ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

MARIO MARTELLI, ALFONSO VIGNOLI

A generalized Leray-Schauder condition

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **57** (1974), n.5, p. 374–379. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1974_8_57_5_374_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Topologia. — A generalized Leray-Schauder condition (*). Nota di Mario Martelli e Alfonso Vignoli, presentata (**) dal Socio G. Sansone.

RIASSUNTO. — Sia $f: \overline{\mathbb{B}} \to \mathbb{E}$ una funzione continua, addensante definita nel disco unitario $\overline{\mathbb{B}}$ di uno spazio di Banach E, e senza punti fissi sulla frontiera S di $\overline{\mathbb{B}}$. È noto che in tal caso deg (I — f, B, o) è definito (cfr. Nussbaum [6]) e se è diverso da zero allora il campo vettoriale I — $f: \overline{\mathbb{B}} \to \mathbb{E}$, (I — f) (x) = x - f(x), ha almeno un punto singolare $x_0 \in \mathbb{B}$. Una condizione che implica deg (I — f, B, o) \rightleftharpoons 0 è la cosiddetta condizione di Leray-Schauder

$$\lambda x = f(x)$$
 per qualche $x \in S \Rightarrow \lambda \leq I$.

In questo lavoro si dà una condizione più generale di quella di Leray-Schauder. Essa può essere applicata anche quando f è definita sulla chiusura $\overline{\Omega}$ di un insieme aperto e limitato $\Omega \subset E$. Si rileva anche che, oltre a quella di Leray-Schauder, rientrano nella condizione qui presentata le più note condizioni sulla frontiera che assicurano l'esistenza di un punto singolare del campo vettoriale I-f.

- I. Let B be the unit ball of a Banach space E and $f: \overline{\mathbb{B}} \to \mathbb{E}$ be a condensing map. If $x \neq f(x)$ for any $x \in \partial B$ then $\deg (I f, B, o)$ is defined (see Nussbaum [6]) and if it is different from zero then the vector field I f vanishes at some point $x \in B$. A condition which insures that $\deg (I f, B, o) \neq o$ is the so-called Leray-Schauder condition:
 - i) $\lambda x = f(x)$ for some $x \in \partial B$ implies $\lambda \leq I$.

Therefore if i) is verified it follows that f has a fixed point. This result can be proved also without using the machinery of the degree (see Petryshyn [7], Martelli and Vignoli [5]).

The aim of this note is to present a boundary condition which is more general than the one of Leray-Schauder. It can be applied also in the case when f is defined in the closure of a bounded open subset of E. Moreover it seems that the fixed point theorem we obtain in this way can be proved only with degree techniques.

2. Let $X \subset E$ be a subset of a Banach space E and $f: X \to E$ be a continuous map. We recall that f is said to be a condensing map (see [5]) if for any bounded and non precompact $A \subset X$ we have $\alpha(f(A)) < \alpha(A)$, where α is the Kuratowski [4] measure of noncompactness.

Let Ω be an open subset of E and denote by $\overline{\Omega}$ the closure of Ω . Let $f:\Omega\to E$ be a condensing map. Assume that $\mathbf{M}=\{x\in\Omega:x-f(x)=a\}$ is compact (possibly empty). Then deg $(\mathbf{I}-f,\Omega,a)$ is defined in the sense of Nussbaum [6].

- (*) Work performed under the auspices of the National Research Council of Italy (C.N.R.).
- (**) Nella seduta del 14 novembre 1974.

We are interested in the following properties of the degree.

