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Equazioni differenziali ordinarie. — Periodic Solutions of Certain
n—th Order Nonlinear Differential Egquations. Nota di S. H. CHang,
presentata 7 dal Socio G. SANSONE.

R1ASSUNTO. — Applicando il Teorema del punto fisso di Schauder si dimostra ’esistenza
di soluzioni periodiche di un’equazione differenziale ordinaria di ordine # quasi nen lineare.

1. INTRODUCTION

Consider the following 7-th order nonlinear ordinary differential equation

e

(0 24 f R =0, (=2

where 7 is an integer > 2, f is continuous and f (¢ 4+ T ,x) = (f (¢, x) for
all (¢,x) and for some T > o0, p is continuous and p (¢ + T) = p(#) for all
T
¢, and J p(@)ydu=o. It is the purpose of this paper to prove the existence
0
of periodic solutions with period T for the equation (1).

When f(¢,x) = f(x) and » = 2, the equation (1) has been studied by
Harvey [3], Lazer [4], Leach [5], Loud [6], Opial [8], and Seifert [10].
When 7 = 2 we have established in [1] the existence of T-periodic solutions
for (1) by assuming

(2 lim L&A1,

el >0 | %]

uniformly in # In a recent paper Mawhin [7] has considered quasibounded
nonlinearity, a concept generalizing (2), in studying certain functional
differential equations. We may define quasiboundedness directly for the
function f in (1) as follows: f is said to be guasibounded if the number

(3) | f| = min (max _~_~|f(t,x)|)

0<p<oo ‘|x|=>p lx|
0<¢t<T

is finite; in this case, | f| is called the guasinorm of . In establishing the
existence of periodic solutions, Mawhin [7] has essentially assumed that
the nonlinearities in his equations are quasibounded (in the above sense)
and have zero quasinorms. In this paper we shall prove the existence of
T—periodic solutions to the equation (1) by requiring # to be quasibounded
and have a quasinorm smaller than certain positive number.

(*) Nella seduta del 14 dicembre 1974.
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In section 2 we prove the basic existence Theorem. We shall apply
Schauder’s fixed point Theorem and use a technique generalizing those
used in [1] and Lazer [4]. In section 3 we discuss the existence of even and
odd T-periodic solutions.

2. EXISTENCE THEOREMS

Let X denote the Banach space of continuous T-periodic functions with
the supremum norm, i.e. for an ¢ € X, | ¢ || = max | ¢(?)].
0<t<T

THEOREM 2.1. Let f be continuous and f(t + 7T ,x)=f(t,x) for all
(¢, %) and for some T >o, p continuous and p (¢t + T) = (p (¢) for all t, and
T

f 2 (w)du = 0. Assume that there is a positive number M such that for | x| > M
0

and for all t either xf (¢t ,x) =0 or xf (¢,x)<o. If 2/ze Sunction f is quasi-
bounded with a quasinorm

|/l <min{1/3,1/3T"},
then the equation (1) has at least one T—periodic solution.

Proof. For each ¢ € X, define

T
@ F@O =/ o@) =5 [76,00)ds.
0

T T
Then F(p)e X andJ F () (#)du=o. For each ¢ € X satisfying ( ¢ (22) du = o,
o
0

0
define

t T s

~

(5 A@O=[ o du— 1 [ [ o6 duds.

0 00

T
Is is easy to see that A(g)e€ X, J A(e) (w)du = o, A(p)' (#) = ¢(¢), and
0

T
lA@I| <Tlel|. Also, for each ¢ € X satisfying f ¢ (%) du = o, define
0

¢

©) B (g) () = f o () du .

0

Then B(g) € X, B(¢)' () = ¢(?), and || B(p) | < (T/2) [ @[l Write A" () =
=A[A(---A(p)- - )], repeating 7 times, for any positive integer #. Hence,
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T

~

for > 2 and for any ¢ € X satisfying J ¢ (#) du = o, we have B[A" ! (p)] € X,

0
BIA™H(@)]® () = ¢(»), and || BIA" (@] | < (T"/2) || o I
Let R denote the set of real numbers. For any 2, €R and (¢;,7,) € X X R,
i=1,2, let

Mo, 7) + 2 (P2, 79) = (A 1+ Ao P, Ay 7+ Ng 7).

Also, for each (p,7)€ X X R, define |(¢,7)| = lell4+1|7]. Then X xR
becomes a Banach space.

Suppose that xf (¢#,x) > o0 for || >M and for all £ Define a mapping
P:XXR—+XXR by P(p,r)=(§,#) with

7) $=r+B[A (p—F(@)],
®) f:r——%{f(s,cﬁ(s))d:.

0
Then P is a continuous mapping.
Since the quasinorm |f| <min {1/3,1/3T"}, there is an € > 0 such

that | /| + e <min{1/3, 1/3T"}. By the definition of quasiboundedness (3),
there exists p(e) > 0 such that

FAGToNN <|fl+e  whenever |x|>p() and o<zt <T.

3
Let
L=max{’f(t,x)[fogth,|x]gp(s)},
M M+ @3/2)T" 5] L
N = max -y T (T HET @),
and

C=max{(|f|+ N, LT pll+ (/] + T N].
Note that M 4+ 3C < N and
[ f(¢,2)| <(|f]+e)N  whenever |#|<N and o<zs<T.
Now,let‘

 D—{G.AEXXR|[g| <N, r| <M42C}.

