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Equazioni differenziali. — Periodic Solutions of Certain fourth
order differential equations. Nota @ di H. O. Tr JUMOLA, presentata
dal Socio G. SansoNE.

RIASSUNTO. — L’Autore sotto opportune ipotesi prova 1’esistenza di una soluzione perio-
dica dell’equazione
At mF e E+h(x,E, EE) =5,

dove p(#) ¢ una funzione periodica nota.

1. Consider the real differential equation
(1.1) 2+ gy F ot g (1) &+ agd+ h() = p(0),

where @, > 0, a3 > 0 are constants, g, % and P are continuous functions of
the arguments shown in (1.1) and the function /% is bounded, that is

[2(x)] <H (H a constant) for all .

The equation (1.1) has been investigated by a number of authors for the bounded-

ness of solutions. Ezeilo [1], for example, in generalizing an earlier result of

Reissig [5] for the special case g (%) = @, (a, constant), showed that all solutions
: ¢

~

of (1.1) are ultimately bounded if Z(x)sgnx > o (|x| > x,), P(?) = J p(r)dr

0
is bounded for all #> 0 and if there are constants Az > o and As satisfying

A, > al—l a, such that
¥y

(1.2) Gsgny >As|y|—Ag  for all y,G(y) Efg(S) ds.
0

This result was further extended by the present Author [6] in a recent paper.
When p is a periodic function there seem to be fewer results on the exi-
stence of periodic solutions of (1.1) under the same or similar conditions on
g as in [1]. The only well known result in this direction is that of Reissig [4]
which, when specialized to 7 = 4, concerns the case g(%) = a, (ay constant)
in (1.1) with @, > @ 1a,; the later inequality being the analogue of (1.2) in
this case.
~ The object of this note is to prove an existence result for (1.1) under con-
ditions similar to those of Ezeilo above. We shall in fact be concerned with
the more general equation

(1.3) x“”—l—ala'Z'—}-g(oE)a'é—{—aaab—}—/z(x,o'c,ﬁc',iE)=p(t),

(*) Pervenuta all’Accademia il 27 agosto 1974.
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where /% is a continuous function depending on all of the arguments shown
and /% is bounded, that is

(1.4) [A(x,y,2,u)|<H (H a constant)

for all x,y,2z and .
The following is our main result:

THEOREM. Let b be periodic in t with period w and let h satisfy (1.4) and
(1.5) hx,y,z,0)sgnx>0  (|x|=xp).

Suppose further that there are constants Ay >0, A; >0 and a3 > 0 satisfying

(1.6) a,> a;la,
such that
t
() Pol=| [p@o:| <8 @20,
0

(18 GO sgny=aly|—A  for all y, G@)Efg@ds_
0

Then the equation (1.3) admits at least one periodic solution with period o.

2. SOME PRELIMINARIES

The procedure for the proof of the Theorem is essentially the same as
in [2]. Consider the parameter (u)-dependent equation

(2.1) X0 @y B4 {(1— ) ap + pg (@)} & + ag & +
—I—(I—p.)a‘lx—l—p./z(x,ic,a'c',ﬁ):y.p(l‘), o< upu<I,

which reduces to the original equation (1.3) when w = 1 and to the linear
equation

(2.2) x(iV)+dlﬁ+dzx'+a3x+a4x=O

when w = o. Here a4 is a constant to be fixed such that the linear equation
(2.2) is asymptotically stable. Following Reissig [4] define, for some constant
S, an auxilliary equation as follows:

(23) x4 a4 g, (@) E+ agx+ A, (x, %, %, %) = wpd), o<u<i,

where
g &u®) = (1 —p) ay + pg (&)