- I. (Solvability) If $\deg (I f, \Omega, a) \neq o$ then M is nonempty.
- 2. (Homotopy) Let $H: \Omega \times [0, 1] \to E$ be such that $M = \{x \in \Omega : \text{there exists } t \in [0, 1] \text{ such that } H(x, t) = x\}$ is compact. Moreover assume that
 - j) for any x_0 , t_0 there exists an open neighborhood N_{x_0} and an open interval $J_{t_0} \subset [0,1]$ such that $A \subset N_{x_0}$ and $\alpha(A) > 0$ implies

$$\alpha (H (A \times J_{t_0})) < \alpha (A)$$

Then $\deg\left(\left(\mathbf{I}-\mathbf{H}\right)\left(\cdot\right.,o\right)$, Ω , $o\right)=\deg\left(\left(\mathbf{I}-\mathbf{H}\right)\left(\cdot\right.,\mathbf{I}\right)$, Ω , $o\right)$.

A sufficient condition which insures that j) is satisfied is the following: H(., t) is a condensing map for every $t \in [0, 1]$ and H(x, t) is continuous in t, uniformly in $x \in \Omega$.

3. Let Ω be a bounded open subset of a Banach space E and $g: \overline{\Omega} \to E$ be a condensing map such that g(x) = x for every $x \in \partial \Omega$. The vector field $G: \overline{\Omega} \to E$ defined by G(x) = x - g(x) is said to be solvable if deg $(I - g, \Omega, 0) = 0$.

EXAMPLES OF SOLVABLE VECTOR FIELDS

- I. Let Ω be a ball B about the origin and $L: E \to E$ be a condensing linear operator such that $I \notin \sigma(L)$. Then $\deg(I L, B, o) \neq o$.
- 2. Let Ω be as in I. and $f:\overline{\Omega}\to E$ be a condensing map such that f(x)=-f(-x), f(x)=x for any $x\in\partial\Omega$. Then $\deg(I-f,\Omega,\sigma)=\sigma$.
- 3. Let Ω be convex and $f: \overline{\Omega} \to E$ be a condensing map such that $f(\partial \Omega) \subset \Omega$. Then $\deg(I f, \Omega, o) = o$.

We recall that the solvability condition implies that the vector field G vanishes at some point $x \in \Omega$.

Theorem. Let Ω be a bounded open subset of a Banach space E and $f: \overline{\Omega} \to E$ be a condensing map. Assume that there exists a solvable vector field $G: \overline{\Omega} \to E$ such that the following boundary condition is verified.

(1) $\lambda G(x) = F(x)$ for some $x \in \partial \Omega$ implies $\lambda \geq 0$, where F(x) = x - f(x). Then f has a fixed point.

Proof. If for some $x \in \partial \Omega$ condition (I) is verified with $\lambda = 0$ then f has a fixed point. Therefore it is enough to prove that if (I) holds with $\lambda > 0$ then the two vector fields G and F are homotopic.

Define $H: \overline{\Omega} \times [o, 1] \to E$ by H(x, t) = x - [tf(x) + (1 - t)g(x)]. We prove first that H is continuous in t uniformly in $x \in \overline{\Omega}$, i.e. for any $\varepsilon > o$ there exists $\delta > o$ such that $|t_1 - t_2| < \delta$ and $x \in \overline{\Omega}$ implies $||H(x, t_1) - H(x, t_2)|| < \varepsilon$.

We have

$$\parallel \mathbf{H}\left(x \mathsf{,} t_{1}\right) - \mathbf{H}\left(x \mathsf{,} t_{2}\right) \parallel \leq \left| t_{1} - t_{2} \right| \left(\left\| f\left(x\right) \right\| + \left\| g\left(x\right) \right\| \right)$$

Since f and g are condensing and Ω is bounded it follows that $\sup \{ \|f(x)\| + \|g(x)\| : x \in \Omega \} = \mathbb{N} < \infty$. Therefore

$$\| H(x, t_1) - H(x, t_2) \| \le |t_1 - t_2| N.$$

We prove now that $H(x, t) \neq 0$ for any $x \in \partial \Omega$. Assume the contrary, i.e. $x = tf(x) + (\mathbf{I} - t)g(x)$ for some $x \in \partial \Omega$ and $0 \le t \le \mathbf{I}$. Hence $x - g(x) = t(f(x) - g(x)), t \in (0, \mathbf{I})$. Thus

$$(I - t^{-1})G(x) = F(x), t^{-1} > I.$$

This contradicts the assumption (I), therefore $H(x,t) \neq 0$ for all $x \in \partial \Omega$. It follows that H is an admissible homotopy joining the two vector fields G and F. Thus deg $(I - f, \Omega, 0) \neq 0$ and $0 \in Im(I - f)$. Q.E.D.

