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Analisi funzionale. —  Compactness gauges and fixed points. 
Nota (*> di F rancesco S. D e Blasi, presentata dal Socio G. Sansone.

RIASSUNTO. — In  un recente lavoro Jones introduce una nozione di m isura di com pat­
tezza e, servendosi di questa, prova un teorem a generale di punto fisso. Nella presente Nota 
si propone una nozione di m isura di com pattezza contenente in parte quella di Jones. Si dim o­
stra quindi un teorem a di punto fisso contenente oltre ai teoremi di Banach, Schauder e Darbo 
anche il teorem a di Sadovskiì (non incluso nel teorema di Jones).

i .  I n t r o d u c t io n

In  a recent paper Jones [8] has proven a general fixed point theorem  which 
contains as special cases both the B anach contraction principle and the Schau­
der fixed point theorem . H is theorem  includes also an im portan t generaliza­
tion of the Schauder theorem  due to D arbo [2]. To this end he introduces 
several notions, am ong them  th a t of reducible mappings of p-closure and, 
w hat is p robably  the m ost useful, the notion of compactness gauge which is 
a n a tu ra l generalization of the Kuratow ski functional a [12, p. 412]. F u rth er­
m ore he shows how to construct (non trivial) com pactness gauges.

T he aim  of this paper is to develop Jones’ theory  m a different direction. 
W e retain  his definitions of reducible m apping and ^-closure bu t we use a 
definition of com pactness gauge which differs from th a t of [8]. T hough both 
contain the definition of the Kuratow ski functional a, actually  neither implies 
the other. Constructive m ethods for obtaining com pactness gauges in our 
different setting are also considered. W ith the help of our notion of com pact­
ness gauge we prove a fixed point theorem  which extends in part th a t of Jones 
and contains, besides the aforem entioned fixed point theorem s, also a recent 
generalization of D arb o ’s theorem  due to Sadovskii [14] (which was not 
included in the theorem  of Jones).

In  conclusion we observe th a t the general theory  developed in [8], of 
which the present paper is in a certain sense a continuation, seems to offer 
a wide range of applications in the analysis of partia l differential equations 
and functional differential and integral equations of various kinds (see H ale 
and Cruz [6], Jones [7], [9], [10]).

2. N o t a t i o n  a n d  b a s ic  d e f i n i t i o n s

Denote by: (S , d) a complete m etric space; 2s the set of all non void 
subsets of S; C(S) (resp. B (S) , K (S)) the set of all non void closed (resp. 
bounded, compact) subsets of S; conv (S) the set of all non void com pact convex

(*) Pervenuta all’Accadem ia il 28 ottobre 1974.
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subsets A  e S, where S is a non void bounded closed convex subset of a Banach 
space; Z =  o , i , 2 , • • •, R + =  [o , +  00) , R+ == R+ u  { +  00} ; r(A)  , A  6 2s, 
the d iam eter of A. T he closure of a set A  C S is denoted by Ä . I f  A  is a non 
void subset of a B anach space, cöA denotes the closed convex hull of A. 
For any  A  e 2s, s >  o, set V  (A , e) =  {x  6 S : d ( x  , y)  <  s for some y e  A}.
L e t/  : S -> S. A ny  non void set A C S  sa tisfy in g /A C  A  is said to be invariant

° °
under / .  For any r e S ,  the set u  { f " x }  ( / ' x  — x  , f n+1 x  =  f fn x  , n 6 Z)

n= 0

is called the orbit of /  generated  by x.

D e f i n i t i o n  i .  Let N (S) be a non void subset of K (S). A  functional 
P : 2s -> R+ is called a compactness gauge on 2s (with null set N (S)) i f  the follo­
wing properties are satisfied-, (i) fo r  any {a}  e 2s such that p { a }  =  o and any 
A 6 2s, we have p  ({a} KJ A ) — pA , ( i i)A C B  implies / A < / B ,  ( i i i ) / A = / Ä ,  
(iv) p A  =  o is equivalent to A  e N (S), (v) the restriction of p  to B (S) takes 
values from  R+.

