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Analisi funzionale. — Compactness gauges and fixed points.
Nota © di Francesco S. De Brasi, presentata dal Socio G. SANSONE.

RIASSUNTO. — In un recente lavoro Jones introduce una nozione di misura di compat-
tezza e, servendosi di questa, prova un teorema generale di punto fisso. Nella presente Nota
si propone una nozione di misura di compattezza contenente in parte quella di Jones. Si dimo-
stra quindi un teorema di punto fisso contenente oltre ai teoremi di Banach, Schauder e Darbo
anche il teorema di Sadovskii (non incluso nel teorema di Jones).

1. INTRODUCTION

In a recent paper Jones [8] has proven a general fixed point theorem which
contains as special cases both the Banach contraction principle and the Schau-
der fixed point theorem. His theorem includes also an important generaliza-
tion of the Schauder theorem due to Darbo [2]. To this end he introduces
several notions, among them that of reducible mapping, of p-closure and,
what is probably the most useful, the notion of compactness gauge which is
a natural generalization of the Kuratowski functional « [12, p. 412]. Further-
more he shows how to construct (non trivial) compactness gauges.

The aim of this paper is to develop Jones’ theory in a different direction.
We retain his definitions of reducible mapping and p-closure but we use a
definition of compactness gauge which differs from that of [8]. Though both
contain the definition of the Kuratowski functional «, actually neither implies
‘the other. Constructive methods for obtaining compactness gauges in our
different setting are also considered. With the help of our notion of compact-
ness gauge we prove a fixed point theorem which extends in part that of Jones
and contains, besides the aforementioned fixed point theorems, also a recent
generalization of Darbo’s theorem due to Sadovskii [14] (which was not
included in the theorem of Jones).

In conclusion we observe that the general theory developed in [8], of
which the present paper is in a certain sense a continuation, seems to offer
a wide range of applications in the analysis of partial differential equations
and functional differential and integral equations of various kinds (see Hale
and Cruz [6], Jones [7], [9], [10]).

2.  NOTATION AND BASIC DEFINITIONS

Denote by: (S,4) a complete metric space; 2% the set of all non void
subsets of S; C(S) (resp. B(S), K(S)) the set of all non void closed (resp.
bounded, compact) subsets of S; conv (S) the set of all non void compact convex

(*¥) Pervenuta all’Accademia il 28 ottobre 1974.
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subsets A € S, where S is a non void bounded closed convex subset of a Banach
space; Z=0,1,2,---, R"=Jo,+4 00), R =R" U {4 co};r(A), A € 25,
the diameter of A. The closure of a set A C S is denoted by A. If Ais a non
void subset of a Banach space, cOA denotes the closed convex hull of A.
For any A€2%¢e>o0, set V(A,e)={x€S:d(r,y) <c for some yeA}.
Letf:S —S. Any non void set A C S satisfying /A C A is said to be invariant

under f. For any x €S, the set 8 (Fxy Pr=x, FPl%=fF'x  ne Z)
n=0

is called the orbdsz of f generated by x.

DEFINITION 1. Let N(S) be a non void subset of K(S). A functional
p: 2% > RY is called a compactness gauge on 2° (with null set N (S)) if the follo-
wing properties are satisfied: (i) for any {a} € 25 such that p{a}= o0 and any
A €25, we have p({a} UA)=pA, (ii) ACB implies pA < pB, (iii) pA = pA,
(iv) pA = o is equivalent to A € N(S), (V) the restriction of p to B(S) takes
values from RY.

DEFINITION 2. A compactness gauge p is said to be continuous if it
satisfies pN(A,e) < pA 4 s(e, pA), for any A€ B(S) and ¢>o, where
s RY*XRY— R" s such that for each v >o, lims(e,n) =o0. When s de-

e—>0

pends only on €, p is said to be uniformly continuous.

