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Equazioni differenziali ordinarie. — Oscillation of a Class of 
Self-Adjoint Differential Equations. Nota di S teve C. T e f t e l l e r , 
presentata dal Socio G . S a n so n e .

RIASSUNTO. — Questa Nota riguarda una classe di equazioni differenziali autoaggiunte 
di ordine n >  3 le cui soluzioni possono esprimersi come prodotto di soluzioni dell’equazione 
generale autoaggiunta (y (x)y')' +  q (x) y  — o.

i .  In t r o d u c t io n

l n [7]> A. Zettl in troduced the n-Ûi order quasi differential equation

(ß'n) ( D n - l j ) '  +  2  ^ i - l J  ~  O,
i~ l

where the quasi derivatives are given by

D o y  =  y  ; D xy  =  F ,!1 y';

Vi y  =  ï V +1 • [(D,._i y y + ‘g  F,y j / j  ;

i  =  i , 2 , • • • , » —  I . T he functions F f7 (x) ; i  J  =  1 , 2 , • • •, n, are assumed 
to be continuous on the half axis [oc, 00), F ,7 (x) — o if i  +  j  is even or j  >  i  +  1, 

(x) > 0  on [a , 00), for z =  1 , 2 , • • •, «  —  1. J. H . B arrett established 
this equation for n =  3 and n — 4.

In  this work, the above equation is specialized so th a t the equation is 
self-adjoint and the solutions of this “ n ew ” equation will be expressible as 
products of the general second order equation

( 0  (y (x) y 'Y  + q  (x) y  = 0 .

T he ■ coefficients y (x) and  q (x) are assumed to be continuous, real-valued 
functions on the half-axis [a , oo), w ith y (x) >  o on [a , oo),

P . A ppel [1] showed th a t the  product of two solutions of (i)  was a solution 
of the th ird  order equation ÿ "  +  2 q (x) y ’ +  q’ ( x )y  =  o, and J. H . B arrett 
[2, 3], extended this result to his canonical th ird  order equation

(? )  (y (x) [(y (x) y ') ' +  2 q (x) y]  ) ' +  2 q (x) y (x) y '  =  o . (*)

(*) Pei venuta all’Accademia il 21 agosto 1974.
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It is easily seen th a t if  { u ,v }  is a solution basis of (1), then the general 
solution of (2) is given by y  (x) =  kx w2 (x) +  kz u (x) v (x) +  kz v2 (x), where 
kx , kz and kz are constants. H ence it is im m ediately known th a t (2) is oscilla­
tory  (i.e., has a solution w ith zeros for arb itra rily  large x ) if (1) is oscillatory. 
M ore recently, the A uthor [5], has shown th a t (2) is oscillatory if and only 
if (1) is oscillatory.

F urther, G. D. Jones [4] and W. R. U tz [6] have shown th a t if y " '  +  
+  2 qy' +  q’y  =  o is oscillatory, then  this equation has solution bases consisting 
of both oscillatory and nonoscillatory solutions. In  addition, the A uthor [5] 
has shown th a t there exists a solution basis of (2) consisting of solutions having 
only zeros of m ultiplicity  » , »  =  0 , 1 , 2 .  (A solution y  has a zero of m ultipli­
city p  a t b provided D iy(b) =  0, i  =  o , i,* • - \ p —  1).

T he purpose of this paper is to generalize the above results to a class of 
self-adjoint equations of order n >  3.

2. A  CANONICAL FORM

Let n be any  integer, n  >  2. Consider the »-th order quasi differential 
equation

(3) L» O ) =  y ) ’ +  a„„ q (x) D „,„-2y  =  o,

where D„0 y  =  y;

C W  =  Y (x) [(P n ,i-iy ) ' +  aniq (x)  D Bi(5_2y]; 

k — 1 , 2 ,  • • - , n  —  I. T he constants ank are defined

a«k =  ( ß —  0 (»  —  k  +  1) , k = i , 2

Considering equation (E„), define

f i/y (* ) , if j  =  i +  I ; i  =  I , 2 ,• • -, n —  I

F /y O ) =  a«i , if j  =  f I ; * =  2 , 3 , • • •, n.
( o , otherwise.