D e f i n i t i o n  2. A compactness gauge p  is said to be continuous i f  it 
satisfies / N  (A , s) <  p A  T  s(z , /A ) ,  for any A  6 B (S) and z >  o, where 
s:  R + X R + —> R + is such that fo r  each y) >  o, lim s (z , yj) =  o. When s de-

e a O
pends only on s, p  is said to be uniformly continuous.

D e f i n i t i o n  3 [8]. Let N (S) be a non void subset of K (S). A functional 
p  : 2s -> R + is called a compactness gauge (in the sense of Jones) i f  it satisfies, 
in addition to conditions (ii)-(v) of Definition 1, the following two: (vi) N (S)
is such that i f  A  e K  (S) and, fo r  every s >  o there exists B e N (S) such that
A C V (B  , e), then A  e N (S) , (vii) if { A f ig ^  , A n 6 2s, satisfies A i D A 2 D • ■ •
and  lim p A n — o, then fo r  each s >  o there exist B e K (S) and a positive

n —>  00

integer n such that A n C V  (B , s) .

The Kui-atowski functional a is a (uniform ly continuous) com pactness 
gauge in the m eaning of Definitions i and 3. However the following two exam ­
ples show th a t neither definition is stronger than  the other.

Example I .  L et S be a Banach space, B (^ 0 , a) — { ^ e S  : \\x —  x 0\\ <  a}, 
x o F S, a >  o. L et N (S) be the set of all non void com pact subsets of 
B , B =  B (a  , 1). For any  A  e 2s, define

=  0 if Ä  C B is com pact,

=  1/2 if Ä  C B is not compact,

=  exP [— D ( Ä \ B  , B)] if Ä  $  B and Ä O  B is compact,

=  l i2 exp [—  D ( Ä \  B , B)] if Ä  ^  B and Ä  D B is not com pact,

where D (Ax , A 2) =  in f { || a1 —  a2 || : ax e A x , e A2 }. It is easy to verify
th a t p  is a com pactness gauge in the sense of Definition 1 but, however,
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not in the sense o f Jones. For, if A n =  S \ B  (o , n +  i), n e  Z, we have
Ai D A2 D- • - , lim pA„ =  o but condition (vii) of Definition 3 is not fulfilled.

» -> 0 0

Example 2 . Keep on the notation of Exam ple I .  L et x 0 e S , || x 0 || =  i. 
For any A e  2s define

=  ocA if A  C B,

=  a ( A f l B )  +  sup {\ \x  —  Xq [I : j  Ç A}  if Ä  is bounded and 
A n  B, A \ B = f = 0 , .

=  sup {\\ x  —  x 0 \\ : x  e A }  if A  is bounded and A n  B =  0 ,

=  +  oo if A  is unbounded,

where a is the K uratow ski functional. It is easy to verify th a t p  is a com pac­
tness gauge in the sense of Jones with null set N (S) consisting of all non 
void com pact subsets of B. But p  does not satisfy Definition i for we have 
1/2 =  p A  < p ({  o } U A) =  I ,  where A  ~  { t x 0 : 1 <  t <  3/2 }.

DEFINITION 4. Let S be bounded. A  compactness gauge p  is said to be 
weakly contractive on 2s for  F  : 2s -> 2s i f  for any A  e 2s such that p A  >  o 
we have pF A  < pA . When, for any A  6 2s, we have pF A  <  hpA  , o <  h <  1, 
p is said to be contractive on 2s fo r  F.

Remark 1. C ontractive com pactness gauges have been studied by Jo ­
nes in [8]. Special cases of contractive or weakly contractive com pactness 
gauges are considered in [5], [13] (with p  =  a) and [14]. In  m ost applications, 
if /  : S -> S is given, the m apping F is defined by FA =  f kA  , A  e 2s , k >  1 
a fixed integer.