Remark 1. The following conditions are clearly equivalent to condition (1).

- (2) $\nu G(x) = G(x) F(x)$ for some $x \in \partial \Omega$ implies $\nu \leq 1$.
- (3) $\forall (x g(x)) = f(x) g(x)$ for some $x \in \partial \Omega$ implies $\forall x \in \Omega$
- (4) $\mu x + (\mathbf{I} \mu) g(x) = f(x)$ for some $x \in \partial \Omega$ implies $\mu \leq \mathbf{I}$.
- (5) For each $x \in \partial \Omega$ the two vectors G(x) and F(x) are not in opposite direction if $F(x) \neq 0$.
- (6) For each $x \in \partial \Omega$ we have $tF(x) + (1-t)G(x) \neq 0$ for any $0 \le t < 1$
- (7) For each $x \in \partial \Omega$ we have $tf(x) + (1-t)g(x) \neq x$ for any $0 \le t < 1$.

Remark 2. Condition (3) reduces to Leray-Schauder condition in the case when Ω is the unit ball of E and g is the zero map.

COROLLARY I (Granas' condition). Let Ω be a bounded open subset of E and $f: \overline{\Omega} \to E$ be a condensing map. Assume that there exists a solvable vector field $G: \overline{\Omega} \to E$ such that the following boundary condition is verified.

$$\|\mathbf{G}(x) - \mathbf{F}(x)\| \le \|\mathbf{G}(x)\|$$

for every $x \in \partial \Omega$, where F(x) = x - f(x). Then f has a fixed point.

Proof. Let $\lambda G(x) = F(x)$ for some $x \in \partial \Omega$. Since $G(x) \neq 0$ for every $x \in \partial \Omega$ we have $| I - \lambda | \leq I$. This clearly implies that $\lambda \geq 0$.

Remark 3. Corollary I was proved by Granas [2] for the case when F and G are compact vector fields.

COROLLARY 2 (Krasnosel'skij's condition). Let Ω be the unit ball B around the origin and $f: \overline{\mathbb{B}} \to \mathbb{E}$ be a condensing map such that $x - f(x) \neq t(-x - f(-x))$ for every $x \in \partial \mathbb{B}$ and t > 0. Then f has a fixed point.

Proof. It is enough to show that there exists a solvable vector field G such that condition (I) is verified.

Put

$$g(x) = \frac{f(x) - f(-x)}{2} .$$

Clearly g is a condensing antipodal map such that $x-g(x) \neq 0$ for every $x \in \partial B$. Therefore the vector field $G: \overline{B} \to E$ defined by G(x) = x - g(x) is solvable. Assume that $\lambda G(x) = F(x)$, where F(x) = x - f(x). This implies that $(\lambda - 2)x - (\lambda - 2)f(x) = \lambda (-x - f(-x))$. If $\lambda = 2$ then f has a fixed point. Assume $\lambda \neq 2$. We obtain

$$x - f(x) = \frac{\lambda}{\lambda - 2} \left(-x - f(-x) \right).$$

Therefore $\frac{\lambda}{\lambda-2} \le 0$, i.e. $0 \le \lambda < 2$. Thus condition (1) is verified and the result is proved.

Remark 4. Corollary 2 was first proved by Krasnosel'skij [3] for the compact case.

COROLLARY 3. Let Ω be a bounded open subset of a Banach space E and $f: \overline{\Omega} \to E$ be a condensing map. Assume that there exists a solvable vector field $G: \overline{\Omega} \to E$ such that one of the following boundary conditions is verified.