DEFINITION 3 [8]. LZet N(S) be a non void subset of K(S). A functional
p:2°—>R" is called a compactness gauge (in the sense of Jones) if it satisfies,
in addition to conditions (i1)~(v) of Definition 1, the following two: (vi) N (S)
us such that if A € K(S) and, for every e > o there exists B € N(S) such that
ACV(B,¢), then AeN(S), (vii) if {A, )}, A, €25, satisfies A1 DAsD - - -
and Lim pA, = 0, then for each ¢ > o there exist B € K(S) and a positive

n—>00
integer n such that A, CV (B, ).
The Kuratowski functional « is a (uniformly continuous) compactness

gauge in the meaning of Definitions 1 and 3. However the following two exam-
ples show that neither definition is stronger than the other.

Example 1. Let S be a Banach space, B(xy, @) = {x€S: | x — x| < 2},
% €S, a>o0. Let N(S) be the set of all non void compact subsets of

B,B=B(o,1). For any A €25 define

= o if ACB is compact,
= '1/2‘ if ACB is not compact,
= exp [-D(ANB,B)] if Ad B and AN B is compact,
= i/zﬂ— exp[—D(ANB,B)] if A< B and AN B is not compact,

PA

where D(A;, Ap) = inf {|| @) —ap|| : @ €Ay, a5 € Ay}, Tt is easy to verify
that p is a compactness gauge in the sense of Definition 1 but, however,
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not in the sense of Jones. For, if A,=S\B(o,#-+1), n€Z, we have
A1 DA D, lim pA, = o but condition (vii) of Definition 3 is not fulfilled.

n—>00

Lxample 2. Keep on the notation of Example 1. Let x5 €S, ||z, ]| = 1.
For any A € 25 define

=a«A if ACB,

=a(AN B)+sup{||x—=x,]:x€A} if A is bounded and
AN B, AN\B=+g,

=sup{||x—=x||:x€A} if A is bounded and AN B =

= + oo if A is unbounded,

PA Y

where a is the Kuratowski functional. It is easy to verify that p is a compac-
tness gauge in the sense of Jones with null set N (S) consisting of all non
void compact subsets of B. But p does not satisfy Definition 1 for we have
1/2=pA<p({o}UA)=1, where A = {1xy: 1< ¢< 3/2}.

DEFINITION 4. Let S be bounded. A compactness gauge p is said to be
weakly contractive on 25 for F:25— 25 if for any A €25 such that pA > o
we have pFA < pA. When, for any A € 25, we have pFA < hpA ;0 < /h < 1,
p is said to be contractive on 25 for F.

Remark 1. Contractive compactness gauges have been studied by Jo-
nes in [8]. Special cases of contractive or weakly contractive compactness
gauges are considered in [5], [13] (with p = &) and [14]. In most applications,
if /:S—S is given, the mapping F is defined by FA = F*A Ae25 k>1
a fixed integer.

If f is completely continuous, the Kuratowski functional « is contractive

for f.

DEFINITION 5 [8]. Let f:S—S. Let W be a non void subset of 25. f
is said to be reducible on W if any A € W, with »(A) > o, which is invariant
under f, contains a proper subset B € W also invariant under f.

Remark 2. Any contraction (or weak contraction) i.e. any function
f:S—S satisfying d(fx,fy)<Ad(x,), x,y€S, o< k<1 (or d(fr,fy)<
<d(x,y), x,y €S, x==y) is reducible on K(S). Moreover, if S is a non
void bounded closed convex subset of a Banach space, any continuous
function is reducible on conv (S) [3, p. 454).

‘DEFINITION 6 [8]. Let p be any compactness gauge on 25. A mapping
k25— C(S) is called a p-closure on 25 if satisfies: (i) M2 =k, (i) A CZA,
(iii) phA = pA, (iv) B C A implies hB C ZA.

Remark 3. 1f % is the closure operator in S and p = «, all conditions of
Definition 6 are fulfilled. The same happens if S is a Banach space and
% = ¢co. Observe that N(S) is invariant under %, i.e. ZN (S) C N (S).



FRANCESCO S. DE BLASI, Compactness gauges and fixed points 173

3. CONSTRUCTION OF COMPACTNESS GAUGES

A method for constructing compactness gauges in the sense of Jones
is presented in [8]. The following theorem shows that the method of [8]

can be adapted so as to furnish a compactness gauge in the sense of Defi-
nition I.

