Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Gary D. Jones

Oscillation properties of $y "+p(x) y=f(x)$

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 57 (1974), n.5, p. 337-341. Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1974_8_57_5_337_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Equazioni differenziali ordinarie. - Oscillation properties of $y^{\prime \prime}+p(x) y=f(x)$. Nota di Gary D. Jones, presentata (*) dal Socio G. Sansone.

RIASSUNTO. - L'Autore dà alcuni teoremi oscillatori per le soluzioni dell'equazione ($t) y^{\prime \prime}+p(x) y=f(x)$ nel caso $f>0$. È data anche una condizione sufficiente per l'esistenza di soluzioni oscillatorie della (k) nel caso che $f(x)$ cambi di segno.

i. Introduction

The purpose of this paper is to study the equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y=f(x) \tag{I}
\end{equation*}
$$

which has recently been studied by Keener [3] and Leighton and Skidmore [5]. The method used here will be that of relating (i) to a third order linear homogeneous equation as used earlier by Svec [6]. Some of the results obtained in this way will generalize results in [3] and [5]. Others will be new. It will be assumed that p and f are in $\mathrm{C}^{1}(0,+\infty)$.

To say that a solution y of (I) is oscillatory we will mean that it has zeros for arbitrarily large x. To say that (I) is oscillatory we will mean that there is an oscillatory solution of (I).

2. A THIRD ORDER EQUATION

If $f(x)>0$, it is easy to see that every solution of (I) is a solution of

$$
\begin{equation*}
\left(y^{\prime \prime} \mid f\right)^{\prime}+(p \mid f) y^{\prime}+(p \mid f)^{\prime} y=\mathrm{o} \tag{2}
\end{equation*}
$$

Also every solution of (2) is a solution of

$$
\begin{equation*}
y^{\prime \prime}+p y=0 \tag{3}
\end{equation*}
$$

or a nonzero multiple of a solution of (I).
We will be interested in equations (I) such that (2) is C_{I} or $C_{I I}$ as defined by Hanan [r].

Definition. Equation (2) is C_{I} if any solution for which $y(a)=y^{\prime}(a)=0$, $y^{\prime \prime}(a)>0$ is positive on $[\mathrm{O}, a)$. It is said to be C_{II} if any solution for which $y(a)=y^{\prime}(a)=0, y^{\prime \prime}(a)>0$ is positive on $(a,+\infty)$.

Assuming $r(x)>0$, we now give three theorems which are known for $r=\mathrm{I}$, for

$$
\begin{equation*}
\left(r y^{\prime \prime}\right)^{\prime}+p y^{\prime}+q y=0 \tag{I}
\end{equation*}
$$

(*) Nella seduta del 14 novembre 1974 .
and

$$
\begin{equation*}
\left(r z^{\prime}\right)^{\prime \prime}+p z^{\prime}+\left(p^{\prime}-q\right) z=0 . \tag{II}
\end{equation*}
$$

Theorem I. Equation (I) is $\mathrm{C}_{\mathrm{I}}\left(\mathrm{C}_{\mathrm{II}}\right)$ if $r^{\prime} \geq 0$ and $2 q-p^{\prime} \geq 0$ ($r^{\prime} \leq \mathrm{o}$ and $\left.2 q-p^{\prime} \leq 0\right)$ where $r^{\prime}+\left(2 q-p^{\prime}\right)$ can equal zero only at isolated points.

