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Equazioni differenziali ordinarie. — Oscillation properties of

V' +p@*)y =sf(x). Nota di Gary D. JonEs, presentata © dal
Socio G. SANSONE.

RIASSUNTO. — L’Autore da alcuni teoremi oscillatori per le soluzioni dell’equazione
(&)Y + p (%) y = f () nel caso f> o. E data anche una condizione sufficiente per DI’esistenza
di soluzioni oscillatorie della (%) nel caso che f(z) cambi di segno.

1. INTRODUCTION

The purpose of this paper is to study the equation
(1) PPy =f()

which has recently been studied by Keener [3] and Leighton and Skidmo-
re [5]. The method used here will be that of relating (1) to a third order linear
homogeneous equation as used earlier by Svec [6]. Some of the results ob-
tained in this way will generalize results in [3] and [5]. Others will be new.
It will be assumed that p and f are in C' (0, + o).

To say that a solution y of (1) is oscillatory we will mean that it has zeros

for arbitrarily large x. To say that (1) is oscillatory we will mean that there
is an oscillatory solution of (1).

2. A THIRD ORDER EQUATION

If f(x)> o, it is easy to see that every solution of (1) is a solution of

@ GIFY + @AY + (IS v =o.
Also every solution of (2) is a solution of
(3 y'+py=o

or a nonzero multiple of a solution of (1).

We will be interested in equations (1) such that (2) is C; or Cy as
defined by Hanan [1].

DEFINITION. Eguation (2) is Cy if any solution for which y(@) =y'(a) =0,
y"(@) > 0 is positive on [0, a). It is said to be Cyy if any solution Sfor which
y(@) =y'(a) =0, y"(a) >0 is positive on (a, + oo).

- Assuming 7(x) >0, we now give three theorems which are known for
r =1, for

@)) ")y +py + gy =o0

(¥) Nella seduta del 14 novembre 1974,
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and
(I =)'+ p7 + (P — gz =o.

THEOREM 1. ZEguation (1) is C(Cy) ¢f >0 and 2g— p'>0 (<o
and 29— p'<0) where r'+ (29— p") can equal zero only at isolated points.

Progf. Let y(x) be a solution of (I) such that y(a) =y'(a) = o,
" (@) =1. Suppose (I) is not C;. Let & be the first zero of y (x) to the
left of @. Multiplying (I) by ¥ and integrating from 4 to a we have

2yry" —ry't 4 py? |Z=f<?’—2y)y2—Jr’y’2-
b b

Thus » (6) ¥'2 (6) < o which is a contradiction.
In the same way with »' < o and 2¢g — p' < o, we can show (I) is Cy;.

COROLLARY 1. Equation (2) is Cy(Cyp) if f'< o0 and (pf) =o0(f =0
and (p|f) < o) with only isolated zeros of (1/f) + (plf).

THEOREM 2 [4]. If (r2") + pz = o is nonoscillatory and g > o (g <o)
then (1) is C; (Cyp).

COROLLARY 2. If (¢'|f) + (p|f) 2= 0 is nonoscillatory and (p|f) >o
((21f) < 0) then (2) is C; (Cpp.

THEOREM 3. ZEguation (1) is C;(Cy) tf and only if (I1) zs Cy (C).

Proof. Proceeding in the same manner as Hanan for the case » =1 [1],
multiply (I) by a solution z of (II) and (II) by a solution ¥ of (I). Adding,
we obtain

o=y @) +20y") + (2 y + 2py

Suppose (II) is Cy; but (I) is not C;. Suppose y(8) = y'(6) =0, ¥ () =1
and that y (a) = o for @ < 4. Let 2z be the solution of (II) defined by 2 (¢) =
=g (@) = o, (72') (@) = 1. Integrating the above expression from a to &
we have

o=y @) —y'r2 +z2ry" + p2y lz.
Thus we have

o=2z()7®y"®),

which is a contradiction. Similar arguments complete the proof.

From Corollary 1 we see that the monotone properties of  and p assumed
by Keener [3] and Leighton and Skidmore [5] force (2) to be C; or C;;. We
will obtain some of their conclusions with the hypothesis that (2) be C; or Cy
thus generalizing their corresponding results.
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3. NONOSCILLATORY SOLUTIONS

In view of Corollary 1, the following theorems supplement results of
Keener [3] and Leighton and Skidmore [5].

THEOREM 4. If f>o0 and (2) is Cy, then there are three linearly
independent nonoscillatory solutions of (2) that are solutions of (1).

Proof. If (1) is oscillatory then (3) must be oscillatory [3]. Since (2)
is Cyy, it has three linearly independent nonoscillatory solutions 2, z,, and
z3 [2]. Since z; cannot be a solution of (3), then £; z; is a solution of (1) for
nonzero constant 4;.

