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Topologia. — A generalized Leray-Schauder condition ®. Nota
di MarR10O MARTELLI e ALFONSO VIGNOLIL, presentata ®? dal Socio
G. SANSONE. '

RIASSUNTO. — Sia f:B —E una funzione continua, addensante definita nel disco
unitario B di uno spazio di Banach E, e senza punti fissi sulla frontiera S di B. E noto che in
tal caso deg (I —f, B, 0) & definito (cfr. Nussbaum. [6]) e se & diverso da zero allora il campo
vettoriale I —f: B~ E, (I — /) (*) =z —f(x), ha almeno un punto singolare zyeB. Una
condizione che implica deg (I —f, B, 0)==o0 & la cosiddetta condizione di Leray-Schauder

Ax = f(x) per qualche xeS=A < 1.

In questo lavoro si di una condizione piti generale di quella di Leray-Schauder. Essa pud
essere applicata anche quando f & definita sulla chiusura Q di un insieme aperto e limitato
QcCE. Si rileva anche che, oltre a quella di Leray-Schauder, rientrano nella condizione
qui presentata le pilt note condizioni sulla frontiera che assicurano Desistenza di un punto
singolare del campo vettoriale I —f.

1. Let B be the unit ball of a Banach space E and f:B—E be a
condensing map. If x==#(x) for any x€9B then deg(I —f, B, 0) is
defined (see Nussbaum [6]) and if it is different from zero then the vector
field I —f vanishes at some point x € B. A condition which insures that
deg (I —f,B,0)==0 is the so-called Leray-Schauder condition:

i) Axr=f(x) for some xe€aB implies A < 1.
Therefore if i) is verified it follows that f has a fixed point. This result can
be proved also without using the machinery of the degree (see Petryshyn [7],
Martelli and Vignoli [5]).

The aim of this note is to present a boundary condition which is more
general than the one of Leray-Schauder. It can be applied alsoin the case when
/ is defined in the closure of a bounded open subset of E. Moreover it seems
that the fixed point theorem we obtain in this way can be proved only with
degree techniques.

2. Let X CE be a subset of a Banach space E and f: X —E be a
continuous map. We recall that / is said to be a condensing map (see [5])
if for any bounded and non precompact A C X we have o (f(A) < a(A),
where a is the Kuratowski [4] measure of noncompactness.

‘Let Q be an open subset of E and denote by Q the closure of Q. Let
f:Q —E be a condensing map. Assume that M = {x € Q: x—f(x)=a}
is éompact (possibly empty). Then deg (I —f, Q, a) is defined in the sense
of Nussbaum [6].

(*) Work performed under the auspices of the National Research Council of Italy (C.N.R.).
(**) Nella seduta del 14 novembre 1974.
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We are interested in the following properties of the degree.

1. (Solvability) If deg (I —f, Q,a)==0 then M is nonempty.

2. (Homotopy) Let H:QXJ[o, 1] = E be such that M = {x € Q:
there exists #€[o, 1] such that H(x, #) =} is compact. Moreover
assume that
j) for any xg,#, there exists an open neighborhood N,, and an
open interval J, C[o, 1] such that ACN,, and «(A)> o implies

a(HAX]T:) <a(A)

Then deg (I —H) (- ,0),Q,0) =deg (I—H)(., 1), Q,0).

A sufficient condition which insures that j) is satisfied is the following:
H (., ?) is a condensing map for every z€ [0, 1] and H (x, #) is continuous
in ¢, uniformly in x € Q.

3. Let Q be a bounded open subset of a Banach space E and g: Q -~ E
be a condensing map. such that g(x)g=x for every x€9Q. The vector
field G:Q—E defined by G (x) = x—g(x) is said to be solvable if
deg(I—g,Q,0)=Fo.

EXAMPLES OF SOLVABLE VECTOR FIELDS

. Let Q be a ball B about the origin and L : E —~ E be a condensing
linear operator such that 1 €c (L). Then deg(I—1L,B,o0)==o0.

2. Let Q be as in 1. and f: Q —E be a condensing map such that
JS(x)=—f(—2x),f(®)=Fx for any x€3Q. Then deg(I—f,Q,0)==o0.

3. Let Q be convex and f:Q —+E be a condensing map such that
f(eQ)C Q. Then deg(I—f, Q,0)=o.

We recall that the solvability condition implies that the vector field G
vanishes at some point x € Q.