I f  /  is com pletely continuous, the K uratowski functional a is contractive 
fo r ./.

DEFINITION 5 [8]. Let f :  S -> S . Let W  be a non void subset of 2s . /  
is said to be reducible on W  i f  any A  e W, with r(A)  >  o, which is invariant 
under f ,  contains a proper subset B 6 W  also invariant under f .

Remark 2. A ny  contraction (or weak contraction) i.e. any  function 
/ :  S -> S satisfying d ( f x  J y )  < h d  (x , y), x , y e  S, o <  k <  1 (or d ( f x  J y )  <  
<  d (x ,y),  x  , y  £ S, x=j=y) is reducible on K(S). M oreover, if S is a non 
void bounded closed convex subset of a Banach space, any continuous 
function is reducible on conv (S) [3, p. 454).

DEFINITION 6 [8]. Let p  be any compactness gauge on 2s . A  mapping 
h : 2s -> C (S) is called a p-closure on 2s i f  satisfies: (i) Â2 =  h , (ii) A  Ç h A , 
(iii) phA  =  pA , (iv) B C A  implies h F Q h A .

Remark 3. I f  h is the closure operator in S and p  =  a, all conditions of 
Definition 6 are fulfilled. T he same happens if S is a Banach space and 
h =  cö. O bserve th a t N (S) is invarian t under h , i.e. h'N (S) Ç N (S).
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3. C o n s t r u c t io n  o f  c o m p a c t n e s s  g a u g e s

A m ethod for constructing- com pactness gauges in the sense of Jones 
is presented in [8]. T he following theorem  shows th a t the m ethod of [8] 
can be adapted so as to furnish a com pactness gauge in the sense of Defi­
nition I .

T h e o r e m  i . Let m  : R + —> R + and  M : R + —> R + be continuotts f  unctions 
such that m  (o) =  M (o) =  o , m (s) <  M (s) , j  >  o and , fo r  each s  ̂ >  o let 
there exist b0 > o such that m is) >  b0 fo r  all s > s 0. Let v : S x S  -> R + be 
a continuous function such that v (x , x) =  o and m  (d (x , ÿ j)  <  v (x , y)  <  
< M ( d  (x , y)). Let N (S) be a non void subset of K (S) satisfying condition 
(vi) of Definition 3 and such that, i f  Bi , B2 g N (S), also Bi u  B2 e N (S). 
For each a e S , A  e 2s and  B 6 N (S) let v(a , B) =  in f {v (a , b) : b e B } , 
Ç(A , B) =  sup { z / ( ^ B ) : ^ A } .  7 %*» the functional p  : 2s -> R+ defined by
P-P- — in f {^(A  : B) : B g N (S)}, A  e 2s, zy <2 compactness gauge on 2s .

Proof. I t is shown in [8] th a t p  is a compactness gauge in the sense of 
Jones. Thus, to prove the theorem  we need only to check th a t condition (i) 
of Definition 1 is fulfilled. W e shall prove a little more, nam ely th a t p  satisfies

p  (Ai U A 2) — m ax {pA± , p A 2} , A r , A 2 e 2s.

If  m ax {pA± , p A 2} =  + '0 0  there is nothing left to prove. Therefore sup­
pose pAi  , pAk <  +  00. L et & >  o. From  the definition of p , there exist 
Bi , B2 G N (S) such th a t

pP^i <  q (Af- , B?) <  p A { +  s , (i =  I ,2).

W e claim  th a t

^(A i u A 2 , Bi U B2) <  m ax { y ( A i , Bi) , y (A 2 , B2)}.

