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Equazioni differenziali ordinarie. Oscillation of a Class of
Self-Adjoint Differential Equations. Nota ® di Steve C. TEFTELLER,
presentata dal Socio G. SANSONE.

RIASSUNTO. — Questa Nota riguarda una classe di equazioni differenziali autoaggiunte
di ordine 7 > 3 le cui soluzioni possono esprimersi come prodotto di soluzioni dell’equazione
generale autoaggiunta (y (x)y’)’ 4 ¢ (x)y = o.

1. INTRODUCTION

In [7], A. Zettl introduced the z-th order quasi differential equation

n—1

(E,) Dy-19) + U FuDiyy = o,
where the quasi derivatives are given by

Dyy=y ; Dyy=Fgy;
L 7—1
D;y=F;in '[(Di—-ly>, + Z‘{ Fij,'y]§
Fm

i=1,2,+-,7— 1. The functions F,(x;¢,7=1,2, -+, n are assumed
to be continuous on the half axis [« , co), F;j(x)=0if {4 jisevenor j >7 41,
Fiiti(®) >0 on [a,00), for i=1,2,---,7— 1. J. H. Barrett established
this equation for #» = 3 and 7 = 4. ‘

In this work, the above equation is specialized so that the equation is
self-adjoint and the solutions of this “new” equation will be expressible as
products of the general second order equation

(m @) +¢@y=o.

The  coefficients y (¥) and ¢ (x) are assumed to be continuous, real-valued
functions on the half-axis [« , 00), with vy (¥) > 0 on [x, o).

P. Appel [1] showed that the product of two solutions of (1) was a solution
of the third order equation "'+ 2¢ (x) 3’ + ¢’ (x) ¥ = o, and J. H. Barrett
[2, 3], extended this result to his canonical third order equation

(2) Y@@ Y) +290)9]) +29(x) 1)y =o0.

(*) Pervenuta all’Accademia il 21 agosto 1974.
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It is easily seen that if {#,v} is a solution basis of (1), then the general
solution of (2) is given by y (x) = &y 22 (x) + £y # (x) v (x) + 43 2% (x), where
%y , k3 and %3 are constants. Hence it is immediately known that (2) is oscilla-
tory (i.e., has a solution with zeros for arbitrarily large x) if (1) is oscillatory.
More recently, the Author [5], has shown that (2) is oscillatory if and only
if (1) is oscillatory. A

Further, G.D. Jones [4] and W. R. Utz [6] have shown that if y"" +
+ 2¢y" + ¢y = o is oscillatory, then this equation has solution bases consisting
of both oscillatory and nonoscillatory solutions. In addition, the Author [5]
has shown that there exists a solution basis of (2) consisting of solutions having
only zeros of multiplicity 7, » =0, 1, 2. (A solution ¥ has a zero of multipli-
city p at 4 provided D;y(6) =0, ¢=o0,1,--+,p—1).

The purpose of this paper is to generalize the above results to a class of
self-adjoint equations of order > 3.

2. A CANONICAL FORM

Let #» be any integer, # > 2. Consider the #-th order quasi differential
equation

3) L, () = Dyn-19) + @ g (*) Dyppsy =0,
where D,oy = ;

Dy = @) [Dns-19) + @ g (*) Dysay];
k=1,2, -, 72— 1. The constants a,; are defined

d”k=<k—‘l)(7’l—k+l), k=1y2;'°'y”'

Considering equation (E,), define

I/Y(x), lfj=Z+I; i:l’z,...’n_l
Fz]<x>: d,d?(:f), lf j’:z’——l; i=2’3y...,n.
( 0, otherwise.

Then equations (E,) and (3) coincide. Furthermore,

-1 -1 . .
fitt=F, a1 5 i=1,2,--,m—1, and

Fi,i—l = F —i 2 m—itl s 7= 2, 3,00, 7,
which imply that (3) is self-adjoint.

It also can be seen that the constants a,; can be defined by the relations
dnl = O, ‘

Qg = Qup = — 1 , ankz(n""'l)—}—an—Z)'é—I; ’é=314""’n—“—1'



326 Lincei — Rend. Sc. fis. mat. e nat. — Vol. LVII — novembre 1974

Hence the coefficients for the 7-th order equation are obtained from the coef-
ficients of the equation of order » — 2. This becomes especially clear when
equation (3) is written in vector-matrix form.

Finally, the quasi derivatives are doubly subscripted to avoid confusion.
It is not true that D,;y =D,y if m==n.

3. MAIN RESULTS

The previously mentioned work will now be generalized.