THEOREM. Zet Q be a bounded open subset of a Banackh space E and
f:Q—E bea condensing map. Assume that there exists a solvable vector
Jield G : Q—~E such that the following boundary condition is verified.

(1) G (x) = F () for some x € 9Q implies N = o, where F (x) = x —
—f(x). Then f has a fixed point.

Proof. 1f for some x € 3Q condition (1) is verified with A = o then Vi
has a fixed point. Therefore it is enough to prove that if (1) holdswith A > o
then the two vector fields G and F are homotopic.

Define H:QX[o,1]>E by H(x,) =x— [¢f (x) + (1 —2) g (2)].
We prove first that H is continuous in # uniformly in x € Q, i.e. for any
€>o0 there exists & >0 such that |#—#]| <8 and x€Q implies
1 H (@, ) —H(x,5) ] <=
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We have
IH@, ) —H@, I <[4 —4& (/@1 +Ilg@D)

Since f and g are condensing and Q is bounded it follows that
sup {[l/ @) || +1lgx)]:x€Q} =N <oo. Therefore

IH (x,2)—H (x, )| < |, —# | N.

We prove now that H(x,#)5=0 for any x €3Q. Assume the contrary, i.e.
x =1 (x)+ (1 —¢) g (x) for some x €Q and o < #< 1. Hence xr —g(x) =
=¢(f(x)—gx),2€(0,1). Thus

1—tHG@E)=F (), >r1
This contradicts the assumption (1), therefore H (x,#) ==o0 for all x € 2Q.

It follows that H is an admissible homotopy joining the two vector fields G
and F. Thus deg (I—/f,Q,0) 530 and o€lm (I —f). Q.E.D.

Remart 1. The following conditions are clearly equivalent to condition (1).

(2) vG(x) = G(x) — F (x) for some x € 9Q implies v < 1.

(3) v(ix—g ®) =f(x) —g (x) for some x €3Q implies v < 1.

(4) bx + (1 —w) g () = f(x) for some x €3Q implies p < 1.

(5) For each x €2Q the two vectors G (x¥) and F (x) are not in
opposite direction if F (x)=Fo.

(6) For each x €2Q we have #F(x)+ (1 —t)G(x>={=o for any o<#<1

(7) For each x€3Q we have #(x) +(1—#g(x)s=x for any
o<z <I.

Remark 2. Condition (3) reduces to Leray-Schauder condition in the
case when Q is the unit ball of E and g is the zero map.

COROLLARY 1 (Granas’ condition). Let Q be a bounded open subset of
Eand f:Q —E be a condensing map. Assume that there exists a solvable
vector field G : Q — E such that the following boundary condition is verified.

IG@ —F@I<IG@I
Sfor every x€3Q, where F (x) =x—f(x). Then f has a fixed point.

Proof. Let 2G (x) = F (x) for some x € 3Q. Since G (x) == o for every
x€93Q we have | 1 —2A| < 1. This clearly implies that A > o.

~ Remark 3. Corollary 1 was proved by Granas [2] for the case when
F and G are compact vector fields.

CoROLLARY 2 (Krasnosel’skij’s condition). Zez Q be the unit ball B
around the origin and f:B —E be a condensing map such that x —f (x) ==
=t (—x—f(—x)) for every x€9B and t>o. Then S has a fixed point.

Proof. It is enough to show that there exists a solvable vector field G
such that condition (1) is verified.
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Put

Clearly ¢ is a condensing antipodal map such that x —g (x)== 0 for every
x €3B. Therefore the vector field G : B — E defined by G () = x —g (x)
is solvable. Assume that AG (x) = F (x), where F (¥) = x — f(x). This im-
plies that A —2)x — (A —2)f(x) =A(—x—f(—=x)). If =2 then f
has a fixed point. Assume A==2. We obtain

x’_f<x>=7\

Therefore 7\—)\—2 < 0, i.e. 0 <A < 2. Thus condition (1) is verified and the
result is proved.

Remark 4. Corollary 2 was first proved by Krasnosel’skij [3] for the
compact case.

COROLLARY 3. Let Q be a bounded open subset of a Banack space E and
f:Q—>E bea condensing map. Assume that there exists a solvable vector field
G :Q —E such that one of the Sfollowing boundary conditions is verified.

) 2(Gx) <h(F(x), for any x€3Q and one he€ J(G (x) where
J:E = E* is the duality mapping (ie. J(x)={rheE*: h(x)= x| and
IZ1=1lxlI}) and F(x) =x—f(x); '

i) 2(F ) <4(G () for any x€d3Q and one ke ] (F(x)).
Then [ has a fixed point.