L et ex >  o. From  the definition of q, there exists ax e A x U A 2, say ax e A lt 
such th a t q (Ax U A 2 , Bx U B2) <  v (ax , Bt U B2) +  Si • Thus, since 
v(ax , Bx U B2) <  v(ax , Bx) <  q (A x , B,), we have q (A x U A 2 , Bx U Ba) <  
^  Ì  (A-i, Bx) -f- S i. Since a sim ilar inequality  holds in case ax e A 2, the claim 
is true. W e rem em ber th a t Bi , B2 e N (S) implies Bi U B2 e N (S). Hence

p  (Ai U A 2) <  q (Ai U A 2 , Bi U B2) <

<  m ax {y ( A i , Bi) , q (A2 , B2)} <

<  m ax {p A \ , / A 2} +  s,

which yields p  (Ay U A 2) <  m ax { pA\  , p A %}. The reverse inequality  is obvious. 
This completes the proof.

In  the following theorem  we are concerned w ith the construction of a 
(uniformly) continuous compactness gauge.
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T h e o r e m  2. Let v : S X S -> R + satisfy v (x , y) <  v (pc , z) +  v (z , y), 
x  , y  , z e S and , v (x  , y)  <  ^(d (T  , y)), 1 ,  j / e S ,  where s : R +-> R +, .s*(o) =  o, 
is continuous and increasing. Then, i f  p  is defined as in Theorem 1, fo r  any 
A G 2s and z >  o we have p V  (A , s) <  p A  -f- s(z). Moreover, i f  all hypotheses 
of Theorem 1 are satisfied, p  is a uniformly continuous compactness gauge on 2s.

Proof. L et A  € 2s, s >  o. L et x  G V (A , s), B g N (S). I f  a g A satisfies 
d(a , x) <  z and b e  B, we have v (x  , b) <  v (x , a) +  v (a , 3) <7 ^ (d (hr , a)) +  

v(a , b) from which, v (x , B) <  v(a  , B) +  s(z). This inequality  implies 
q ( y  (A  , s) , B) <  q (A  , B) -f- s(z) which furnishes pSf (A , s) <  p A  +  j(e). 
T he last statem ent is obvious.

4. A u x i l i a r y  r e s u l t s

In  this parag raph  we establish a num ber of results th a t will be used to 
prove our fixed point theorem . W e start with the following

LEMMA i . Let p  be any compactness gauge on 2s . Let A  G N  (S). Then 
any non void compact set B C A  is in N  (S). In  particular, fo r  any a e A  we 
have p  { a } =  o.

Proof. F rom  Definition 1.

L e m m a  2. Let {A t- e 1 , A,- g 2s, be such that A { =  hA { and  A  =  n A,- =(= 0 . 
T h e n A  =  hA. iel

Proof. T riv ially  A  C hA. On the other hand

A =  n  A f- == n  hA { D h n  A; =  hA .
t e l  t e l  i  e l

Hence A =  hA.

THEOREM 3. Let f  : S -> S be given. Let p  ,h  be a compactness gauge and 
a p-closure on 2s and suppose that the set W  =  {B G PN (S) : / B  C B } is non 
void. Then there exists in W  a m inim al element S*. I f  f  is continuous and h 
denotes the closure operator, S* ==/S*. Moreover, i f  f  is reducible on PN (S), 
f  has at least one fixed  point.

Proof. Introduce in W  the partia l ordering of the set inclusion and let 
{ B,-]vei be any  com pletely ordered subset in W. W e claim th a t B =  n B,-

i  e I
is in W, i.e. B G PN (fi) and / B  Ç B. B is non void and com pact and, by 
Lem m a 1, B g N (S) for B C B,- where B, g N (S). Since B,- =  h B ; , by 
Lem m a 2, we get B =  hB.  T hus B g (S). F inally

/ B  =  /  n  B /Ç  O f B ;  C n B - B
i e I t e l  i  e l

shows th a t B is invarian t under f  and B G W. Clearly B is a lower bound for 
{ B t- },-ei. Z orn’s lem m a yields the existence of some m inim al elem ent S*G W. 
If  f  is continuous and h the closure operator /S *  — S* for, otherwise, fS*
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would be a proper com pact subset of S* invarian t under / ,  in contradiction 
to the m inim ality  o f S*. I f  /  is reducible on AN (S) we have, by the m inim ality  
of S*, r(S*) =  o i.e. S* =  {a} ,  thus a =  fa .  This completes the proof.