THEOREM 1. Suppose n > 2 is any integer. The n-th order gquasi diffe-
rential equation (3) is oscillatory if and only if equation (1) is oscillatory.

Proof. Suppose {u,v} is a solution basis for (1). It can be verified
by induction that a solution basis for (3) is {#” v"~"1|m=o0,1,2, - -, n—1}.
Hence it follows immediately that (3) is oscillatory if (1) is oscillatory

n—1

Let w = Z by ot vl
=0

be a solution of (3) where the £;’s are arbitrary constants.

Since w is a polynomial in # and v with real coefficients, it can be decom-
posed into a product of linear terms and quadratic terms in # and o, i.e.,
w can be written as a product of solutions of (1) and (2). Hence if @ (x) is
an oscillatory solution of (3), then either (1) is oscillatory or (2) is oscillatory.
By previous work, if (2) is oscillatory, then (1) is also oscillatory.

COROLLARY.  Suppose for equation (3), then n=2m, m=1,2, -

If (3) has one oscillatory solution, then every solution is oscillatory.
2m—1
Proof. The general solution of (3) can be written as y = Z kot v2m—i-1
i=0
where {#,v} is a solution basis for (1). Since y is a polynomial in # and v
of odd order, it has at least one linear factor. If y is oscillatory, then this factor
is an oscillatory solution of (1). Therefore, every solution of (1), and conse-
quently (3), is oscillatory.
The following extends the results of Jones and Utz concerning the oscil-
lation of linear combinations of (3).

THEOREM 2. Suppose n=2m +1,m=1,2,3, . Then if (3)
is oscillatory, its solution space has bases consisting of 0,1 ,2,--+,n oscilla-
tory elements.

Proof. As was seen in Theorem 1, if ¥ is a solution of (3), then y can be
expressed as a polynomial of order 2 7 in % and v, where {#, v} is a solution,
basis of (1). Consequently, y is nonoscillatory if and only it if is the product
of m irreducible quadratics in # and .
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Considering only simple roots, then it follows that the location of the roots
of a polynomial depends continuously on the coefficients. Hence, by a * per-
turbation ”’ argument, 27 -+ 1 solutions of (3) may be constructed so that
each quadratic has only simple complex roots. By means of a dimensionality
argument, these solutions can be chosen so that they are linearly independent.

The construction of a solution basis consisting of only oscillatory solu-
tions requires much less finesse. If (3)is oscillatory, then (1) is oscillatory and
the set {#?”, 22"~ ... 4?"=1 927} contains 2 -+ 1 linearly independent
oscillatory solutions. A solution basis consisting of 2m +1—4, b=1,2, -+ 2m;
nonoscillatory solutions is obtained by replacing £ solutions in the completely
nonoscillatory basis with £ solutions from the completely oscillatory basis.

A solution of (3) is said to have zeros of multiplicity £, where 2> 1 is
an odd integer, only if a zero of multiplicity 4 is followed by a single zero.

By considering the various factorizations of a solution of (3) into linear
and quadratic factors, where such factors are solutions of (1) and (2), respec-
tively, the following is obtained.

THEOREM 3. Swuppose n=2m + 1, m=1,2,3,---. If (3) is oscil-
latory, there exist 2m + 1 linearly independent solutions, vy, ¥1," ), Yom ;
where y, has only zeros of multiplicity k,k=o0,1,2,--- 2m.

BIBLIOGRAPHY

[1] P. APPEL (1880) — Sur la transformation des equations differentielles lineares, « Comptes
Rendus des Seances (Paris)», 91, 211-214.

[2] J. H. BARRETT (1964) — Canonical forms for third order linear differential equations, « An-
nali di Matematica», 65, 253-274.

[3] J. H. BARRETT (1969) — Oscillation theory of ordinary linear differential equations, «Ad-
vances in Math.», 3, 415-500.

[4] G.D. JoNEs (1972) — 4 Progerty of ¥'"' + p(x)y'+ 1/2 p’ (x) ¥ = 0, « Proc. Amer. Math.
Soc. », 33, 420-422.

[5] S.C. TEFTELLER (1973) — Concerning solutions of third order self-adjoint differential equa-
tions, « Annali di Matematica», 96, 185-192.

[6] W. R. Utz (1970) — Oscillating solutions of third order differential equations, « Proc. Amer.
Math. Soc.», 26, 273-276.

[7] A. ZETTL (1965) — Adjoint linear differential operators, « Proc. Amer. Math. Soc.», 16,
1239-1241.