THEOREM 1. Let m: R* — R* and M : RY — R* be continuous functions
such that m(0) =M (0) =o0,m(s) < M(s),s>o0 and, for each So >0 let
there exist by >0 such that m(s) > by for all s>s,. Let v:SXS — R* &e
a continuous function such that v(x,x) =0 and m(d(x,y)) < v(x,y) <
<M{d(x,y)). Let N(S) be a non void subset of K(S) satisfying condition
(Vi) of Definition 3 and such that, if By, Bs € N(S), also By UBs €N S).
For each a€S,A €25 and BeN(S) let v(a,B)= inf {v(a,b):6€B},
g(A,B)=sup{v(e,B):a€A}. Then the functional p:25—>R" defined by
PA = inf {9(A:B): BeN(S)},A €25 is a compactness gauge on 25.

Proof. It is shown in [8] that p is a compactness gauge in the sense of
Jones. Thus, to prove the theorem we need only to check that condition &)
of Definition 1 is fulfilled. We shall prove a little more, namely that p satisfies

p(AluAg)zmax{pAl,pAz}, A1, As €25

If max {pA1, pAs} = + oo there is nothing left to prove. Therefore sup-
pose pA1, pAs <+ oco. Let e >0. From the definition of 2, there exist
B1, B: € N(S) such that

PA; < g(A;, B) < pA, + ¢, (G=1,2).
We claim that

7(A1U Az, B1 U By) < max {¢(A1, By, ¢(Az, By)}.

Let & > 0. From the definition of ¢, there exists @; € A; U As, say a; €A,
such that ¢(A; UA,, B; UBy)< v(e, B, UB,) + g;.  Thus, since
v(ay, BiU By) < (e, B) <¢(A;, B), we have g(AJUA;, By UB,) <
<¢(A;,By) +¢. Since a similar inequality holds in case a, €A,, the claim
is true. We remember that B;, By € N(S) implies B; U By € N (S). Hence

PA1UA) <g¢(A1UA;, BiUBy) <
< max {g(A1, B1), ¢(Asz, By)} <
< max {pA1, pAs} + ¢,

which yields p(A1 U As) < max {pA;, pAs}. Thereverse inequality is obvious.
This completes the proof.

In the following theorem we are concerned with the construction of a
(uniformly) continuous compactness gauge.
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THEOREM 2. Let v:SXS —>R* satisfy v(x,y) <v(x,z) +ov(z,y),
x,y,2€S and, v(x,y) < s(d(x,), x,y €S, where s : R"— R, s(0) = o,
is continuous and increasing. Then, if p is defined as in Theorem 1, for any
A €25 and € > o we have pV (A | €) < pA + s(c). Moreover, if all hypotheses
of Theorem 1 are satisfied, p is a uniformly continuous compactness gauge on 25.

Proof. Let A€25 e>o0. Let x€ V(A ), BEN(S). If a€A satisfies
d(a,x)<e and 6€ B, we have v(x,6) < v(x,a)+v(a,d) < s(d(x, )+
+ v(a, b) from which, v(x, B) < wv(a, B) + s(s). This inequality implies
g(V(A,e), B) < ¢(A, B) -+ s(e) which furnishes pV (A, ) < pA + s(e).

The last statement is obvious.

4. AUXILIARY RESULTS

In this paragraph we establish a number of results that will be used to
prove our fixed point theorem. We start with the following

LEMMA 1. Let p be any compactness gauge on 25. Let A € N(S). Then
any non void compact set B C A is in N(S). In particular, for any a € A we
have p{a} = o.

Proof. From Definition 1.

LEMMA 2. Let {A;}ic1, A, €25, be such that A; = hA; and A = NA=F3.
Then A = ZA. rel

Proof. Trivially A ZZA. On the other hand

iel zel i€l

Hence A = ZA.

THEOREM 3. Letf:S —S be given. Let p, % be a compactness gauge and
a p-closure on 25 and suppose that the set W = {B € AN(S): fBC B} is non
void. Then there exists in W a minimal element S*. If f is continuous and h
denotes the closure operator, S* =fS*.  Moreover, if f is reducible on AN (S),
) has at least one fixed poins.

