ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

ALEXANDRU NEAGU

On the intersection of principal fibre subbundle

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **57** (1974), n.5, p. 350–354. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1974_8_57_5_350_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Geometria differenziale. — On the intersection of principal fibre subbundle. Nota di Alexandru Neagu, presentata (*) dal Socio B. Segre.

RIASSUNTO. — Questo lavoro verte su qualche problema riguardante l'intersezione dei sottofibrati principali chiusi di uno spazio fibrato principale differenziabile.

Let P(M, G) be a principal differentiable fibre bundle. We denote by π the canonical projection $P \to M$ and let $\mathscr{A} = \{(U_i, \varphi_i)/i \in I\}$ be the highest atlas of P(M, G), where (U_i, φ_i) are allowable charts of P.

A principal fibre bundle $P_1(M,G_1)$ is a principal subbundle of P(M,G) if:

- a) P₁ is a submanifold of P, and G₁ is a Lie subgroup of G;
- b) $\pi_1 = \pi|_{P_1}$, where π_1 is the projection $P_1 \to M$;
- c) $\overline{R}_g = R_g|_{P_1}$, where \overline{R}_g and R_g are translations on P_1 and P respectively, defined by $g \in G_1$.

PROPOSITION I [I]. The subset $P_1 \subset P(M,G)$ is a principal subbundle of P(M,G) if, and only if, $\pi_1 = \pi|_{P_1}$ satisfies the following conditions:

- a) $\pi_1(P_1) = M;$
- b) $\pi_1^{-1}(x) = z \cdot G_1$ if $z \in \pi_1^{-1}(x)$ and $x = \pi(z)$;
- c) for every point $x \in M$ there exist an open neighborhood U of x and a differentiable mapping $\sigma: U \to P(M, G)$ satisfying $\sigma(U) \subset P_1$ and $\pi_1 \circ \sigma = \mathit{id}_U$.

PROPOSITION 2 [3]. $P_1(M, G_1)$ is a closed subbundle of P(M, G) if and only if there exists a cross section $s: M \to P/G_1$.

Lemma 1. The structure group G of P(M,G) is reducible to a closed subgroup $G_1 \subset G$ if, and only if, the following conditions are satisfied:

- a) there exist a differentiable manifold V, a representation of G on V, $(g, u) \in G \times V \rightarrow g \cdot u \in V$, and a point $u_0 \in V$ such that the isotropy group of u_0 is G_1 . The orbital mapping $\rho(u_0): G \rightarrow V$ defined by $\rho(u_0) \cdot a = a \cdot u_0$ is a subimmersion (this condition is obviously satisfied in the finite dimensional case);
- b) there exists a morphism $A: P \to V$ such that $A(P) = Gu_0$ (the orbit of u_0) and $A(z \cdot g) = g^{-1}A(z)$ for every $z \in P$ and $g \in G$.

Proof. Let us consider the map

$$i_{u_0}: \ a/G \in G/G_1 \rightarrow i_{u_0}(a/G_1) = au_0 \in V.$$

(*) Nella seduta del 14 novembre 1974.

We prove that i_{u_0} is an immersion. If $a/G_1 = b/G_1$ then $a^{-1} \cdot b \notin G_1$. Supposing $i_{u_0}(a/G_1) = i_{u_0}(b/G_1)$ it results $au_0 = bu_0$ and $u_0 = a^{-1} bu_0$, in other words $a^{-1} b \in G_1$. Let λ be the canonical projection $G \to G/G_1$. We have $\rho(u_0) = i_{u_0} \circ \lambda$ and $\rho(u_0) \cdot a = (i_{u_0} \circ \lambda)(a) = i_{u_0}(a/G_1) = a \cdot u_0$. Since $\rho(u_0)$ and λ are analytic it follows that i_{u_0} is analytic. Since gG_1 is a submanifold of G then $T_g(gG_1) = \operatorname{Ker}$. $T_g(\rho(u_0))$; but $\operatorname{Ker} T_g \lambda = T_g(gG_1)$ and hence $T_{\lambda(g)} i_{u_0}$ is injective. On the other hand, the image of $T_{\lambda(g)} i_{u_0}$ coincides with the image of $T_g(\rho(u_0))$, and the latter has a topological supplement. Consequently i_{u_0} is an immersion.