Progf. 1) Assume that AG (x) = F(x) for some x€3Q. We have
GE)=IG@IP<A0G @) =1]G@IE.  Since [G@| >0 we
obtain A >1.

ii) If / has a fixed point on 3Q we are done. Assume that f(x)=Fx
for any x€23Q. If »G (x) = F (x) for some x€3Q we have A=Fo0 and

hEF@)=F@ P <=[F@|.
Thus %2 I,i.e. 0 <A<
COROLLARY 4. Let Q be a bounded open subset of a Banach space E and

f:Q —E be a condensing map. Assume that there exists a solvable vector Jeeld
G:Q — E such that the Sollowing boundary condition is verified

h(f (%) < 4 (%)

Jor any x€3Q and one he€ ] (G(x)), where J:E —E" is the duality mapping.
Then f has a fixed point.

Proof. Assume that MG (x) = F (x) for some x € 9Q. We have
0 < h(x—F @) = h0G (1) = M (G (x).
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Since G (¥)F=0 for any x €23Q we have % (G (x)) = ||G ®)|?® > 0. There-
fore A>o.

COROLLARY 5 (Altman’s condition). Lez Q be a bounded open subset of a
Banach space E and f: Q —E be a condensing map. Assume that therve exists
a solvable vector field G : Q — B such that the Jollowing boundary condition
is verified

I1G@—F@IF<IF@®IP+1G @
Jor any x €3Q, where F(x) = x —f(x).
Then f has a fixed point.
Proof. Assume that MG (x) = F(x) for some x €2Q. We have
PIG@IP =0 =M I6@ P —1G@IP
Since G (x)9=0 for any x€3Q we obtain
B> (1 —n—1 ie. AZ=>o.

Remartk 5. Corollary 5 contains the fixed point theorem of Altman [1]
in the case when B is the unit ball of a Hilbert space H, f is compact and g
is the zero map.

4. The following examples show how Theorem 1 can be used for solving
some functional equations; however, this is not the only way that they can
be solved.

Example 1. Let C[o,L] be the Banach space of continuous real valued
functions x:[o,L] —R with the supremum norm and f:RX[o,L] - R
a continuous function such that |f(»,#)| <M for any (»,# eRx[o,L].
Consider the operator T:C [0, L] —C [0, L] defined by

T @®=— 22

+[re0 6.
0

We want to show that if M > 1 then T has a fixed point.

The map g:C[o,L]~C[o,L] defined by g()(0) =2

is contractive antipodal and such that g(x)==x for any x==o0. Let
B (o,LM) be the ball of radius LM centered at the origin. We have
deg (I —g,B(0,LM), 0)=o.
Let us prove that
Ax—g@)=T@x) —gx

for some x €3B (0, LM) implies A < 1. Assume that

Mg @)= (14 L) = T —g ) = [/, ds
0



M. MARTELLI e A. VIGNOLI, A generalized Leray-Schauder condition 379

for some x€9B(0,LM) and A >o0. There exists #y € [0, L] such that
| x (#9) | = LM. Therefore

7\LM(I + Ni‘i

)=|f}<x<s>,s> ds
0

S[!f(x(s),s)[dsgLM.
6

This implies that A < 1. On the other hand the operator T is an a-contrac-
tion since it is the sum of a contraction with a compact map. By Theorem 1
T has a fixed point.

We remark that a fixed point of T is a solution of the differential equation

| #(1+ o)+ B =/ 0.9
x (0) = o.

Example 2. Let g: E —E be a condensing map and 42: E —E be a
compact map. Assume that the following two conditions are verified

i) there exists » > o0 such that x —g (x)4=¢(—x—g (—x)) for any
2]l >7» and #>0;

Then the equation x = g (x) + % (x) has a solution.

Condition i) implies that if p > 7 then deg (I —g, B (o, p),0)==o0.
Condition ii) implies that there exist 8 > o such that ||Z (x)|| < | x —g (®)|
for any [|x||>8 Put f(x)=g (&) + £(). If R is big enough then
r(x—g @) =f(x)—g(x) for some ||x|| =R implies A < 1. Therefore
all of the conditions of Theorem 1 for the restriction of f to the closed ball
B (o, R) are fulfilled. It follows that f has a fixed point.
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