(2.4) P . | O—wWax+ub(x,x,%,%), if |x|<S,
' u(x,x,x,x)-.z (1 —w)a,Ssgnx+ ph(x,%,%,%), if |x|>S.
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Since %, is bounded, indeed by (1.4),
(2.5) | (2, y,2,0)| <aS+H for all x,y,2, %,

the equation (2.3), in contrast with (2.1), is amenable to the techniques deve-
loped in [3] for boundedness of solutions. In fact it suffices here to show that
(I) all solutions of (2.3) are ultimately bounded, with bound independent of
solutions and of p(o < p < 1), and (II) that for a suitable choice of S and 4,
every solution x(#) of (2.3) ultimately satisfies |x(#)| <S. For since the
equation (2.3) reduces to (2.1) when |x|<S, an application of the Leray-
Schauder fixed point technique to (2.3) would show, by (I), that the equation
(2.1) admits a periodic solution with period @ and this would imply the
existence of an w—periodic solution of the original equation (1.3).

In what follows two sets of constants will be used. The letters & ,ds,- -
denote finite positive constants whose magnitudes depend only on a, a,,
as, ay, %y, Ay and A; but are independent of w and S. Eachd,, i=1,2, -
retains the same identity throughout. The second set of constants are §, 81,
32, -+ . Each 3, with or without subscript, denotes a constant whose magni-
tude depends only on @, , @y, a3, a5, %y, A, and A; as well as on S and g,
but definitely not on w. Each of the numbered §'s retains a fixed identity throu-
ghout but the unnumbered ones are not necessarily the same each time they
occur. To emphasize the dependence of a § on another constant, say 7, we
shall write 3(%).

Y

Let G(y) = fG(s) ds and define a function G* on [0, c0) by

0

C*(y)=rlge<wy<lc(i)!'

Since G is continuous, it is clear that G* is a non-decreasing continuous func-
tion on [0, o) such that G*(0) = o (since G (0)=0) and |G ()| < G*(|¥])
for all y. Since |y |= J(»®) we may now define a function G* on [0, o)
by setfing

G*(y) =C*(ly D).

Evidently G* is also a continuous non-decreasing function [0, o) such that
G*(0) = 0 and N
CI<G' G  forall .

As a first step towards the verification of (I) and (II) above, we shall
show that there are constants dp,d1, So(n) and a continuous function A(¥)
such that every solution x(#) of (2.3) ultimately satisfies

(2:6) x| <%+ 2do{1 + S(n) + An) + G*A M)},
(=7 max (2@, 1£@®], 13O < {1 + @)+ AW+ G AMm),
where x is the constant in (1.5) and

(2.8) n=a a;(a,S+H)+ Ay 1.
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3. A FUNCTION V(x,y,z, %)

The main tool for the proof (2.7) is a slightly modified form of the
function V used in [3], which in terms of our present notations, is given by

(3.1) V=Vy—29V;—uV;,

where

{ ¥

Vo [ Gu@ ds— e+ L e+ oy a1s L Gu() = e as,
0

0

usgnz, if |z|>|u],

(3.2) V, = 14 : 2| = 2]
gsgnu, if |u|=>|z],

v ysgnew, if |u|=|y],

223 usgny, if |y|=|u|.

First, we show that V satisﬁes

(33)  —ds( D+ (P4 D) SV S da(sh 24 a?) +
+GH o2 2 )+ ds (12 1)

for some d2 ,ds ,ds and &s. Indeed

b
I I
Vo= [ {Gu(s) —aytay s}ds + S P+ (Al az g — o712 k2 y)2 >
0

> (g, —ala) 2+ ut+ L (al2ay s — a7 2l y— A |y,
by (1.8) andithe fact that o <p < 1. Thus
Vo=dg(y2+ 22+ u?) — dy

for some dg and &, and by (3.1), the last inequality implies the left-hand ine-
quality in (3.3), since | Vi|<|#| and | Vo | <|#%|. Observe next from the
definitions of G, and G* that