- i) $h(G(x)) \leq h(F(x))$, for any $x \in \partial \Omega$ and one $h \in J(G(x))$ where $J: E \to E^*$ is the duality mapping (i.e. $J(x) = \{h \in E^* : h(x) = \|x\|^2 \}$ and $\|h\| = \|x\|$) and $\|f(x) = x f(x)$;
- ii) $h(F(x)) \le h(G(x))$ for any $x \in \partial \Omega$ and one $h \in J(F(x))$. Then f has a fixed point.
- *Proof.* i) Assume that $\lambda G(x) = F(x)$ for some $x \in \partial \Omega$. We have $h(G(x)) = \|G(x)\|^2 \le h(\lambda G(x)) = \lambda \|G(x)\|^2$. Since $\|G(x)\| > 0$ we obtain $\lambda \ge I$.
- ii) If f has a fixed point on $\partial\Omega$ we are done. Assume that $f(x) \neq x$ for any $x \in \partial\Omega$. If $\lambda G(x) = F(x)$ for some $x \in \partial\Omega$ we have $\lambda \neq 0$ and

$$h(F(x)) = \|F(x)\|^{2} \le \frac{1}{\lambda} \|F(x)\|^{2}.$$

Thus $\frac{1}{\lambda} \ge 1$, i.e. $0 < \lambda \le 1$.

COROLLARY 4. Let Ω be a bounded open subset of a Banach space E and $f: \overline{\Omega} \to E$ be a condensing map. Assume that there exists a solvable vector field $G: \overline{\Omega} \to E$ such that the following boundary condition is verified

$$h\left(f\left(x\right)\right) \leq h\left(x\right)$$

for any $x \in \partial \Omega$ and one $h \in J(G(x))$, where $J: E \to E^*$ is the duality mapping. Then f has a fixed point.

Proof. Assume that $\lambda G(x) = F(x)$ for some $x \in \partial \Omega$. We have $0 \le h(x - f(x)) = h(\lambda G(x)) = \lambda h(G(x))$.

Since $G(x) \neq 0$ for any $x \in \partial \Omega$ we have $h(G(x)) = \|G(x)\|^2 > 0$. Therefore $\lambda \geq 0$.

COROLLARY 5 (Altman's condition). Let Ω be a bounded open subset of a Banach space E and $f: \overline{\Omega} \to E$ be a condensing map. Assume that there exists a solvable vector field $G: \overline{\Omega} \to E$ such that the following boundary condition is verified

$$\| G(x) - F(x) \|^{2} \le \| F(x) \|^{2} + \| G(x) \|^{2}$$

for any $x \in \partial \Omega$, where F(x) = x - f(x).

Then f has a fixed point.

Proof. Assume that $\lambda G(x) = F(x)$ for some $x \in \partial \Omega$. We have

$$\lambda^{2} \|G(x)\|^{2} \ge (I - \lambda)^{2} \|G(x)\|^{2} - \|G(x)\|^{2}.$$

Since $G(x) \neq 0$ for any $x \in \partial \Omega$ we obtain

$$\lambda^2 \geq \left(\mathbf{1} - \lambda \right)^2 - \mathbf{1} \quad \text{i.e.} \quad \lambda \geq o.$$

Remark 5. Corollary 5 contains the fixed point theorem of Altman [I] in the case when B is the unit ball of a Hilbert space H, f is compact and g is the zero map.

4. The following examples show how Theorem 1 can be used for solving some functional equations; however, this is not the only way that they can be solved.

Example 1. Let C[o,L] be the Banach space of continuous real valued functions $x:[o,L]\to \mathbb{R}$ with the supremum norm and $f:\mathbb{R}\times [o,L]\to \mathbb{R}$ a continuous function such that $|f(r,t)|\leq \mathbb{M}$ for any $(r,t)\in\mathbb{R}\times [o,L]$. Consider the operator $T:C[o,L]\to C[o,L]$ defined by

$$T(x)(t) = -\frac{tx(t)}{LM} + \int_{0}^{t} f(x(s), s) ds.$$

We want to show that if M > I then T has a fixed point.

