Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Joao B. Prolla

On Polynomial Algebras of Continuously Differentiable Functions

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 57 (1974), n.6, p. 481-486.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1974_8_57_6_481_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del I4 dicembre 1974
Presiede il Presidente della Classe Beniamino Segre

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. - On Polynomial Algebras of Continuously Differentiable Functions. Nota di João B. Prolla, presentata ${ }^{(*)}$ dal Corrisp. G. Fichera.

Riassunto. - Sia E uno spazio di Hilbert reale e separabile e sia F uno spazio di Banach reale. Viene esteso il teorema di Nachbin sulla densità delle algebre di funzioni di classe C^{m} a certe algebre polinomiali di funzioni da E ad F .

§ i. Introduction

Let E and F be two real Banach spaces, with $\mathrm{F} \neq\{\mathrm{o}\}$. Then $\mathrm{C}^{m}(\mathrm{E} ; \mathrm{F})$ denotes the vector space of all maps $f: \mathrm{E} \rightarrow \mathrm{F}$ which are of class C^{m}. We shall introduce two topologies on $\mathrm{C}^{m}(\mathrm{E} ; \mathrm{F})$. The first one is the topology τ_{u} of uniform convergence of the functions and their derivatives on the compact subsets of E . It may be defined by the family of seminorms of the form

$$
p_{\mathrm{K}}(f)=\max \left\{\sup \left\{\left\|\mathrm{D}^{k} f(x)\right\| ; x \in \mathrm{~K}\right\} ; \mathrm{o} \leq k \leq m\right\}
$$

where K is a compact subset of E . The second topology, denoted by τ_{c}, is defined by the family of seminorms of the form

$$
p_{\mathrm{K}, \mathrm{~L}}(f)=\max \left\{\sup \left\{\left\|\left[\mathrm{D}^{k} f(x)\right]^{\wedge}(v)\right\| ; x \in \mathrm{~K}, v \in \mathrm{~L}\right\} ; \mathrm{o} \leq k \leq m\right\},
$$

where K and L are compact subsets of E and $\mathrm{T}^{\wedge}(v)=\mathrm{T}(v, \cdots, v)$, when $\mathrm{T} \in \mathscr{L}_{s}\left({ }^{k} \mathrm{E} ; \mathrm{F}\right), \mathrm{o} \leq k \leq m$.

If $\mathrm{F}=\mathbf{R}$, then $\mathrm{C}^{m}(\mathrm{E} ; \mathrm{F})$ is an algebra, denoted simply by $\mathrm{C}^{m}(\mathrm{E})$. If $\mathrm{E}=\mathbf{R}^{n}$ and $\mathrm{F}=\mathbf{R}$, Nachbin proved in [4] an analogue of the Stone-Weierstrass theorem for the topology τ_{u}. In fact, he gave necessary and sufficient conditions for a subalgebra of $\mathrm{C}^{m}(\mathrm{~V})$ to be τ_{u}-dense, where V is an n-dimen-
(*) Nella seduta del 14 dicembre 1974 .
35. - RENDICONTI 1974, Vol. LVII, fasc. 6.
sional C^{m}-manifold, $m \geq \mathrm{I}$. If E is a real, separable Hilbert space and $\mathrm{F}=\mathbf{R}$, J. Lesmes gave in [3] sufficient conditions for a subalgebra of $\mathrm{C}^{1}(\mathrm{E})$ to be τ_{u}-dense.