Then D is a closed, bounded, and convex set in X X R. It is easy to show
that P(D)CD and P(D) is relatively compact. Then by Schauder’s fixed -
point Theorem ([9], or see [2, p. 131]) there exists ({,4) €D such that
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T

W, =PW,s =@, Z) It follows from (7) and (8) that ;‘— {f(s ) ds=o0

]
and hence by (4) we have F () (#) = f (¢, { (¢)). Differentiating the equation
=26+ B[A"(p—F ()] # times, we obtain

YOO+ Y@ =20,

If f(¢,x) <o for |x| =M and for all ¢, we redefine the # in (8) as
T
P=rtop [ (s, 5 () ds.
§

Then the same argument as before leads to the desired result. This completes
the proof.

COROLLARY 2.2. Let f be continuous and f (¢t +T ,x) = f(¢,x) for all
(¢, x) and for some T > o0, p continuous and p (¢t + T) = p (¢) for all t, and
T

p(uw)ydu=o0. Assume that there is a positive number M such that for |x|> M

0
and for all t either xf (t,x)=0 or zf (¢,x)<o. If (f(¢,%)[x)—>0 as |x|—>o0
uniformly in t, then the equation (1) has at least ome T—periodic solution.

Proof. The condition (f (¢, x)/x)— 0 as | x | = oco uniformly in ¢ implies
that | /| = o.

Remark. The above corollary extends a result in [1] which in turn gene-
ralizes a result of Lazer [4] for the case f (¢, x) = f(x) and 7 = 2.

3. EVEN AND ODD SOLUTIONS
Let
Y={9peX|p(—&) =09 for all #}
and
Z={9eX|o(—& =—¢() for all #}.
Then both Y and Z are also Banach spaces under the supremum norm.

- THEOREM 3.1. Let n be an even integer > 2. Assume that f(—t,x)=
=f (¢, %) for any (¢t,x) and p is even. 1If f is quasibounded with a quasinorm

| fI<m'n{1/3, (1/3)(J2/T)*},

and if all other conditions of Theorem 2.1 are satsified, then the equation (1)
has at least one even T—periodic solution. «
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Proof. For each ¢ €Y, define F () as in (4). Then F(p)eY and
[F(cp) (4) du = o. Also, for each ¢ €Y satisfying fcp(u) du = o, define

E(cp) = A[B(¢)], where A and B are defined as in (5) and (6). Then E(p)€Y,
T

(EGP) () du=o, E(@)"(H)=¢(®), and [[E(p)]| < (T%2)[ ¢
6/

Suppose that xf (#,x) >0 for |x|>M and for all £ Define YXR
similarly as in the proof of Theorem 2.1 and a mapping P;: YXR >YXR

by Pi(e,7) = (% ,7) with
$ =r+ BE"" (p —F ()],

T
I

17=7—TJPf($,<T>(s))ds.

0

Clearly this is well-defined. Then one completes the proof by an argument
similar to that in the proof of Theorem 2.I.

THEOREM 3.2. Let n be an even integer > 2. Let f be continuous and
S+ T, x)=f(t,x)for all (¢,x) and for some T > o, and p continuous and
p+T)=p (@) for all t. Let p be odd and f satisfy either (i) f(—1¢,x) =
=f@,x) and f(t,—x)=—)(,%), or (it) f(—¢t,%)=—f(t,x) and
f@,—x)=f(,%), for any (¢t,x). If [ is quasibounded with a quasinorm
| 1< (J2|T), then the equation (1) has at least one odd T—periodic solution.

Proof. For each ¢ €Z, let () (&) =f(t,9@). Then for both cases
(i) and (ii) we have / (¢) € Z. Also, for each ¢ €Z, define G(p) = B[A(9)].
Then G () €Z, G(9)" () = ¢(?), and | G(p) | < (T*/2) | ¢ | Now, define a

mapping Py:Z—>Z by Py(9) = G™ (2 —/ (o).
By the assumption on the quasinorm of f, there exists ¢ > o such that

IS, 2|

[=]

<{f|+s<(VT2) whenever |x| > p(e) and o<s<T

for some p(e) >o0. Let
L=max{|f(¢,2)|l0o<t<T,|x|<p(e)}
and

N — max! T2 L 3
T e e PO

Note that‘]f(;z‘,x)lg‘(]fl—l—s)N whenever || <N and o<#< T. Let
D={o€Z||o||<N}.

It is easy to show that Py(D)CD and Py(D) is relatively compact. The
result then follows from Schauder’s fixed point Theorem.
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THEOREM 3.3. Let n be an odd integer > 1. Let f be continuous and

f@+ T, x)=f(t,x) for all (¢t,x) and for some T >0, and p continuous and
2@+ T)=p@) for all t. Assume that f(—t,x) = —f(¢,%) for any (¢,%)
and p is odd. If f is quasibounded with a quasinorm | f| <Yz (Y 2|T), then
the equation (1) has at least one even T—periodic solution.

_ Proof. For each €Y, let F@@®=f (#,9(). Then here we have
f(e) €Z. Define a mapping P3: Y —Y by

Py(9)=B[p—f(p)], if n=1,
and

P3(p) = BP[E" PP (A(p—F (o)), if »n>3,

where E is defined as in the proof of Theorem 3.1. The rest of the proof is
similar to that of Theorem 3.2 and is therefore omitted.

Remark. The technique used in this section does not produce a similar
result on the existence of odd T—periodic solutions when # is an odd integer.
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