The map $g: C [o, L] \to C [o, L]$ defined by $g(x)(t) = \frac{-tx(t)}{LM}$ is contractive antipodal and such that $g(x) \neq x$ for any $x \neq o$. Let B(o, LM) be the ball of radius LM centered at the origin. We have $\deg(I - g, B(o, LM), o) \neq o$.

Let us prove that

$$\lambda (x - g(x)) = T(x) - g(x)$$

for some $x \in \partial B$ (o, LM) implies $\lambda \leq I$. Assume that

$$\lambda(x - g(x)) = \lambda x \left(\mathbf{I} + \frac{t}{LM} \right) = \mathbf{T}(x) - g(x) = \int_{0}^{t} f(x(s), s) ds$$

for some $x \in \partial B$ (o, LM) and $\lambda \ge 0$. There exists $t_0 \in [0, L]$ such that $|x(t_0)| = LM$. Therefore

$$\lambda LM\left(I + \frac{t_0}{ML}\right) = \left| \int_0^{t_0} f(x(s), s) \, ds \right| \leq \int_0^{t_0} |f(x(s), s)| \, ds \leq LM.$$

This implies that $\lambda \leq I$. On the other hand the operator T is an α -contraction since it is the sum of a contraction with a compact map. By Theorem I T has a fixed point.

We remark that a fixed point of T is a solution of the differential equation

$$\begin{cases} x'\left(\mathbf{I} + \frac{t}{\mathrm{LM}}\right) + \frac{x}{\mathrm{LM}} = f(x(t), t) \\ x(0) = 0. \end{cases}$$

Example 2. Let $g: E \to E$ be a condensing map and $h: E \to E$ be a compact map. Assume that the following two conditions are verified

i) there exists r > 0 such that $x - g(x) \neq t(-x - g(-x))$ for any ||x|| > r and t > 0;

$$\limsup_{x \to \infty} \frac{\|h(x)\|}{\|x - g(x)\|} < 1.$$

Then the equation x = g(x) + h(x) has a solution.

Condition i) implies that if $\rho > r$ then $\deg (I - g, B(o, \rho), o) \neq o$. Condition ii) implies that there exist $\delta > o$ such that $\|h(x)\| < \|x - g(x)\|$ for any $\|x\| > \delta$. Put f(x) = g(x) + h(x). If R is big enough then $\lambda(x - g(x)) = f(x) - g(x)$ for some $\|x\| = R$ implies $\lambda \leq I$. Therefore all of the conditions of Theorem I for the restriction of f to the closed ball $\overline{B(o, R)}$ are fulfilled. It follows that f has a fixed point.

REFERENCES

- [I] M. ALTMAN (1957) A fixed point theorem in Hilbert space, « Bull. Acad. Pol. Sci. », 5 (1), 19–22.
- [2] A. GRANAS (1962) The theory of compact vector fields and some of its applications to topology of functional spaces, «Rozprawy Matematyczne», 30, Warzawa.
- [3] M. A. KRASNOSELSKIJ (1956) Topological methods in the theory of nonlinear integral equations, «Gostechizdat», Moscow.
- [4] C. KURATOWSKI (1930) Sur les espaces completes, « Fund. Math. », 15, 301-309.
- [5] M. MARTELLI and A. VIGNOLI (1972) Eigenvectors and surjectivity for α-Lipschitz mappings in Banach spaces, «Ann. Mat. Pura Appl. », 94, 1–9.
- [6] R. D. Nussbaum (1972) Degree theory for local condensing maps, « Jour. Math. Anal. Appl. », 37, 741-766.
- [7] W. V. Petryshyn (1972) Remarks on condensing and k-set-contractive mappings, « Jour. Math. Anal. Appl. », 39, 717–741.
- [8] B. N. SADOVSKIJ (1967) On a fixed point principle, « Funkt. Anal. Priložen. », 1, 74-76.