Proof. Let $y(x)$ be a solution of (I) such that $y(a)=y^{\prime}(a)=0$, $y^{\prime \prime}(a)=\mathrm{I}$. Suppose (I) is not C_{I}. Let b be the first zero of $y(x)$ to the left of a. Multiplying (I) by y and integrating from b to a we have

$$
2 y r y^{\prime \prime}-r y^{\prime 2}+\left.p y^{2}\right|_{b} ^{a}=\int_{b}^{a}\left(p^{\prime}-2 q\right) y^{2}-\int_{b}^{a} r^{\prime} y^{\prime 2} .
$$

Thus $r(b) y^{\prime 2}(b)<0$ which is a contradiction.
In the same way with $r^{\prime} \leq 0$ and $2 q-p^{\prime} \leq 0$, we can show (I) is C_{II}.
Corollary I. Equation (2) is $\mathrm{C}_{\mathrm{I}}\left(\mathrm{C}_{\mathrm{II}}\right)$ if $f^{\prime} \leq \mathrm{o}$ and $(p \mid f)^{\prime} \geq \mathrm{o}\left(f^{\prime} \geq \mathrm{o}\right.$ and $(p \mid f)^{\prime} \leq 0$) with only isolated zeros of $(\mathrm{I} \mid f)^{\prime}+(p \mid f)^{\prime}$.

ThEOREM 2 [4]. If $\left(r z^{\prime}\right)^{\prime}+p z=0$ is nonoscillatory and $q>0(q<0)$ then (I) is $\mathrm{C}_{\mathrm{I}}\left(\mathrm{C}_{\mathrm{II}}\right)$.

Corollary 2. If $\left(z^{\prime} \mid f\right)^{\prime}+(p \mid f) z=0$ is nonoscillatory and $(p \mid f)^{\prime}>0$ $\left((p \mid f)^{\prime}<0\right)$ then (2) is $\mathrm{C}_{\mathrm{I}}\left(\mathrm{C}_{\mathrm{II}}\right)$.

Theorem 3. Equation (I) is $\mathrm{C}_{\mathrm{I}}\left(\mathrm{C}_{\mathrm{II}}\right)$ if and only if (II) is $\mathrm{C}_{\mathrm{II}}\left(\mathrm{C}_{\mathrm{I}}\right)$.
Proof. Proceeding in the same manner as Hanan for the case $r \equiv \mathrm{I}$ [I], multiply (I) by a solution z of (II) and (II) by a solution y of (I). Adding, we obtain

$$
\mathrm{o}=y\left(r z^{\prime}\right)^{\prime \prime}+z\left(r y^{\prime \prime}\right)^{\prime}+(p z)^{\prime} y+z p y^{\prime}
$$

Suppose (II) is C_{II} but (I) is not C_{I}. Suppose $y(b)=y^{\prime}(b)=0, y^{\prime \prime}(b)=\mathrm{I}$ and that $y(a)=0$ for $a<b$. Let z be the solution of (II) defined by $z(a)=$ $=z^{\prime}(a)=\mathrm{o},\left(r z^{\prime}\right)^{\prime}(a)=\mathrm{I}$. Integrating the above expression from a to b we have

$$
\mathrm{o}=y\left(r z^{\prime}\right)^{\prime}-y^{\prime} r z^{\prime}+z r y^{\prime \prime}+\left.p z y\right|_{a} ^{b} .
$$

Thus we have

$$
\mathrm{o}=z(b) r(b) y^{\prime \prime}(b)
$$

which is a contradiction. Similar arguments complete the proof.
From Corollary I we see that the monotone properties of f and p assumed by Keener [3] and Leighton and Skidmore [5] force (2) to be C_{I} or C_{II}. We will obtain some of their conclusions with the hypothesis that (2) be C_{I} or C_{II} thus generalizing their corresponding results.

3. Nonoscillatory solutions

In view of Corollary I , the following theorems supplement results of Keener [3] and Leighton and Skidmore [5].

ThEOREM 4. If $f>0$ and (2) is C_{II}, then there are three linearly independent nonoscillatory solutions of (2) that are solutions of (I).

Proof. If (I) is oscillatory then (3) must be oscillatory [3]. Since (2) is C_{II}, it has three linearly independent nonoscillatory solutions z_{1}, z_{2}, and $z_{3}[2]$. Since z_{i} cannot be a solution of (3), then $k_{i} z_{i}$ is a solution of (1) for nonzero constant k_{i}.