In the case of a general F the space $\mathrm{C}^{m}(\mathrm{E} ; \mathrm{F})$ is not an algebra. However, we can still get a Stone-Weierstrass theorem for the so called polynomial algebras. For each integer $n \geq \mathrm{I}, \mathrm{P}_{f}\left({ }^{n} \mathrm{E} ; \mathrm{F}\right)$ denotes the vector subspace of $\mathrm{C}(\mathrm{E} ; \mathrm{F})$ generated by the set of all maps of the form $x \mapsto u^{*}(x)^{n} u$, where $u^{*} \in \mathrm{E}^{*}$, the topological dual of E , and $u \in \mathrm{~F}$. The elements of $\mathrm{P}_{f}\left({ }^{n} \mathrm{E} ; \mathrm{F}\right)$ are called n-homogenuous continuous polynomials of finite type from E into F . The vector subspace generated by the union of all $\mathrm{P}_{f}\left({ }^{n} \mathrm{E} ; \mathrm{F}\right), n \geq \mathrm{I}$, and the constant maps, is denoted by $\mathrm{P}_{f}(\mathrm{E} ; \mathrm{F})$. A vector subspace $\mathrm{ACC}(\mathrm{E} ; \mathrm{F})$ is called a polynomial algebra if, given $g \in \mathrm{~A}$ and $p \in \mathrm{P}_{f}\left({ }^{n} \mathrm{~F} ; \mathrm{F}\right)$, where $n \geq \mathrm{I}$, then $p \circ g$ belongs to A. In our joint work [5] with S. Machado we proved that the Stone-Weierstrass theorem is true for polynomial algebras of continuous functions.

In this paper, we first extend Nachbin's theorem for polynomial algebras in the case in which E is finite dimensional, F is any real Banach space, and $\mathrm{C}^{m}(\mathrm{E} ; \mathrm{F})$ has the τ_{u} topology. Afterwards, we apply this result to the case in which E is a real, separable Hilbert space, to obtain sufficient conditions for a polynomial algebra to be dense in $\mathrm{C}^{m}(\mathrm{E} ; \mathrm{F})$ with the τ_{c} topology. As an application we show that, if $\Phi: \mathrm{E} \rightarrow \mathrm{F}$ is a C^{1}-isomorphism of E onto some open subset (e.g. the open unit ball) of F , then the F -valued polynomials in Φ are τ_{c}-dense in $\mathrm{C}^{1}(\mathrm{E} ; \mathrm{F})$, and real valued polynomials in Φ are τ_{u}-dense in $C^{1}(E)$, when F is another real separable Hilbert space.

This work was done while visiting the Institut für Angewandte Mathematik u. Informatik der Universität Bonn, by invitation of the "Sonderforschungsbereich 72 " (Teilprojekt A3, Approximationsverfahren in metrischen Räumen), to whose members the Author thanks the hospitality.

§ 2. VECTOR-valued functions of n variables

In this section E is a finite-dimensional real Banach space and F is any real Banach space, not reduced to $\{0\}$. Since E is C^{∞}-isomorphic with \mathbf{R}^{n} where $n=\operatorname{dim} \mathrm{E}$, we may assume without loss of generality that $\mathrm{E}=\mathbf{R}^{n}$.

We denote by $\mathrm{D}^{m}\left(\mathbf{R}^{n} ; \mathrm{F}\right)$ the vector space of all functions $f: \mathbf{R}^{n} \rightarrow \mathrm{~F}$ which are of class $\mathrm{C}^{m}(\mathrm{I} \leq m<\infty)$ and have compact support. If $\mathrm{F}=\mathbf{R}$, we write simply $\mathrm{D}^{m}\left(\mathbf{R}^{n}\right)$. Also $\mathrm{D}\left(\mathbf{R}^{n} ; \mathrm{F}\right)$ (resp. $\mathrm{D}\left(\mathbf{R}^{n}\right)$) denotes the vector space of all functions $f: \mathbf{R}^{n} \rightarrow \mathrm{~F}$ (resp. $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$) which are of class C^{∞} and have compact support.