T hen equations (E„) and (3) coincide. Furtherm ore,

Ez-}/_f_x :=: j 2 := I , 2 , • • •, f i  I j and

— 1 ^  '^n—i-\-2,n—i + l ) ^ = 2 , 3 ) ' " ) ^ )

which im ply th a t (3) is self-adjoint.
It also can be seen th a t the constants ank can be defined by the relations 

G/n\ O,

a„2 =  a„„ =  n — \ , ank= { n — i) +  an_z , k — i ;  £ = 3 , 4  — 1.
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Hence the coefficients for the ^ -th  order equation are obtained from the coef­
ficients of the equation of order n —  2. This becomes especially clear when 
equation (3) is w ritten in vector-m atrix form.

Finally, the quasi derivatives are doubly subscripted to avoid confusion. 
It is not true th a t T>mky  =  Dnky  if m n.

3. Main  results

T he previously m entioned work will now be generalized.

THEOREM i. Suppose n >  2 is any integer. The n-th order quasi diffe­
rential equation (3) is oscillatory i f  and only i f  equation (1) is oscillatory.

Proof. Suppose { u , v } is a solution basis for (1). It can be verified 
by induction th a t a solution basis for (3) is {um vn~ m~ 1 \m =  o , 1 ,2  , - • •, n —  1}. 
Hence it follows im m ediately th a t (3) is oscillatory if (1) is oscillatory

n—1

Let w =  2  k{ u{ v
z = 0

be a solution of (3) where the k /s  are arb itra ry  constants.
Since w  is a polynom ial in u and v w ith real coefficients, it can be decom ­

posed into a product of linear term s and quadratic term s in u and v , i.e., 
w  can be w ritten as a product of solutions of (1) and (2). H ence if w (pc) is 
an oscillatory solution of (3), then either (1) is oscillatory or (2) is oscillatory. 
By previous work, if (2) is oscillatory, then (1) is also oscillatory.

COROLLARY. Suppose fo r  eqztation (3), then n =- 2 m, m =  1 , 2 , - • • 
I f  (3) has one oscillatory solution, then every solution is oscillatory.

2m—1
P^oof. T he general solution of (3) can be w ritten as y  =  2 '

z — 0
where {u  , v}  is a solution basis for (1). Since y  is a polynom ial in u and v 
of odd order, it has at least one linear factor. I f  y  is oscillatory, then this factor 
is an oscillatory solution of (1). Therefore, every solution of (1), and conse­
quently  (3), is oscillatory.

T he following extends the results of Jones and U tz concerning the oscil­
lation of linear com binations of (3).

THEOREM 2. Suppose n =- 2 m - f  \ =  1 , 2 , 3 , • • •. Then i f  (3)
zs oscillatory, its solution space has bases consisting of o , 1 , 2 , • • •, n oscilla­
tory elements.

Proof. As was seen in Theorem  1, if y  is a solution of (3), then y  can be 
expressed as a polynom ial of order 2 m \ n u  and v , where {u  , v}  is a solution, 
basis of (1). Consequently, y  is nonoscillatory if and only it if is the product 
of ^  irreducible quadratics in u and z/.
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Considering only simple roots, then it follows th a t the location of the roots 
of a polynom ial depends continuously on the coefficients. Hence, by a a per­
tu rbation  ” argum ent, 2 m  +  1 solutions of (3) m ay be constructed so that 
each quadratic has only simple complex roots. By m eans of a dim ensionality 
argum ent, these solutions can be chosen so th a t they  are linearly independent.

The construction of a solution basis consisting of only oscillatory solu­
tions requires m uch less finesse. If  (3) is oscillatory, then (1) is oscillatory and 
the set { u2m , u2m~ 1 v , • • •, uv2m~x , v2m } contains linearly independent
oscillatory solutions. A  solution basis consisting of 2 m  +  1 — k, =  1,2 , • • • 2 m\ 
nonoscillatory solutions is obtained by replacing k solutions in the completely 
nonoscillatory basis w ith k solutions from the completely oscillatory basis.

A  solution of (3) is said to have zeros of m ultiplicity k, where k >  1 is 
an odd integer, only if a zero of m ultiplicity k is followed by a single zero.

By considering the various factorizations of a solution of (3) into linear 
and quadratic factors, where such factors are solutions of (1) and (2), respec­
tively, the following is obtained.

T h e o r e m  3. Suppose n =  2 m  +  1, m  =  1 , 2 , 3 , • • . I f  (3) is oscil­
latory, there exist 2 m  -fi- 1 linearly independent solutions, y 0 , y± , * • •, y%m > 
where y k has only zeros of multiplicity k , k =  o , 1 , 2 , • • • 2 m.
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