We shall prove now the first statement of the lemma. Let π_1 be the restriction of π to $A^{-1}(u_0)$. We prove that π_1 satisfies the conditions of Proposition I. Since Gu_0 is the immersed submanifold of V, it results that A is a morphism of P on $Gu_0 = G/G_1$. Assume $z_1 \in \pi^{-1}(x) \subset P$. Since $A(z_1) \in Gu_0$ there is $g \in G$ such that $A(z_1) = gu_0$ and:

$$A(z_1 \cdot g) = g^{-1} A(z_1) = g^{-1} g u_0 = u_0$$
.

It follows that $z_1 g \in A^{-1}(u_0)$, so that $\pi_1(A^{-1}(u_0)) = M$.

Let z_1 and z_2 be two points of $A^{-1}(u_0)$ satisfying $\pi_1(z_1)=\pi_1(z_2)=x$ and $g\in G$ such that $z_2=z_1\cdot g$. It follows that $A(z_2)=A(z_1\cdot g)=g^{-1}A(z_1)$, hence $g^{-1}u_0=u_0$ and $g\in G_1$. Accordingly $\pi_1^{-1}(x)=z_1G$.

Let U' be an open neighbourhood in G/G_1 and $W = i_{u_0}(U')$. Then W is an open set in Gu_0 equipped with the induced topology, and $A^{-1}(W)$ is open in P. Let $U \subset A^{-1}(W)$ be an open set of P. We have $A(U) \subset W$ and $i_{u_0}^{-1}(A(U)) \subset U'$. It is clear that for every open set U' in G/G_1 , there is an open set U in P such that $(i_{u_0}^{-1} \circ A)(U) \subset U'$. Let τ be a local cross-section over U'; we have:

$$U \subset M \xrightarrow{s} P(M, G) \xrightarrow{A} Gu_0 \xrightarrow{i_{u_0}^{-1}} G/G_1 \xrightarrow{\tau} G.$$

If λ is the canonical projection $G \to G/G_1$ then $\lambda \circ \tau = id$. Let us denote $\sigma = i_{u_0}^{-1} \circ A \circ s$, $h = \tau \circ \sigma$ and $\eta(x) = s(x) \cdot h(x)$ (for $x \in U$). Then $\lambda \circ h = \lambda \circ \tau \circ \sigma = \sigma$ and

$$\begin{split} & \mathbf{A}\left(\eta\left(x\right)\right) = \mathbf{A}\left(s\left(x\right) \cdot h\left(x\right)\right) = [h\left(x\right)]^{-1} \cdot \mathbf{A}\left(s\left(x\right)\right) = [h\left(x\right)]^{-1} \cdot (i_{u_{0}} \circ \sigma)\left(x\right) = \\ & = [h\left(x\right)]^{-1} \cdot i_{u_{0}}\left((\lambda \circ h)\left(x\right)\right) = [h\left(x\right)]^{-1} \cdot i_{u_{0}}\left(h\left(x\right)/\mathbf{G}_{1}\right) = \\ & = [h\left(x\right)]^{-1} \cdot h\left(x\right) \cdot u_{0} = u_{0} \; . \end{split}$$

Hence η is a local cross-section over U, with its values in $A^{-1}(u_0)$.

Conversely, let $P_1(M,G_1)$ be a closed principal fibred subbundle of P(M,G) and $V=G/G_1$. Then there is a global cross-section $s:M\to P/G_1$. Let (U,ϕ) and (U,ψ) be the bundles charts of P(M,G) and P/G_1 , respectively.

One can define the morphism $A: P \rightarrow V$ by:

$$\mathbf{A}\left(z\right) = \left[\phi_x^{-1}\left(x\right)\right]^{-1} \cdot \psi_x^{-1}\left(s\left(x\right)\right) \qquad \text{for} \quad z \in \pi^{-1}\left(x\right) \quad \text{and} \quad x \in \mathbf{U} \; .$$

25. - RENDICONTI 1974, Vol. LVII, fasc. 5.