In Schwartz [6] it was shown that the space $\mathrm{D}\left(\mathbf{R}^{n}\right) \otimes \mathrm{F}$ is dense in $\mathrm{D}^{m}\left(\mathbf{R}^{n} ; \mathrm{F}\right)$ in the inductive limit topology. Since this topology is stronger than τ_{u}, it follows that $\mathrm{D}\left(\mathbf{R}^{n}\right) \otimes \mathrm{F}$ is τ_{u}-dense in $\mathrm{D}^{m}\left(\mathbf{R}^{n} ; \mathrm{F}\right)$. Now, it is easily seen that $\mathrm{D}^{m}\left(\mathbf{R}^{n} ; \mathrm{F}\right)$ is τ_{u}-dense in $\mathrm{C}^{m}\left(\mathbf{R}^{n} ; \mathrm{F}\right)$. Indeed, given $f \in \mathrm{C}^{m}\left(\mathbf{R}^{n} ; \mathrm{F}\right)$, $\mathrm{K} \subset \mathbf{R}^{m}$ compact and $\varepsilon>\mathrm{o}$, let $\mathrm{L} \subset \mathbf{R}^{n}$ be a compact neighborhood of K . Let
$\varphi \in \mathrm{D}\left(\mathbf{R}^{n}\right)$ be such that $\varphi(x)=\mathrm{I}$ for all $x \in \mathrm{~L}$. Then $g=\varphi f \in \mathrm{D}^{m}\left(\mathbf{R}^{n} ; \mathrm{F}\right)$ and $g(x)=f(x)$ for all $x \in \mathrm{~L}$. Hence

$$
\left\|\mathrm{D}^{k} g(x)-\mathrm{D}^{k} f(x)\right\|=0<\varepsilon
$$

for all $x \in \mathrm{~K}$ and $0 \leq k \leq m$. We have therefore proved the following
Lemma 2.I. $\quad \mathrm{C}^{m}\left(\mathbf{R}^{n}\right) \otimes \mathrm{F}$ is τ_{u}-dense in $\mathrm{C}^{m}\left(\mathbf{R}^{n} ; \mathrm{F}\right)$.
Theorem 2.2. Let E be a real, finite dimensional Banach space and let F be any real Banach space. Let $\mathrm{A} \in \mathrm{C}^{m}(\mathrm{E} ; \mathrm{F})$ be a polynomial algebra. Then A is τ_{u}-dense in $\mathrm{C}^{m}(\mathrm{E} ; \mathrm{F})$ if, any only if, the following conditions are satisfied:
(1) for every $x \in \mathrm{E}$, there exists an $f \in \mathrm{~A}$ such that $f(x) \neq \mathrm{o}$;
(2) for every pair $x, y \in \mathrm{E}$ with $x \neq y$, there exists an $f \in \mathrm{~A}$ such that $f(x) \neq f(y)$;
(3) for every $x \in \mathrm{E}$, and for every $v \in \mathrm{E}$, with $v \neq \mathrm{o}$, there exists an $f \in \mathrm{~A}$ such that $\mathrm{D} f(x) v \neq 0$.
Proof. The necessity of the conditions is easily verified. Conversely, assume that A is a polynomial algebra satisfying conditions (I$)-(3)$.

Let $\mathrm{M}=\left\{u^{*}(f) ; u^{*} \in \mathrm{~F}^{*}, f \in \mathrm{~A}\right\}$. By Lemma 2.2. of [5], M is a subalgebra of $\mathrm{C}^{m}(\mathrm{E})$ such that $\mathrm{M} \otimes \mathrm{FCA}$. The conditions (I)-(3) on A imply that M satisfies the hypothesis of Nachbin's theorem (see [4], p. I 550). Hence M is dense in $\mathrm{C}^{m}(\mathrm{E})$ in the τ_{u} topology. It follows immediately that $\mathrm{M} \otimes \mathrm{F}$ is τ_{u}-dense in $\mathrm{C}^{m}(\mathrm{E}) \otimes \mathrm{F}$. By Lemma $2 . \mathrm{I}, \mathrm{M} \otimes \mathrm{F}$ is then τ_{u}-dense in $C^{m}(E ; F)$. Since $M \otimes F$ is contained in A, this completes the proof.