In general the conclusion of Theorem 4 is not true when (2) is C_{I}. However, proceeding as in the proof of the above theorem, using the fact that if (2) is C_{I} it has a solution with no zeros, we obtain the following theorem.

Theorem 5. If $f>0$, (3) is oscillatory and (2) is C_{I} then there is a solution of (1) with no zeros.

ThEOREM 6. If $f>0, f^{\prime} \leq 0,(p \mid f)^{\prime}>c>0$, and (I) is oscillatory, then there is a unique nonoscillatory solution of (I).

Proof. By Corollary I equation (2) is C_{I}. Thus, by Theorem 3

$$
\left(z^{\prime} \mid f\right)^{\prime \prime}+(p \mid f) z^{\prime}=0
$$

is C_{II}. Using the methods of [2] (4) has a basis consisting of 2 oscillatory solutions and one nonoscillatory solution.

Every solution z of (4) satisfies
$\mathrm{F}[z(x)] \equiv z\left(z^{\prime} \mid f\right)^{\prime}-z^{\prime} 2 / 2 f+p z^{2} / 2 f=\int_{a}^{x}(\mathrm{I} / f)^{\prime} z^{\prime} / 2 / 2+\int_{a}^{x}(p / f)^{\prime} z^{2} / 2+\mathrm{F}[z(a)]$.
Clearly $\mathrm{F}[z(x)]$ is a nondecreasing function of x. If z is a nontrivial oscillatory solution then $\mathrm{F}[z(x)]<0$ since it is negative at the zeros of z. Now

$$
\begin{gathered}
\quad \frac{\mathrm{I}}{2} \int_{a}^{x} z^{2} \leq \frac{1}{c} \int_{a}^{x}(p / f)^{\prime} z^{2} / 2 \leq \frac{1}{c}\left[\int_{a}^{x}(p \mid f)^{\prime} z^{2} / 2\right]+ \\
+\int_{a}^{x}(\mathrm{I} / f)^{\prime} z^{\prime 2} / 2=\{\mathrm{F}[z(x)]-\mathrm{F}[z(a)]\} / c \leq-\mathrm{F}[z(a)] / c .
\end{gathered}
$$

Thus z is square integrable. By the Minkowski inequality $d+z$ is not square integrable for any constant $d \neq 0$. Since d is a solution of (4) it follows that every oscillatory solution of (4) must be a linear combination of the two oscillatory solutions of the basis given above. Again by the methods of [2] it follows that every nonoscillatory solution of (2) must be a multiple of the one given by Theorem 5. Thus (I) has a unique nonoscillatory solution.

4. Oscillation properties

In view of the remarks in Section 2 we obtain several properties of oscillatory solutions of (I) by considering (2). Some are listed below. Theorem 7 below generalizes Keener's Theorem 7 [3] and Leighton and Skidmore's Theorem 2.3 [5]. Theorem io generalizes Theorem 2.4 in [5].

ThEOREM 7. If $f>0$ and (2) is $\mathrm{C}_{\mathrm{I}}\left[\mathrm{C}_{\mathrm{II}}\right]$ and y is a solution of (I) such that $y(a)=y^{\prime}(a)=0$, then $y(x)>0$ for $x \in[0, a)[x \in(a,+\infty)]$.

ThEOREM 8. If $f>0$ and (2) is C_{I} or C_{II} then two different solutions of (I) cannot have two common zeros.

Proof. This follows from [7, 4.7, p. 153].
Theorem 9. Let $f>0$ and (2) be $\mathrm{C}_{\mathrm{I}}\left(\mathrm{C}_{\mathrm{II}}\right)$. If u and v are different solutions of (I) such that $u(\alpha)=v(\alpha)=0$, then the zeros of u and v separate in $(\alpha,+\infty)[$ in $(o, \alpha)]$.