T he next theorem  develops an idea due to M artelli [13].

THEOREM 4 . Let f  : S . S be continuous and suppose that there exists 
a set S*G K (S) such that /S *  =  S*. p  , A # compactness gauge and a 
p-closure on 2s. Zétf S =  AS. / A ^  exists a closed set A* D S* such that
h f k * =  A* ^  A* =  AA*.

Proof. L et W = { B e C ( S ) : . B = A B , / B C B , B  a n d / B D S * } .  W  is 
non void since S G W. Define.

A* =  n  B.
BeW

A* contains S*, hence it is non void. Furtherm ore, by Lem m a 2, A* =  AA*. 
Let B G W. T hen  f ]B C B implies A/B C AB =  B. Thus, we obtain

A /A *= A/ n  B C O A/B C O B =  A*.
BeW BeW BeW

W e claim  th a t the last inclusion is actually  an equality. Indeed, Bi =  A/A* 
is in C(S) and satisfies both ABi — Bi and Bi , /B i  D S*. Since

/B i  =  /A/A* C /A * Ç A/A* =  B , ,

Bi is invarian t under / .  Therefore Bi g W  and Bi =  A/A* DA*. From  this 
and A/A*CA* the equality  follows and the proof is complete.

5. A  FIXED POINT THEOREM

U sing the results established in the preceding paragraph  we can now prove 
the following fixed point theorem .

THEOREM 5. Let f  : S -> S , where S is a bounded complete metric space, 
be continuous. Let p , A be a compactness gauge and a p-closure on 2s and sup­
pose S =  AS. Let p  be weakly contractive on 2s fo r  f k(A >  1 a fixed  integer) 
and , i f  k >  2, /A^ ?m// N (S) of f  contain all one point sets. Let f  be redu­
cible on AN (S). Then f  has at least one fixed  point.

Proof. Consider the case k ■—  1 (the proof for k  >  2 is sim ilar). By
00

L em m a 1, choose a e S such th a t p {  a } =  o and let A  =  U { f na}.  From
n—0 _

A = { # }  U /A  we obtain  p K  =  p f A  which implies p A — o. T hus Ä g N ( S ) .  
Define

W 0 =  { B e N  (S) : /B  C B } .

Since /  is continuous, / Ä  C Ä  and Wo is non void. From  Theorem  3, being 
/  continuous, there exists S*g W 0 such th a t /S *  =  S*. By hypothesis 
S =  AS. T herefore all assum ptions of Theorem  4 are satisfied and there

13. — RENDICONTI 1974, Voi. LVII, fase. 3-4.
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exists a set A * eC (S ) such th a t

A /A *=A *'and A*=AA*.

Then

pA /A *=  pfA* =  pA*,

furnishes pA* =  o and, since A* =  AA*, A *e AN (S). T hus the set W  defi­
ned in Theorem  3 is non void (for A* e W) and, being /  reducible on AN(S), 
by Theorem  3 /  has at least one fixed point. T he proof is complete.

Remark 4. T he conclusion of Theorem  5 rem ains true  if the hypothesis 
th a t /  is reducible on AN (S) is replaced by any of the following two: (i) for 
any  A e N  (S), hA  is one-point set or, (ii) /  has the fixed point p roperty  on 
AN (S).

Remark 5. Theorem  5 contains the fixed point theorem s of Schauder 
and B anach w ith a num ber of their generalizations due to D ardo [2], Sadov- 
skiï [14], Edelstein [4], Browder [1], K rasnosel’skii and Stecenko [11], Furi 
and Vignoli [5]. Theorem  5 extends in part a theorem  of Jones [8].
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