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Ju liu s D ufner, On the solvability of boundary, ecc. *47.

Matematica. — On the solvability o f boundary value problems for  
elliptic-parabolic systems o f second order. Nota (*} di J u l i u s  D u f n e r ,  

presentata dal Corrisp. G. F i c h e r a .

RIASSUNTO — Viene considerato un sistema di p  equazioni lineari alle derivate parziali 
del secondo ordine in p  funzioni incognite. Si suppone che il sistema sia ellittico-parabolico 
[cfr. la (2)].

Considerato per esso un problema « ben posto », secondo una teoria sviluppata in prece­
denza (cfr. Bibliografia), si da, sotto opportune ipotesi, un teorema di regolarizzazione per 
la soluzione debole di questo problema.

i . Introduction

L et us denote by  £2 a bounded connected open set in the real e s p a c e  Kn. 
Let the m atrices a'3 =  (ah), ^ ’= ( $ / ) ,  c =  (ckf) (i <  i , j  <  n ,  i <  k , I  <  p) 
be o f C2 (û ) , C1 (Ü) , C°(Q) O) respectively and assume ah =  aJh  =  a%, b\i=  6a 
for all i  , j  , k , /.

W e shall consider the following system  of p  linear second order differen- 
tial equations

(0  ( f u )k =  — dii di 2y ui +  dki di Ui +  ckl Ui = f k  in fi,

or briefly: L u =  —  d J dj u  +  b* u +  cù = f  in Ü. H ere u == (ux , • • •, up),
/ =  ( / i  , * * • yff) , 3,-=  -^7  and the usual sum m ation convention is used.

W e shall suppose th a t the operator L  is elliptic-parabolic in the following 
sense

(2) dii (x) zki z j > o  for x e Q , z* e R.

Let us further assum e th a t

(3) fk i  +  Cik —  dki j i —  d i  I if) (pc) zk z l > q  • \ z f  for x  e Q , zk e R,

p
I 2 f  — S  ( ^ )2j dki j i =  di b \i , • • • ,q  denoting a positive constant.

In  [1], boundary value problem s for the equation (1) are form ulated which 
are correctly posed in a certain sense discussed there; am ong other things,

(*) Pervenuta all’Accademia il 27 settembre 1974.
(1) Denote by ç f  \Çï) (C^(D)) the set of real-valued functions that are continuous (uni­

formly continuous) in D together with all their first k derivatives. Likewise all function spaces 
used will be assumed to be real and no distinct notations will be used for product spaces.
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the existence and properties of L 2-weak solutions (see Definition 4 below) 
are shown and the smooth solvability in a certain special case is proved.

In  this paper we repeat briefly in section 2 w hat we m ean by a correctly 
posed boundary value problem  for the equation (1) -  for details see [I ] , In  
section 3 we form ulate our problem, with the aid of an appropriate bilinear 
form, as variational problem, so th a t the boundary conditions are split into 
« given » data  (which are always of order zero) and « natu ral » boundary 
conditions. W e show th a t the corresponding Hi-weak solution (see Definition 3), 
being sufficiently smooth, satisfies the boundary conditions in the classical 
sense. Using results of J . J. Kohn, L. N irenberg [3], [4] we show in section 4 
the existence of smooth solutions, provided th a t the boundary  of D is no­
where characteristic for L. In  section 5 the uniqueness of L 2-weak solutions 
is proved for dim(D) =  2, assum ing th a t the boundary  is noncharacteristic. 
This is done with the aid of an elliptic regularization globally defined and 
regularizing in tangential direction so th a t the results of [3], [4] again are 
applicable. F inally  a standard  argum ent furnishes a result about « weak 
equals strong ».

It is assum ed in the sections 4 and 5 tha t the boundary  3D is noncharac­
teristic, i.e. d e t ( ^  Ui n/) >  o , (nx , • • • , nn) denoting the outw ard normal. 
The case of characteristic boundary  has not been investigated intensively as 
yet; the following, however, m ay be said: If  3D consists, besides of non­
characteristic portions, of a finite num ber of components on which aij n ifij =  o, 
then under certain conditions Theorem  1 of section 4 is still valid (see [1], 
[3]). T he m ethods used there cannot be applied if characteristic boundary 
parts of any  other type occur, because the special situation a*J' fit Uj =  o 
(cfr. [1 ]) is essentially used. -  O. A. Oleinik [5] has treated  the D irichlet 
problem  for a single equation (1) with (2), posed first by G. Fichera [2] (being 
correctly posed in our sense). However, the m ethods of [5], based on the 
m axim um  principle for a single elliptic equation, cannot be applied in our 
case qf systems.

2. C o r r e c t l y  po se d  b o u n d a r y  v a l u e  pro blem s

L et us assum e th a t the dom ain D with boundary 3D can be described 
w ith the aid of a function (peC 1 *(Rw):

û  =  { r e R ” : ( p ( ^ ) > o }  , 3D =  {x  e R ” : <p(#) =  o},

| V<p(^)| — I for #  e 3D, so th a t we m ay define the outw ard norm al by 
(% , • • •, nn) =  ■— V<p on 3D.

Let A7 (1 < j < n )  be given sym m etric /x ^ -m a tr ic e s  of class CX(3D) 
satisfying A 7 nj  =  o on 3D. Let Ä  be the sym m etric m atrix  of C° (3D) such tha t

I (A7 9j U * v - \ - M  u • 9j  v +  Am • v) da =  o for all u , v e C1 (3D),
dQ
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da  representing elements o f volume on 3 0 . Setting b =  (fi +  d \j)  n{ , we 
assume th a t each o f the m atrices Q =  aij n{ nP and b — b +  Ä  are split 
continuously into two components:

Q - Q ,  ! Q_ , I  =  B +  C on 3 0 .

