1)\).

We now claim that if \((t, s)\) is in \(R^+ \times R^+\) and \(t - s \geq 1\) then
\[
\| L(t, s) \| \leq \omega \Gamma(t - s)^{1/\phi} \exp [\gamma q - \gamma q(t - s)^{1/\phi}].
\]
If \(P_1 = 0 \) this is obvious, so assume \(P_1 = 0 \). Let \(s \) be in \(R^+ \), and let \(\varphi \) be given on \([s, \infty) \) by \(\varphi(t) = |L(t, s)|^{-1} \). Now, if \(t \) is in \([s, \infty) \),

\[
\varphi(t)^{-1} \int_s^t \varphi(r) \, dr = \left(\int_s^t \varphi(r) \, dr \right) L(t, s) \leq \int_s^t \varphi(r) \cdot L(t, r) \cdot L(r, s) \, dr \\
\leq \int_s^t \|L(t, r)\| \, dr \\
\leq \left(\int_s^t \|L(t, r)\|^p \, dr \right)^{1/p} (t - s)^{1/p} \\
\leq \Gamma(t - s)^{1/p}.
\]

For convenience, put \(\sigma = s + 1 \). Now, if \(t \geq \sigma \),

\[
\Gamma(t - s)^{1/p} \varphi(t) \geq \int_s^t \varphi(r) \, dr \\
= \int_s^\sigma \varphi(r) \, dr + \int_\sigma^t \varphi(r) \, dr \\
\geq 1/\omega + \int_\sigma^t \varphi(r) \, dr,
\]

so

\[
\varphi(t) \geq (\gamma/\omega)(t - s)^{-1/p} + \gamma(t - s)^{-1/p} \int_\sigma^t \varphi(r) \, dr.
\]

Thus, if \(t \geq \sigma \), \(\varphi(t) \geq \psi(t) \), where \(\psi \) solves

\[
\psi(t) = (\gamma/\omega)(t - s)^{-1/p} + \gamma(t - s)^{-1/p} \int_\sigma^t \psi(r) \, dr
\]
on \([\sigma, \infty) \). But \(\psi \) is given by

\[
\psi(t) = (\gamma/\omega)(t - s)^{-1/p} \exp \left[-\gamma q + \gamma q (t - s)^{-1/q} \right],
\]

so

\[
\|L(t, s)\| = \varphi(t)^{-1} \leq \psi(t)^{-1}
\]
yields (5), and our claim is verified.
Next we claim that if $s - t \geq 1$ then

$$\| L(t, s) \| \leq \psi \Gamma(s - t)^{1/p} \exp \left[\gamma q \gamma q (s - t)^{1/q} \right]. \tag{6}$$

If $P_2 = 0$, this is obvious, so assume $P_2 \neq 0$. Let s be in \mathbb{R}^+, and let φ be given on $[0, s]$ by $\varphi(t) = \| L(t, s) \|^{-1}$. As before,

$$\varphi(t)^{-1} \int_t^s \varphi(r) \, dr \leq \Gamma(s - t)^{1/p}$$

if t is in $[0, s]$, so if $\sigma = s - 1$,

$$\varphi(t) \geq \left(\frac{\gamma}{\omega} \right) (s - t)^{-1/p} + \gamma (s - t)^{-1/p} \int_t^s \varphi(r) \, dr$$

whenever t is in $[0, \sigma)$. This last integral inequality is somewhat unorthodox, so we shall give more detail to solving it. Let β be given on $[0, \sigma]$ by

$$\beta(t) = \int_t^\sigma \varphi(r) \, dr.$$

Now $\beta(\sigma) = 0$, and if t is in $[0, \sigma)$,

$$- \beta'(t) \geq - (\gamma/\omega) (s - t)^{-1/p} + \gamma (s - t)^{-1/p} \beta(t),$$

$$\beta'(t) \leq - (\gamma/\omega) (s - t)^{-1/p} - \gamma (s - t)^{-1/p} \beta(t),$$

$$\beta'(t) + \gamma (s - t)^{-1/p} \beta(t) \leq - (\gamma/\omega) (s - t)^{-1/p},$$

$$(\beta(t) \exp \left[- \gamma q (s - t)^{1/q} \right]' \leq - (\gamma/\omega) (s - t)^{-1/p} \exp (- \gamma q (s - t)^{1/q}).$$

Integrating this last inequality yields

$$- \beta'(t) \exp \left[- \gamma q (s - t)^{1/q} \right] \leq - \left(\gamma/\omega \right) \int_t^\sigma (s - r)^{-1/p} \exp \left[\gamma q (s - r)^{1/q} \right] \, dr$$

$$= - \left(1/\omega \right) e^{-\gamma r} + \left(1/\omega \right) \exp \left[- \gamma q (s - t)^{1/q} \right],$$

$$\beta(t) \geq \left(1/\omega \right) \exp \left[\gamma q + \gamma q (s - t)^{1/q} \right] - \left(1/\omega \right).$$

Thus, if t is in $[0, \sigma)$,

$$\varphi(t) \geq \left(\gamma/\omega \right) (s - t)^{-1/p} + \gamma (s - t)^{-1/p} \beta(t)$$

$$\geq \left(\gamma/\omega \right) (s - t)^{-1/p} \exp \left[- \gamma q + \gamma q (s - t)^{1/q} \right],$$

(6) follows, and our second claim is verified.
Suppose that \(t \geq 1 \). From (5) we have
\[
\int_0^{t-1} \| L(t, s) \| \, ds \leq \omega \Gamma^2 \exp \left(-\gamma q (t - s)^{1/q} \right) ds
\]
\[= (\omega \Gamma^2/q) e^{\gamma q} (e^{\gamma q} - \exp (-\gamma q t^{1/q})) \leq \omega \Gamma^2/q.
\]
Similarly, from (6), if \(t \) is in \(\mathbb{R}^+ \) then
\[
\int_{t+1}^{\infty} \| L(t, s) \| \, ds \leq \omega \Gamma^2/q.
\]
It is now clear that if \(t \) is in \(\mathbb{R}^+ \), then
\[
\int_0^{\infty} \| L(t, s) \| \, ds \leq 2 \omega + 2 \omega \Gamma^2/q.
\]
and it suffices to consider our theorem in the case \(q = 1 \).

Let \(M \) be a positive number such that (4) is true whenever \(t \) is in \(\mathbb{R}^+ \), and let \(m = 1/M \). Now differential inequality methods virtually identical to those used in establishing (5) and (6) can be used to show that
\[
\| L(t, s) \| \leq \omega Me^{-m|t-s|}
\]
whenever \((t, s) \) is in \(\mathbb{R}^+ \times \mathbb{R}^+ \) and \(|t - s| \geq 1 \). Since \(e^m e^{-m|t-s|} \geq 1 \) if \(|t - s| \leq 1 \), it follows that if \(J = \max \{ \omega M, 1 \} \) and \(\alpha = m \), we have our exponential dichotomy. This completes the proof.

References