§ 3. Infinite-dimensional case

In this section E is a real, separable Hilbert space. We say that a subset $A \subset C^{m}(\mathrm{E} ; \mathrm{F}), m \geq \mathrm{I}$, satisfies conditions (N_{0}) (see Lesmes [3]) if:
(I) for every $x \in \mathrm{E}$, there exists an $f \in \mathrm{~A}$ such that $f(x) \neq \mathrm{o}$;
(2) for every pair $x, y \in \mathrm{E}$, with $x \neq y$, there exists an $f \in \mathrm{~A}$ such that $f(x) \neq f(y)$;
(3) for every $x \in \mathrm{E}$ and for every $v \in \mathrm{E}$, with $v \neq 0$, there exists an $f \in \mathrm{~A}$ such that $\mathrm{D} f(x) v \neq \mathrm{o}$;
(4) there exists an orthonormal basis $\mathrm{B}=\left\{e_{n} ; n \in \mathbf{N}\right\}$ of E and an integer $\mathrm{M} \in \mathbf{N}$ such that $f \circ \mathrm{P}_{n}$ belongs to A , for every $f \in \mathrm{~A}$ and $n \geq \mathrm{M}$, where P_{n} denotes the orthogonal projection of E onto $\mathrm{E}_{n}=\operatorname{span}\left\{e_{1}, \cdots, e_{n}\right\}$.
For each $n \in \mathbf{N}$, let $j_{n}: \mathrm{E}_{n} \rightarrow \mathrm{E}$ be the linear isometry defined by $j_{n}(x)=x \in \mathrm{E}$, for all $x \in \mathrm{E}_{n}$. If $f \in \mathrm{C}^{m}(\mathrm{E} ; \mathrm{F})$, we set $\mathrm{T}_{n}(f)=f \circ j_{n}$. Clearly, T_{n} is a continuous linear map from $\mathrm{C}^{m}(\mathrm{E} ; \mathrm{F})$ into $\mathrm{C}^{m}\left(\mathrm{E}_{n} ; \mathrm{F}\right)$, when each space has its τ_{u} topology,

Lemma 3.I. Let $\mathrm{ACC}^{m}(\mathrm{E} ; \mathrm{F})$ be a polynomial algebra satisfying conditions (I)-(3) of $\left(\mathrm{N}_{0}\right)$. Then $\mathrm{T}_{n}(\mathrm{~A})$ is τ_{u}-dense in $\mathrm{C}^{m}\left(\mathrm{E}_{n} ; \mathrm{F}\right)$, for each $n \in \mathbf{N}$.

Proof. Let $n \in \mathbf{N}$. Since T_{n} is linear, $\mathrm{T}_{n}(\mathrm{~A})$ is a vector subspace of $\mathrm{C}^{m}\left(\mathrm{E}_{n} ; \mathrm{F}\right)$. Let $g \in \mathrm{~T}_{n}(\mathrm{~A})$ and $p \in \mathrm{P}_{f}\left({ }^{(} \mathrm{F} ; \mathrm{F}\right), r \geq \mathrm{I}$, be given. Let $g=\mathrm{T}_{n}(f)$, $f \in \mathrm{~A}$. Then $p \circ g=p \circ\left(f \circ j_{n}\right)=(p \circ f) \circ j_{n}=\mathrm{T}_{n}(p \circ f)$. Since $p \circ f \in \mathrm{~A}$, we conclude that $p \circ g$ belongs to $\mathrm{T}_{n}(\mathrm{~A})$, i.e., $\mathrm{T}_{n}(\mathrm{~A})$ is a polynomial algebra.

Let $x \in \mathrm{E}_{n}$. Then $j_{n}(x) \in \mathrm{E}$, and by condition (I) of $\left(\mathrm{N}_{0}\right)$, there exists $f \in \mathrm{~A}$ such that $f\left(j_{n}(x)\right)=\mathrm{T}_{n} f(x) \neq 0$. Let now $x, y \in \mathrm{E}_{n}$, with $x \neq y$. Since j_{n} is one-to-one, $j_{n}(x) \neq j_{n}(y)$. By condition (2) of $\left(\mathrm{N}_{0}\right)$, there exists $f \in \mathrm{~A}$ such that $f\left(j_{n}(x)\right) \neq f\left(j_{n}(y)\right)$, i.e. $\left(\mathrm{T}_{n} f\right)(x) \neq\left(\mathrm{T}_{n} f\right)(y)$. Finally let $x, v \in \mathrm{E}_{n}$, with $v \neq \mathrm{o}$. Then $j_{n}(v) \in \mathrm{E}$ and $j_{n}(v) \neq \mathrm{o}$. By condition (3) of $\left(\mathrm{N}_{0}\right)$, there exists $f \in \mathrm{~A}$ such that $\left[\mathrm{D} f\left(j_{n}(x)\right)\right] j_{n}(v) \neq 0$. Since j_{n} is linear, $\mathrm{D}\left(\mathrm{T}_{n} f\right)(x)=\mathrm{D} f\left(j_{n}(x)\right) \circ j_{n} \quad$ and therefore $\quad\left[\mathrm{D}\left(\mathrm{T}_{n} f\right)(x)\right] v=$ $=\left[\mathrm{D} f\left(j_{n}(x)\right)\right] j_{n}(v) \neq \mathrm{o}$. Hence $\mathrm{T}_{n}(\mathrm{~A})$ satisfies the conditions of Theorem 2.2., and thus $\mathrm{T}_{n}(\mathrm{~A})$ is τ_{u}-dense in $\mathrm{C}^{m}\left(\mathrm{E}_{n} ; \mathrm{F}\right)$, for each $n \in \mathbf{N}$.