Proof. This follows from [7, 4.8, p. 153].
Theorem io. Let $f>0$ and (2) be C_{I}. If (3) is oscillatory every solution of (I) which has a zero is oscillatory.

Proof. This follows from [7, 4.io, p. I54].

5. A CONDITION FOR OSCILLATION

In this section we give a sufficient condition for oscillation of (i) where $f(x)$ can have zeros.

Theorem in. If $p^{\prime}>0, p>0$ and $\int_{0}^{\infty}\left|f^{\prime}\right|<\infty$ then (I) has an oscilla-
solution. tory solution.

Proof. Since

$$
f(x)=\left[\int_{0}^{\infty}\left|f^{\prime}\right|-n(x)\right]-\left[\int_{0}^{\infty}\left|f^{\prime}\right|-q(x)\right]+f(\mathrm{o})
$$

where $q(x)$ and $n(x)$ are the positive and negative variation of f on $[0, x]$, it is clear that f can be written as $f=f_{1}-f_{2}$ where f_{i} are positive nonincreasing functions in $\mathrm{C}^{1}[0, \infty)$.

Now

$$
\begin{equation*}
\left(y^{\prime \prime} \mid f_{i}\right)^{\prime}+\left(p \mid f_{i}\right) y^{\prime}+\left(p \mid f_{i}\right)^{\prime} y=0 \tag{5}
\end{equation*}
$$

is C_{I} for $i=\mathrm{I}, 2$. Let z_{i} be the nonoscillatory solutions for

$$
\begin{equation*}
y^{\prime \prime}+p y=f_{i} \tag{6}
\end{equation*}
$$

whose existence was shown above. By a result of Keener [4], z_{i} must eventually be positive. By Theorem io if z_{i} has a zero it is oscillatory. Thus it is always positive. Let v be an oscillatory solution of (3) and $a, b>0$ such that $v(a)<0$ and $v(b)>0$. Choose a constant k so that $k v(a)+z_{1}(a)<0$ and $-k v(b)+z_{2}(b)<0$. Thus by. Theorem io the functions $k v+z_{1}$ and $-k v+z_{2}$ are oscillatory solutions of (6) for $i=1$ and 2 respectively. The function $k v+z_{1}-z_{2}$ is a solution of (I). If $k v+z_{1}-z_{2}$ is eventually positive, then $\left(k v+z_{1}-z_{2}\right)+z_{2}$ is eventually positive, which is a contradiction. If $k v+z_{1}-z_{2}$ is eventually negative, then ($\left.k v+z_{1}-z_{2}\right)-z_{1}$ is eventually negative which is also a contradiction. Thus $k v+z_{1}-z_{2}$ is an oscillatory solution (I).

References

[1] H. Hanan (1961) - Oscillation criteria for third-order linear differential equations, «Pacific J. Math. 川, II (3), 919-944.
[2] G. Jones (1972) - Oscillation properties of third order differential equations, «Rocky Mt. J. 》, 3 (3), 507-517.
[3] M. Keener (1971) - On the solutions of certain linear non-homogeneous second-order differential equations, "App. Anal.", I, 57-63.
[4] G. KlaAsen and J. M. Dolon - On the nonoscillatory behavior of $y^{\prime \prime \prime}+p y=0$, to appear in «SIAM Journal of Math. Analysis».
[5] W. Leighton and A. Skidmore (1973) - On the differential equation $y^{\prime \prime}+p(x) y=$ $=f(x)$, «J. Math. Anal. Appl.», 43, 46-55.
[6] M. SvEC (1972) - On various properties of the solutions of 3 rd and 4 th order differential equations, Proc. of the Czech. Conference on Differential Equations and their Applications, Prague, 1962 «Czech. Acad. of Sciences», Prague 1963, 187-198.
[7] C. A. Swanson (1968) - Comparison and Oscillation Theory of Linear Differential Equations. Academic Press, New York.