Y

fG“ () ds < ay v+ G*(4?) for all v,
0

so that, in view of (3.2)
(34) VoSG @R+ 2+wD) a2+ (B4 4 (@ +a a5,

since G* is non-decreasing. The right-hand inequality in (3.3) is implied by
(3.4) since | V1| <|#%| and | V2| < | #%]|.
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Consider (2.4) in the system form
E=y , y=u—ayy , é=—"“3y_—'}lu<x)y:7/’w>

i =2—G,(y)+uvP®,

(3-5)

where v=u—a,y, w=15—G,(y) + p.P(l) For any solution (x,y, z,%) =
=@@),y®,2®), @) of (3.5), let V* have its usual meaning. We shall
show that

3.6 Vi<—1  if P42+ dE>80),
( (

where 8o (7)) is a continuous function of . Indeed a simple calculation from
(3.1) and (3.5) will show that

Vi< —a, 9{G.(0) —a;lay v} + (4, S + H) (| ¥ | + a, a1 | 2|) +
+ Ayl w| +M;+M,,

where
v T2E I UG+, i (s> w],
YEL @Ay, i |e|>]z],
N e I OIE P TR EY

- 2| +3M G+ 1), i |y[=]=].

Since 7 is given by (2.8), we therefore have that

—a, ¥{Gu(») —a;tazy}—{a, a;1 (¢, S+ H) + 2Ay+ 2}| 2| —
—{2a,4;1(aq,S+H)+ Ay + 2} |u| +3() (G| + |y +71),
if [z]|=|u|=>]y],
—a, y{Gu(0) —alay v} — 2|+ 3 (G| + 5|+ 1),
(3.7) V*< ~if Jz|=|%| and |y|=>|u],
—a, y{G.(¥) —a;tagy}—|u|+3(m) (¥ |+ 1),
‘ if |#|>|2|and |z|>]y],

—a, y{G,(0) —a7la, v} + 3() (IG.(W| + x|+ 1),
if |y|=]ul>=]z].

The inequality (3.7) is the analogue of (4.3) of [3] and we have, corresponding
to (4.4) of [3], that V* satisfies

38  V'=—ay{Gu) —ater}+ 8, (GO +1x])+ 3
always, for some 81(7), 8(y). Observe from (1.8) that

{Gu(») —aflagy}sgny = (a,—a;la) |y | —A;  for all y,
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so that in view of (1.6),
{Gu(y)—al—lasy}sgny—%—}—oo as |y | —oo.

Thus the various arguments employed in [3;§4] apply here; the results
(3.7) and (3.8) can be used in precisely the same way as (4.3) and (4.4) of [3]
to yield the result

Vi< —1 if yz—l—zz—l—uZzSg(v;)

for some 32(n). This verifies (3.6).

4. VERIFICATION OF (2.6) AND (2.7).

We start with (2.7), the actual proof of which depends on the results (3-3)
and (3.6). Observe that for any solution (x(2),y(®),2(0), () of (3.3),

(4-.1) Pt + £ (o) + 2% (2) < 8§ ()

for some # >o0. For otherwise we would have V*<-—1, and so
V —-— o0 as#—>4 oo, contrary to the estimate V > — ds M+ 1) in (3.3).
Next we show that

(4.2) PO+LEO+ 4 @) < )  for all 2>4,,

where

@3) ) =4y [([@ds+ds) (0 + 1) + (da+ o) 8 (n) + G* (A ()] .

Since 33(n) > So(n), if (4.2) were false, there would exist To> 7o such that
¥*(To) + 2 (To) + 2 (To) > 82 ()

and this, since ¥2(#) + 22(¢) + #2(¢) is continuous, would imply the existence
of #, #; with %, > # > #; such that

@4) Y@ +L)+ LB =80 , @)+ EE) + ) = S

and

4.5) PO+L@+ PO =8 (h<t<#).

But (4.5) and (3.6) imply that V (#5) < V(1) whilst (4.4) and (3.3) give that
V(te) = do 8 (n) — ds(n” + 1) >

>da 83 (n) + G* (83 (n)) + ds (rf+ 1) >
2V<t1) )

which is a contradiction. Therefore (4.2) holds.
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The result (4.2) obviously implies that

max (|9@), @], | w@®)])< 3s()  for all #=14,.