Lemma 3.2. Let $f \in \mathrm{C}^{m}(\mathrm{E} ; \mathrm{F})$. Then the sequence $\left\{f \circ \mathrm{P}_{n}\right\}$ converges to f in the τ_{c} topology.

Proof. Let K and L be two compact subsets of E and let $\varepsilon>0$ be given. Let $r=\sup \{\|h\| ; h \in \mathrm{~L}\}$.

Since $\mathrm{D}^{k} f$ is continuous ($\mathrm{o} \leq k \leq m$) and K is compact, we can find a real number $\delta>0$ such that
(1) $x \in \mathrm{~K}, y \in \mathrm{E},\|x-y\|<\delta \Rightarrow\|f(x)-f(y)\|<\varepsilon$ and

$$
\left\|\mathrm{D}^{k} f(x)-\mathrm{D}^{k} f(y)\right\|<\varepsilon / 2(r+\mathrm{I})^{k}, \quad \mathrm{I} \leq k \leq m
$$

Choose $\eta>0$ such that $2 \operatorname{sk}(\gamma+\eta)^{k-1}<\varepsilon$, for all $\mathrm{I} \leq k \leq m$, where $s=\max \left\{\sup \left\{\left\|\mathrm{D}^{k} f(x)\right\| ; x \in \mathrm{~K}\right\} ; \mathrm{I} \leq k \leq m\right\}$. Since both K and L are compact, there exists an integer $n_{0} \in \mathbf{N}$ such that
(2) $n \geq n_{0}, x \in \mathrm{~K}, h \in \mathrm{~L} \Rightarrow\left\|\mathrm{P}_{n} x-x\right\|<\delta,\left\|\mathrm{P}_{n} h-h\right\|<\eta$.

By (I) and (2) it follows that
(3) $\left\|f(x)-f\left(\mathrm{P}_{n}(x)\right)\right\|<\varepsilon \quad$ and

$$
\left\|\mathrm{D}^{k} f(x)-\mathrm{D}^{k} f\left(\mathrm{P}_{n}(x)\right)\right\|<\varepsilon / 2(r+\mathrm{I})^{k}, \quad \mathrm{I} \leq k \leq m
$$