Here φ_x (resp. ψ_x) is the restriction of φ (resp. ψ) to $\{x\} \times G$ (resp. $\{x\} \times G/G_1$). If $(\overline{U}, \overline{\varphi})$ and $(\overline{U}, \overline{\psi})$ are two associated bundles charts such that $U \cap \overline{U} \neq \emptyset$ then

$$[\overline{\varphi}_{x}^{-1}(z)]^{-1}\overline{\psi}_{x}^{-1}(s(x)) = [a_{\overline{\varphi}\varphi}(x)\ \varphi_{x}^{-1}(z)]^{-1}[a_{\overline{\psi}\psi}(x)\ \psi_{x}^{-1}](s(x)) =$$

$$= [\varphi_{x}^{-1}(z)]^{-1}[a_{\overline{\varphi}\varphi}(x)]^{-1}a_{\overline{\psi}\psi}(x)\ \psi_{x}^{-1}(s(x)) = [\varphi_{x}^{-1}(z)]^{-1}\psi_{x}^{-1}(s(x)).$$

Where $a_{\overline{\phi}\phi}$ (resp. $a_{\overline{\psi}\psi}$) is the transition function subordinate of charts (U, ϕ) and $(\overline{U}, \overline{\phi})$ (resp. (U, $\overline{\psi}$) and (\overline{U}, ψ)). Here we have used the property: $a_{\overline{\phi}\phi}(x) = a_{\overline{\psi}\psi}(x)$ for the associated bundles charts. Assume $z \in P$ and $g \in G$. Thus

$$\begin{split} &\mathbf{A}\,(z\cdot g) = \mathbf{A}\,[\varphi_x\,(\varphi_x^{-1}\,(z)\cdot g)] = [\varphi_x^{-1}\,(\varphi_x\,(\varphi_x^{-1}\,(z))\cdot g\,]^{-1}\cdot\psi_x^{-1}\,(s\,(x)) = \\ &= g^{-1}\cdot[\varphi_x^{-1}\,(z)]^{-1}\,\varphi_x^{-1}\,(s\,(x)) = g^{-1}\,\mathbf{A}\,(z)\,. \end{split}$$

Consequence I. In the conditions of the Lemma I, if u_1 , $u_2 \in Gu_0$ are the isotropy groups G_1 and G_2 respectively, then $A^{-1}(u_1)$ and $A^{-1}(u_2)$ are conjugated subbundles; more precisely there is $g \in G$ such that $A^{-1}(u_1) \cdot g = A^{-1}(u_2)$ and $G_2 = g^{-1}G_1$.

Indeed, let a be the element of G such that $u_2 = a \cdot u_1$; we have $A(z \cdot a^{-1}) = a \cdot A(z) = au_1 = u_2$ for every $z \in A^{-1}(u_1)$. Then $A^{-1}(u_1) \cdot a^{-1} = A^{-1}(u_2)$, and so the assertion is true for $g = a^{-1}$.

Consequence 2. In the conditions of the Consequence 1, $G = G_1$ if and only if $g \in \mathcal{N}(G_1)$ (the normalizer of G_1 in G) or $g \in \mathcal{N}(G_2)$ (the normalizer of G_2 in G).

Theorem 1. Let P(M,G) be a principal fibred bundle and $P_1(M,G_1)$, $P_2(M,G_2)$ two closed subbundles of P(M,G) such that $G_1\cap G_2$ is a Lie subgroup of G. The intersection $P_1\cap P_2$ is a subbundle of P if and only if, $\pi(P_1\cap P_2)=M$, where π is the projection of P(M,G).

Proof. We have the morphism $A_1: P \to G/G_1$, which satisfies the conditions a) and b) of Lemma 1, and A_1^{-1} (e/G_1) = $P_1(M, G_1)$. The group G_2 acts on G/G_1 and the isotropy group of $u_0 = e/G_1$ is $G_1 \cap G_2$. Let A be the restriction of A_1 to P_2 . Let π_1 and π_2 be the restrictions of π to P_1 and P_2 respectively. Let α be the fixed point of $\pi_1^{-1}(x) \cap \pi_2^{-1}(x)$ for any $x \in M$; then for every $\beta \in P$ there is $g \in G_2$ such that $\beta = \alpha \cdot g$. We have:

$$\mathbf{A}\left(\beta\right)=\mathbf{A}\left(\alpha\cdot g\right)=g^{-1}\,\mathbf{A}\left(\alpha\right)=g^{-1}\cdot e/\mathbf{G}_{1}=g^{-1}\,u_{0}\in\mathbf{G}_{2}\,u_{0}\,.$$

Then the morphism A takes its values in the orbit $G_2 u_0$. It follows that $P_2(M, G_2)$ is reducible to a subgroup $G_2 \cap G_1$, and the reduced bundle is $A^{-1}(u_0) = P_1 \cap P_2$.