Since each 8(v), whether numbered or not, which featured in the preceding
arguments, is a continuous function of v, it follows that the result (2.7) is, in
view of (3.5), implied by (4.2).

We turn now to (2.6). The details of the proof here are as in [6; § 3]
(see also [2; § 4]) and we shall merely sketch the outline. Let (x,y,s, %) =
=x@),y®,2@ ,u() be any solution of (3.5) and define the function
Y =14@ by

(4.6) b=2z+4 agx.
Then, in view of (3.5), (2.4) and (1.5),
4.7) <o if x>z,

We also have by (2.7) that

(4-8) b —agx| <A{1+ dm+AM+G AWM, t>To
for some Tg. If therefore suffices to show that
(4.9) YD < agxg+dri{1+ () +Am + G A}, t>T

for some T1 > To. For, by (4.6) Qnd (4.8), this implies that
ag| ()] < agxo + 241 {1 4 8 (n) +A(n) -G A}, t =T,

which is (2.6) with dy = a3'd;. The actual proof of (4.9) follows as in that
of the corresponding result (3.4) of [6] (or (4.8) of [2]) using (4.6), (4.7) and
(4.8) as required; further details will be omitted here.

5. COMPLETTON OF THE PROOF OF THE THEOREM

In view of our earlier remarks it remains now to show that there is a suita-
ble choice of the constants @, > 0 and S > o such that (I) the linear equation

(5.1) WM+ g X+ ayid+agk+ax=o0

is asymptotically stable and (II), every solution x(#) of (2.3) ultimately sati-
sfies | x(#)| < S.
First we verify (II). Define a function y: RT— R" by

A1) = %o+ 2dp{1 + 8(») + A) + G (A
and let
X)) = m@gjx(y).



H. O. TEJUMQLA, Periodic Solutions of Certain fourth, ecc. 335

Set dg = a1 a3, dy =dg H+ A+ 1. In view of (2.6) and (2.8), the condi-
tion (II) would be met by a choice of the constants 4, , S satisfying

(5-2) S=>x(ds @S+ dy).
It is in fact easy to check that (5.2) is satisfied by, for example,
(5-3) S=Xd+nD=dy , ay=di (d+2)"

for any real number # > 1.
Turning to (I), observe that the Routh-Hurwitz stability criteria

. 2
(5-4) a;>0, 2=1,2,3,4, (@1 a2 —ag) ag3—aja; > o

are sufficient for the asymptotic stability of (5.1). In view of (1.6), (5.4) would
be met by the value a4 in (5.3) if % is chosen large enough to ensure that

ds+2)"< “1_1 (ay a3 — ag).

This completes the proof of the Theorem.

6. REMARKS
The Theorem extends readily to equations of the form
(6.1) ¥ G f@ X (@) Efagx+ A(x, %,%, %) = p@®),

in which the constant @; in (1.3) is replaced by a continuous function f
satisfying

(6.2) Fo)—av=0(1) as |v]|—>oc0 , F(v)z:ff(s)ds
0

but with the constants 4, , a3 and the functions g, % and 2 as before.
The proof of the theorem in this case is exactly the same as for the equa-
tion (1.3) except that (2.3) has to be replaced by

X +f (D E+ g, () &+ agd+ h(x, %, 5, %) = up@d)
with g, and /%, as in (2.3) and
Ju@® = (1 —w) ay + wf (&),
and the system (3.5) by

Foy , dmu—ay , fm—ayy—h(r,y,0,w),

(6.3) y

i =2 =G — () — o} +uPO | R = [£()ds
0

24. — RENDICONTI 1974, Vol. LVII, fasc. 5.
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withov=u—ayy, w=2—G,(¥) —F,(v) + uP#). Also, because of the
term F, (v) — @, v which features in (6.3) but is absent in (3.5) a new choice
of m has to be made. Indeed, since

|Fp(@) —a,v|< B for all o
for some constant B > o, the choice
=0, a5 (4,S+H)+A,+B+1

will suffice.
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