for all $x \in \mathrm{~K}$ and $n \geq n_{\mathbf{0}}$. Since $\left\|\mathrm{P}_{n} h\right\| \leq\|h\|$ for all $h \in \mathrm{E}$, the second inequality in (2) implies
(4) $\left.\|\left[\mathrm{D}^{k} f(x)\right]^{\wedge}\left(\mathrm{P}_{n} h\right)-\left[\mathrm{D}^{k} f\left(\mathrm{P}_{n} x\right)\right]^{\wedge}\left(\mathrm{P}_{n} h\right)\right) \|<\varepsilon / 2, \quad \mathrm{I} \leq k \leq m$, for all $x \in \mathrm{~K}, h, \in \mathrm{~L}$, and $n \geq n_{0}$. On the other hand we have
(5) $\|\left[\mathrm{D}^{k} f(x)\right]^{\wedge}\left(\mathrm{P}_{n} h\right)-\left[\mathrm{D}^{k} f(x)^{\wedge} h\|\leq\| \mathrm{D}^{k} f(x) \| \cdot k(r+\eta)^{k-1} \eta<\varepsilon / 2\right.$ for all $x \in \mathrm{~K}, h \in \mathrm{~L}$ and $n \geq n_{0}$. Combining (4) and (5) we get
(6) $\left\|\left[\mathrm{D}^{k} f(x)\right]^{\wedge} h-\left[\mathrm{D}^{k} f\left(\mathrm{P}_{n} x\right)\right]^{\wedge}\left(\mathrm{P}_{n} h\right)\right\|<\varepsilon, \quad \mathrm{I} \leq k \leq m$, for all $x \in \mathrm{~K}, h \in \mathrm{~L}$ and $n \geq n_{0}$. Since $\left[\mathrm{D}^{k}\left(f_{0} \mathrm{P}_{n}\right)(x)\right]^{\wedge} h=\left[\mathrm{D}^{k} f\left(\mathrm{P}_{n} x\right)\right]^{\wedge}\left(\mathrm{P}_{n} h\right)$ for all $x, h \in \mathrm{E}$ and $\mathrm{I} \leq k \leq m$, (6) and the first inequality of (3) imply together $\mathrm{P}_{\mathrm{K}, \mathrm{L}}\left(f-f \circ \mathrm{P}_{n}\right)<\varepsilon$, for all $n \geq n_{0}$, which completes the proof.

Theorem 3.3. Let $\mathrm{ACC}{ }^{m}(\mathrm{E} ; \mathrm{F})$ be a polynomial algebra satisfying conditions $\left(\mathrm{N}_{0}\right)$. Then A is τ_{c}-dense in $\mathrm{C}^{m}(\mathrm{E} ; \mathrm{F})$.