Example 1. Let Δ^1 and Δ^2 be two distributions on a manifold M, where dim M=n, dim $\Delta^1=p_1$ and dim $\Delta^2=p_2$. Let G_{α} be the subgroups of

GL(n, R) defined by:

$$G_{\alpha} = \{ \| a_{j}^{i} \| \in GL(n, R) / a_{b_{\alpha}}^{i_{\alpha}'} = 0 \}$$

$$b_{\alpha} = 1, 2, \dots, p_{\alpha} \quad ; \quad i_{\alpha}' = p_{\alpha} + 1, \dots, n \quad ; \quad \alpha = 1, 2.$$

Let $\mathscr{F}(M)$ denote the principal fibred bundle of all linear frames of M and let $\mathscr{G}^{\rho_{\alpha}}(M)=\mathscr{F}(M)/G_{\alpha}$ be the Grassmann bundle of all tangent ρ_{α} -planes of M. $\mathscr{F}(M)$ and $\mathscr{G}^{\rho_{\alpha}}(M)$ are the associated fibred bundles. The distribution Δ^{α} on M defines a global cross-section:

$$\Delta^{\alpha}: x \in \mathcal{M} \to \Delta^{\alpha}(x) = \Delta^{\alpha}_{x} \in \mathcal{G}^{p_{\alpha}}(\mathcal{M}).$$

Let (U, φ) and (U, ψ) be the associated allowable charts on $\mathscr{F}(M)$ and $\mathscr{G}^{p_{\alpha}}(M)$, respectively. Thus we can define the morphism:

$$A_{\alpha}: \mathscr{F}(M) \to G^{p_{\alpha}}(n) = GL(n, R)/G_{\alpha}$$

by

$$\mathbf{A}_{\alpha}\left(\mathbf{z}\right) = \left[\phi_{\mathbf{x}}^{-1}\left(\mathbf{z}\right)\right]^{-1} \cdot \psi_{\mathbf{x}}^{-1}\left(\Delta_{\mathbf{x}}^{\alpha}\right)$$

for $z \in \pi^{-1}(x)$ and $x \in U$, where φ_x (resp. ψ_x) is the restriction of φ (resp. ψ) to $\{x\} \times \operatorname{GL}(n, \mathbb{R})$ (resp. $\{x\} \times \operatorname{G}^{\flat_{\alpha}}(n)$). If $(\overline{\mathbb{U}}, \overline{\varphi})$ and $(\overline{\mathbb{U}}, \overline{\psi})$ are the other associated charts such that $x \in U \cap \overline{\mathbb{U}}$ then:

$$\begin{split} & [\overline{\varphi}_{x}^{-1}(z)]^{-1} \cdot \overline{\psi}_{x}^{-1}(\Delta_{x}^{\alpha}) = [a_{\overline{\varphi}\varphi}(x) \ \varphi_{x}^{-1}(z)]^{-1} \ (a_{\overline{\psi}\psi}(x) \cdot \psi_{x}^{-1}) \ (\Delta_{x}^{\alpha}) = \\ & = [\varphi_{x}^{-1}(z)]^{-1} \ [a_{\overline{\varphi}\varphi}(x)]^{-1} \cdot a_{\overline{\psi}\psi}(x) \ \psi_{x}^{-1}(\Delta_{x}^{\alpha}) = [\varphi_{x}^{-1}(z)]^{-1} \cdot \psi_{x}^{-1}(\Delta_{x}^{\alpha}) \end{split}$$

where $a_{\overline{\varphi}\varphi}$ (resp. $a_{\overline{\psi}\psi}$) is the transition function of $\mathscr{F}(M)$ (resp. $\mathscr{G}^{\flat_{\alpha}}(M)$) corresponding to the charts (U,φ) and $(\overline{U},\overline{\varphi})$, (resp. (U,ψ) and $(\overline{U},\overline{\psi})$) and we have used the propriety $a_{\overline{\varphi}\varphi}(x) = a_{\overline{\psi}\psi}(x)$ which holds for associated charts.