Proof. Introduce in W the partial ordering of the set inclusion and let

{ B, };c1 be any completely ordered subset in W. We claim that B= N B;
iel
is in W, i.e. B€/ZN(S) and /B C B. B is non void and compact and, by
Lemma 1, BeN(S) for B B; where B;e€N(S). Since B;=%B;, by
Lemma 2, we get B = £B. Thus B € ZN (S). Finally
/B=fnB,CnNnfB,CnNB,=B8B
iel el iel

shows that B is invariant under f and B € W. Clearly B is a lower bound for
{B;};ec1. Zorn’s lemma yields the existence of some minimal element S*e W.
If £ is continuous and % the closure operator fS*= S* for, otherwise, fS*
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would be a proper compact subset of S* invariant under 7, in contradiction
prop p

to the minimality of S*. If £ is reducible on 4N (S) we have, by the minimality

of S*,7(S*) = o0 ie. S*={a}, thus a = fa. This completes the proof.
The next theorem develops an idea due to Martelli [13].

THEOREM 4. Let f:S —S be continuous and suppose that there exists
a set S*€ K(S) such that fS*=S*. Let p, % be a compactness gauge and a
p-closure on 25. Let S = hS. Then there exists a closed set A* DS* such that
MA* = A* and A* = rA*.
Proof. Let W={BeC(S):B=/B, fBCB,B and fBDS*}. Wis
non void since S € W. Define.
A*= N B.

BeWw
A* contains S¥, hence it is non void. Furthermore, by Lemma 2, A* = 4A*.
Let BeW. Then fBCB implies #fB C /4B = B. Thus, we obtain

th*—hfm BC 0 /szC N B =A*

BeW
We claim that the last inclusion is actually an equality. Indeed, B; = 4fA*
is in C(S) and satisfies both 4#B; = By and B;, fB; D S*. Since
By = fIfA*C fA*C hfA* = By,

By is invariant under /. Therefore By € W and B; = 4fA* D A*. From this
and A4fA*C A* the equality follows and the proof is complete.

5. A FIXED POINT THEOREM

Using the results established in the preceding paragraph we can now prove
the following fixed point theorem.

THEOREM 5. Let f:S—S, where S is a bounded complete metric space,
be continuous. Let p, h be a compactness gauge and a p-closure on 25 and sup-
pose S =1S. Let p be weakly contractive on 2° for f* (k=1 a fixed integer)
and, if k = 2, let the null set N (S) of f contain all one point sets Let f be redu-
cible on AN (S). Then f has at least one fixed point.

Proof. Consider the case 2= 1 (the proof for 2> 2 is similar). By
Lemma 1, choose @ €S such that p{a} =0 and let A = u {f"a}. From

A={a} UfA we obtain pA = pfA which implies pA = o. Thus A eN(S).
Define

W, ={BeN(S):fBCB}.

Since f is continuous, fA C A and Wy is non void. From Theorem 3, being
Jf continuous, there exists S*€ W, such that fS*=S*. By hypothesis
S =/4S. Therefore all assumptions of Theorem 4 are satisfied and there

13. —‘RENDICONTI 1974, Vol. LVII, fasc. 3-4.
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exists a set A¥€ C(S) such that
MA* = A" and A*= ZA*.
Then
PHAT = pfA* = pA¥,

furnishes pA* = o and, since A*= ZA* A*€ AN (S). Thus the set W defi-
ned in Theorem 3 is non void (for A*€ W) and, being # reducible on AN (S),
by Theorem 3 f has at least one fixed point. The proof is complete.

Remark 4. The conclusion of Theorem 5 remains true if the hypothesis
that / is reducible on /4N (S) is replaced by any of the following two: (i) for
any A € N(S), ZA is one-point set or, (ii) / has the fixed point property on
/AN (S).

Remark 5. Theorem 35 contains the fixed point theorems of Schauder
and Banach with a number of their generalizations due to Dardo [2], Sadov-
skif [14], Edelstein [4], Browder [1], Krasnosel'skii and Stecenko [11], Furi
and Vignoli [5]. Theorem 3 extends in part a theorem of Jones [8].
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