Proof. Let $f \in \mathrm{C}^{m}(\mathrm{E} ; \mathrm{F}), \mathrm{K}$ and L compact subsets of E and $\varepsilon>0$ be given. By Lemma 3.2., there exists $n_{1} \in \mathbf{N}$ such that $\mathrm{P}_{\mathrm{K}, \mathrm{L}}\left(f-f \circ \mathrm{P}_{n}\right)<\varepsilon / 2$, for all $n \geq n_{1}$. Fix $n \in \mathbf{N}$ with $n>\max \left(n_{1}, \mathbf{M}\right)$. Since P_{n} is continuous and K is compact, $\mathrm{K}_{n}=\mathrm{P}_{n}(\mathrm{~K})$ is a compact subset of E_{n}. Choose $\delta>0$ such that $\delta<\varepsilon / 2(r+\mathrm{I}))^{k}$ for all $\mathrm{I} \leq k \leq m$, where $r=\sup \left\{\left\|\mathrm{P}_{n} h\right\| ; h \in \mathrm{~L}\right\}$. By Lemma 3.I., there exists $g \in \mathrm{~A}$ such that $\mathrm{P}_{\mathrm{K}_{n}}\left(\mathrm{~T}_{n} g-\mathrm{T}_{n}\left(f \circ \mathrm{P}_{n}\right)\right)<\delta$. Since $j_{n} \circ \mathrm{P}_{n}=\mathrm{P}_{n}$ and $\mathrm{P}_{n} \circ j_{n} \circ \mathrm{P}_{n}=\mathrm{P}_{n}$, it follows that
(1) $\left\|g\left(\mathrm{P}_{n}(x)\right)-f\left(\mathrm{P}_{n}(x)\right)\right\|<\varepsilon / 2$, and
(2) $\left\|\left[\mathrm{D}^{k}\left(\mathrm{~T}_{n} g\right)\right]\left(\mathrm{P}_{n} x\right)-\left[\mathrm{D}^{k}\left(\mathrm{~T}_{n}\left(f \circ \mathrm{P}_{n}\right)\right)\right]\left(\mathrm{P}_{n} x\right)\right\|<\delta$
for all $x \in \mathrm{~K}$, and $\mathrm{I} \leq k \leq m$. However, $\left[\left[\mathrm{D}^{k}\left(\mathrm{~T}_{n} g\right)\right]\left(\mathrm{P}_{n} x\right)\right]^{\wedge} h=\left[\mathrm{D}^{k} g\left(\mathrm{P}_{n} x\right)\right]^{\wedge}\left(\mathrm{P}_{n} h\right)$ and $\left[\left[\mathrm{D}^{k}\left(\mathrm{~T}_{n}\left(f \circ \mathrm{P}_{n}\right)\right)\right]\left(\mathrm{P}_{n} x\right)\right]^{\wedge} h=\left[\left[\mathrm{D}^{k}\left(f \circ \mathrm{P}_{n}\right)\right]\left(\mathrm{P}_{n} x\right)\right]^{\wedge}\left(\mathrm{P}_{n} h\right)$ for all $x, h \in \mathrm{E}$ and $\mathrm{I} \leq k \leq m$. Hence (2) implies
(3) $\left\|\left[\mathrm{D}^{k} g\left(\mathrm{P}_{n} x\right)\right]^{\wedge}\left(\mathrm{P}_{n} h\right)-\left[\left[\mathrm{D}^{k}\left(f \circ \mathrm{P}_{n}\right)\right]\left(\mathrm{P}_{n} x\right)\right]^{\wedge}\left(\mathrm{P}_{n} h\right)\right\|<\varepsilon / 2$
for all $x \in \mathrm{~K}, h \in \mathrm{~L}$ and $\mathrm{I} \leq k \leq m$. On the other hand, $\left[\mathrm{D}^{k}\left(g \circ \mathrm{P}_{n}\right)(x)\right]^{\wedge} h=$ $=\left[\mathrm{D}^{k} g\left(\mathrm{P}_{n} x\right)\right]^{\wedge}\left(\mathrm{P}_{n} h\right)$ and $\left[\mathrm{D}^{k}\left(f_{\circ} \mathrm{P}_{n}\right)(x)\right]^{\wedge} h=\left[\mathrm{D}^{k}\left(f_{\circ} \mathrm{P}_{n}^{2}\right)(x)\right]^{\wedge} h=\left[\mathrm{D}^{k}\left(f_{\circ} \mathrm{P}_{n}\right)\right.$. $\left.\cdot\left(\mathrm{P}_{n} x\right)\right]^{\wedge}\left(\mathrm{P}_{n} h\right)$. Hence, (3) implies
(4) $\left\|\left[\mathrm{D}^{k}\left(g \circ \mathrm{P}_{n}\right)(x)\right]^{\wedge} h-\left[\mathrm{D}^{k}\left(f \circ \mathrm{P}_{n}\right)(x)\right]^{\wedge} h\right\|<\varepsilon / 2$
for all $x \in \mathrm{~K}, h \in \mathrm{~L}$ and $\mathrm{I} \leq k \leq m$. Finally, (I) and (4) together imply $\mathrm{P}_{\mathrm{K}, \mathrm{L}}\left(f \circ \mathrm{P}_{n}-g \circ \mathrm{P}_{n}\right)<\varepsilon / 2$. Hence, $\mathrm{P}_{\mathrm{K}, \mathrm{L}}\left(f-g \circ \mathrm{P}_{n}\right)<\varepsilon$, and since $g \circ \mathrm{P}_{n}$ belongs to A, f belongs to the τ_{c}-closure of A .

Corollary 3.4. The polynomial algebra $\mathrm{P}_{f}(\mathrm{E} ; \mathrm{F})$ is dense in $\mathrm{C}^{m}(\mathrm{E} ; \mathrm{F})$ in the τ_{c} topology.

THEOREM 3.5. Let $\Phi: \mathrm{E} \rightarrow \mathrm{F}$ be a C^{1}-isomorphism of E onto some open subset of F . Then $\left\{p \circ \Phi ; p \in \mathrm{P}_{f}(\mathrm{~F} ; \mathrm{F})\right\}$ is τ_{c}-dense in $\mathrm{C}^{1}(\mathrm{E} ; \mathrm{F})$ and $\left\{p \circ \Phi ; p \in \mathrm{P}_{f}(\mathrm{~F} ; \mathbf{R})\right\}$ is τ_{u}-dense in $\mathrm{C}^{1}(\mathrm{E})$, if F is also a Hilbert space.