In general the conclusion of Theorem 4 is not true when (2) is C;. Ho-
wever, proceeding as in the proof of the above theorem, using the fact that
if (2) is C; it has a solution with no zeros, we obtain the following theorem.

THEOREM 5. [If f>o0, (3) is oscillatory and (2) is C; then there is a
solution of (1) with no zeros.

THEOREM 6. [If f>o, f' <o, (p|f)>c>o0, and (1) is oscillatory,
then there is a unique nonoscillatory solution of (1).

Proof. By Corollary 1 equation (2) is C;. Thus, by Theorem 3
(4) E1A" +(@lf)z =0

is Cy;. Using the methods of [2] (4) has a basis consisting of 2 oscillatory
solutions and one nonoscillatory solution.
Everysolution z of (4) satisfies

Fls(0)] =2 (1)— 22/ + pstfaf = [ (11f) 32 + [ (p1f) 212 + F [ @),

Clearly F [z (x)] is a nondecreasing function of x. If z is a nontrivial
oscillatory solution then F[z(x)] < o since it is negative at the zeros of z. Now

_|_

1 /;g%/x(p/f)’zz/zé -;—[ f(p/fyzz/z

+ [ (11fy 222 = (F s @] — F [ @]} fe < — Fs(@)]e.

a

Thus 2 is square integrable. By the Minkowski inequality & -+ # is not
square integrable for any constant & ==o0. Since & is a solution of (4) it
follows that every oscillatory solution of (4) must be a linear combination
of the two oscillatory solutions of the basis given above. Again by the
methods of [2] it follows that every nonoscillatory solution of (2) must be
a multiple of the one given by Theorem 5. Thus (1) has a unique nonoscilla-
tory solution.
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4. OSCILLATION PROPERTIES

In view of the remarks in Section 2 we obtain several properties of oscil-
latory solutions of (1) by considering (2). Some are listed below. Theorem 7
below generalizes Keener’s Theorem 7 [3] and Leighton and Skidmore’s
Theorem 2.3 [5]. Theorem 10 generalizes Theorem 2.4 in [5].

THEOREM 7. If f >0 and (2) is C; [Cy) and y is a solution of (1) such
that y (a) = y' (a) = o, then y(x)>o0 for x€[0,a)[x€(a, + co0)].

THEOREM 8. If f >0 and (2) is Cy or Cy then two different solutions
of (1) cannot have two common zeros.

Proof. This follows from [7, 4.7, p. 153].

THEOREM 9. Let f >0 and (2) be Cy(Cy). If u and v are different solu-
tions of (1) such that u (x) = v (&) = 0, then the zeros of u and v separate in

(0, +00) [in (0, x)]. ‘
Proof. This follows from [7, 4.8, p. 153].

THEOREM 10. Let f > 0 and (2) be Cy. If (3) is oscillatory every solution
of (1) whick has a zero is oscillatory.

Progf. This follows from [7, 4.10, p. 154].

5. A CONDITION FOR OSCILLATION

In this section we give a sufficient condition for oscillation of (1) where
S (x) can have zeros.

THEOREM 11. If p'>o0, p>o0 cma’flf’!< oo then (1) has an oscilla-
tory solution. 0

Proof. Since |
F @ =[0/1f'| -n(x)]—[o/lf'l—gmj‘ +£(0)

where ¢ (x) and 7 (x) are the positive and negative variation of f on [0, x],
it is clear that f can be written as /= f; — f, where f; are positive nonincrea-
sing functions in Cl[o, o).

Now

(5) W + @Iy + Bl y = o
is C; for z =1, 2. ‘Let 2; be the nonoscillatory solutions for

(6) y'+py=r
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whose existence was shown above. By a result of Keener [4], z; must
eventually be positive. By Theorem 10 if z; has a zero it is oscillatory.
Thus it is always positive. ILet v be an oscillatory solution of (3) and
@,b > o0 such that v (@) <o and v (6) >o0. Choose a constant Z so that
kv (@) + 2,(@) <o and — &v (d) + 2,(6) < o. Thus by Theorem 10 the func-
tions Av 4-z; and — v 4 2, are oscillatory solutions of (6) for z =1 and 2
respectively. The function Av 4 2; — 2, is a solution of (1). If &v + 2, — 2,
is eventually positive, then (&v + 21—22) + 22 is eventually positive,
which is a contradiction. If Av+ 2z —2, is eventually negative, then
(kv + 21— 29) —2; is eventually negative which is also a contradiction.
Thus #4v + 2, — 2z, is an oscillatory solution (1).
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