It follows that A_{α} does not depend on the associated allowable charts. Since GL(n,R) acts transitively on $G^{\rho_{\alpha}}(n)$ and the isotropy group of e/G_{α} is G_{α} then $B_{G_{\alpha}}(M) = A_{\alpha}^{-1}(e/G_{\alpha})$ is a principal fibre subbundle.

It follows that $B_{G_1}(M) \cap B_{G_2}(M)$ is a principal fibre subbundle if, and only if, for every $x \in M$, $\pi_1^{-1}(x) \cap \pi_2^{-1}(x) \neq \emptyset$, where π_1 and π_2 are the projections of $B_{G_1}(M)$ and $B_{G_2}(M)$, respectively.

Example 2. Let G(n) be the Grassmann manifold of all subspaces of R^n . It is well known [2], that G(n) is a compact manifold and $G^p(n)$ (the Grassmann manifold of p-subspaces of R^n) $p = 1, 2, \dots, n$, is a connexe, open and closed submanifold. The group GL(n, R) acts differentiably on G(n), and $G^p(n)$ are its orbits.

Let $B_H(M)$ be a closed principal subbundle of a G-structure $B_G(M)$. If the homogeneous space G/H is isomorphic with an orbit of G with respect to the representation of G on G(n), then $B_H(M)$ is defined by a distribution Δ

on M (there exists a G-structure $B_{G_1}(M),$ as in Example 1, such that $B_H(M)=B_{\check G}\cap B_{G_l}).$

Indeed, since G is reducible to H there is a morphism $A_0: B_G \to G/H$ (Lemma 1) such that $A_0(z \cdot g) = g^{-1} A_0(z)$ for all $z \in B_G$ and $g \in G$. Let us choose $G^{\flat}(n)$ such that $Gu_0 \subset G^{\flat}(n)$, and let \flat by the projection of $B_G(M)$. If $z_1 \in \pi^{-1}(x)$ (π is the projection of $\mathscr{F}(M)$) and $z_0 \in \flat^{-1}(x)$ then there exists $g \in GL(n, \mathbb{R})$ such that $z_1 = z_0 g$. We define the morphism $A: \mathscr{F}(M) \to G^{\flat}(n)$ by $A(z_1) = g^{-1} A_0(z_0)$.

Since $A_0(z_0) \in G^p(n)$, and $G^p(n)$ is an orbit of GL(n, R), then $g^{-1}A_0(z_0) \in G^p(n)$. Hence A takes its values in $G^p(n)$. If $z_1 = z_0 g$ with $z_0 \in p^{-1}(x)$, and $g \in G$, then $z_0 = z_0 gg^{-1}$ and hence

$$\mathbf{A}\left(z_{1}\right)=g^{-1}\,\mathbf{A}_{0}\left(z_{0}\right)=g^{-1}\,\mathbf{A}_{0}\left(z_{0}\,gg^{-1}\right)=g^{-1}\left(gg^{-1}\right)\mathbf{A}_{0}\left(z_{0}\right)=g^{-1}\,\mathbf{A}_{0}\left(z_{0}\right).$$

It follows that A is well defined. The statements of Lemma 1 are fulfilled and so $\mathscr{F}(M)$ is reducible to G_1 . We obtain a global cross-section of the fibred bundle $\mathscr{F}(M)/G_1$. Let $B_{G_1}(M)$ be the reduced fibre bundle; it follows that $B_H(M) = B_G \cap B_{G_1}$.

REFERENCES

- [1] D. BERNARD (1960) Thése, «Ann. Inst. Fourier», 10, 151-270.
- [2] N. BOURBAKI (1967) Variétés différentielles et analytiques »-Résultats, Hermann, Paris.
- [3] S. KOBAYASHI and K. NOMIZU (1965) Foundations of Differential Geometry, Interscience, New York, vol. I.