Proof. Let $g \in \mathrm{C}^{1}(\mathrm{E} ; \mathrm{F}), \mathrm{K}$ and L compact subsets of E , and $\varepsilon>0$ be given. Let $\mathrm{A}=\left\{p \circ \Phi ; p \in \mathrm{P}_{f}(\mathrm{~F} ; \mathrm{F})\right\}$.

Define $h: \Phi(\mathrm{E}) \rightarrow \mathrm{F}$ by $h(y)=g\left(\Phi^{-1}(y)\right)$ for all $y \in \Phi(\mathrm{E})$. Then $h \in \mathrm{C}^{1}(\Phi(\mathrm{E}))$ and $g(x)=h(\Phi(x))$ for all $x \in \mathrm{E}$. By Corollary 3.4. there exists $p \in \mathrm{P}_{f}(\mathrm{~F} ; \mathrm{F})$ such that

$$
\begin{equation*}
\|p(y)-h(y)\|<\varepsilon,\|\mathrm{D} p(y) w-\mathrm{D} h(y) w\|<\varepsilon \tag{I}
\end{equation*}
$$

for all $y \in \Phi(\mathrm{~K})$ and $w \in[\mathrm{D} \Phi(\mathrm{K})](\mathrm{L})$.
Since $\mathrm{D}(h \circ \Phi)(x)=\mathrm{D} h(\Phi(x)) \circ \mathrm{D} \Phi(x), \mathrm{D}(p \circ \Phi)(x)=\mathrm{D} p(\Phi(x)) \circ \mathrm{D} \Phi(x)$ for $x \in \mathrm{E}$, (I) implies
(2) $\quad\|p(\Phi(x))-h(\Phi(x))\|<\varepsilon,\|\mathrm{D}(p \circ \Phi)(x) v-\mathrm{D}(h \circ \Phi)(x) v\|<\varepsilon$
for all $x \in \mathrm{~K}$ and $v \in \mathrm{~L}$. However $g=h_{\circ} \Phi$ and $p \circ \Phi \in \mathrm{~A}$. Hence A is τ_{c}-dense in $\mathrm{C}^{1}(\mathrm{E} ; \mathrm{F})$.

The proof that $\left\{p o \Phi ; p \in \mathrm{P}_{f}(\mathrm{~F} ; \mathbf{R})\right\}$ is τ_{u}-dense in $\mathrm{C}^{1}(\mathrm{E})$ is analogous, and makes use of the fact that $\mathrm{P}_{f}(\mathrm{~F} ; \mathbf{R})$ is τ_{u}-dense in the algebra $\mathrm{C}^{1}(\mathrm{~F})$. This last fact is a corollary of Lesmes' theorem (see [3]).

Example 3.6. Let E be a real separable Hilbert space and let $\Phi: \mathrm{E} \rightarrow \mathrm{E}$ be the map defined by

$$
\Phi(x)=x\left(\mathrm{I}+\|x\|^{2}\right)^{-1 / 2}
$$

for all $x \in \mathrm{E}$. Then Φ is a C^{∞}-isomorphism of E onto the open unit ball of E .

Bibliography

[I] Glaeser G. (1965) - Algèbres et sous-algèbres de fonctions différentiables, «An. Acad. Brasil. Ci.», 37, 398-406.
[2] Krée P. (1972) - Courants et courants cylindriques sur des variétés de dimension infinie, in «Linear Operators and Approximation» (edited by P. L. Butzer, J.-P. Kahane and B. Sz.-Nagy), Birkhauser Verlag, i59-174.
[3] Lesmes J. (1974) - On the approximation of continuously differentiable functions in Hilbert spaces, «Revista Colombiana de Matemáticas», 8, 217-223.
[4] Nachbin L. (1949) - Sur les algèbres denses de fonctions différentiables sur une variété, «C. R. Acad. Sci., Paris», 288, I 549-1 55 I.
[5] Prolla J. B. and Machado S. (1973) - Weighted Grothendieck subspaces, «Trans. Amer. Math. Soc.», 186, 247-258.
[6] Schwartz L. (1954-1956) - Espaces de fonctions différentiables à valeurs vectorielles, "J. d’Analyse Math.», 4, 88-r 48.