Denote by V p the linear space of real /-tu p le s , by Q+ the transpose of the 
m atrix  Q+ and set -  in a fixed point of 30  -  R(Q+) — { z e Y p : z =  Q+ y, y  e },
N (Q'+) =  {* e V , : QV * =  0} , R (B ' |N (Q L )) =  : z = B ' y  , y e N  (QL)}.
D enote by  +  (©) the sum  (direct sum) o f subspaces of Vp . T hen we require

(Ei) R  (Q+) © R(Q _) =  R(Q ) on 30

(E 2) { R  (Q+) +  R (B' IN  (QL))} D { R (Q_) +  R (C' | N (Q'+))} =  { 0} on 30

(E3) { R  (Q+) +  R  (C I N (QL))} n  { R  (Q_) +  R  (B I N (QL))} =  { o } on 30

(U) z  ■ (C —  B) z  >  o (^ e N (Q D ) on 30

(D) R  (Q—) D R  (A1) -)-••• -j- R (A*) on 3 0 .

DEFINITION i. Assume that the operator L  satisfies (2), (3). Suppose 
that the matrices Q+ , Q_ , B , C e C0(3O) and M  e C1 (30 ) (1 <  j  <  n) satisfy
(E i) , (E2) , (E3) , (U) , (D ) . I f  P ± denotes a pair of projectors so that Q ± =  P± Q,
then using the notations QJ =  aij nt , Q± =  P ± Qj we call

(0  L u =  f  in O,

(a) QL 3j  u — A ' d ju  —  Bu  =  0 on 30

(fi) Q., h — o on 30

a correctly posed boundary value problem.
In  w hat follows we only consider such correctly posed problems.

D enote by L * =  — d j  3 3 j  - f  (—  fi —  2 d \ f )  3,- +  (c —  b\ ,• —  d f i f  the 
form aladjoint of L  and by ( , ) the scalarproduct in 1*2(0). Then the following 
G reen’s form ula holds:

(Lu ,v)  — (u , L*v) — j  [— v (Q f id ju—  Af d j u — Bu) +  dPv((Qi)'u)] +
SQ

+  \u (Q- v +  A* 3jV  - f  C'v)  —  3y m((Q+)V)] der.
/ n ■

Thus, observing th a t N (Q +) — n  N((Q+)'), the following definition is suggested:
■ j =1 ,

D e f i n i t i o n  2. The boundary value problem

(5) L* v =  g  in O,

(a) Q-LdjV +  A J djv  +  Cf v — o on 3Û

(fi) Q + z > = o  on dQ,

is called the fo rm al adjoint boundary value problem to (1), (4).
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I t is obvious th a t the correctness of (i), (4) implies the correctness of (5), 
(6) and vice versa. W e rem ark  th a t in general the boundary  datas of order 
zero contained in (4) neither are the same as (4 b) nor are the same as the zero 
datas contained in (6). However this is true in such points of 9Û which are 
noncharacteristic for L, i.e. for which det (aij n{ nf) >  o.

3. Hr WEAK SOLUTIONS

In  order to define w eak solutions belonging to H i (£2) we construct 
an appropriate G reen’s form ula. Let cp e C3 (R”) , A 1 , • • •, A” e C2 (a£2) , 
B e C 1(3Î2) and let A 1 i - - - )A n and B be extended into £2 as C2(£2) —  and 
C1 £2) — functions respectively. Then the m atrices d 3 =  d3 +  (A* cpjy —  A7 <p| ,•) 
and B3 =  —  Btpy are of class C2(£2) and C ^ Q ) respectively. In tegrating 
by parts and using Ä =  (A* Tp- — on 3£2 we obtain

(7) (L u  , v) =  Q (u  , v)  —  I (Q J9j  u  —  A Jd j u  —  B u) - v  d a  ,

3Q

(8) Q ( u , v ) =  I a 3 dj u - d j v  +  [(a3\j +  6s) — B'] d{ u - v  — B* u • v -f-
Q

+  ( c   B*| i )  U - V  d x  =  l' c i 3 U  • d j  V +
Q

+  -7  [Q*j \ j  +  O  U -v —  (a lJ\j +  b ' ) u - v ]  +

+  7  (2 c ~  b\i —  d3\ij) u - v  d^  - f  y  j (b —  2 B) u -v der.
an

D e fin it io n  3. Denote by B the closure in  Hi (£2) of

B =  {u  e C1 (£2) : Q + u =  o on 3£2}.

Then a function u  € B is called an H y  weak solution of the boundary value 
problem (1), (4), i f

(9) Q (u , v) =  ( / ,  v) fo r  all v £ B .

Because L  is degenerated elliptic it does not m ake sense in general to 
look for solutions in H i (£2). However we shall later m ake assum ptions such 
th a t our solutions are smooth enough.

U sing the notation || u ||2 =  (u , u) , it follows from (2), (3), (U) that 
Q (u ,u )  > q  y u ||2 for u  e B. Hence an H i-weak solution of (1), (4) satisfies 
the a-priori estim ate q || u  ||0 <  | | / | |

Obviously any  classical solution of class C1 (£2) D C2 (£2) is an H x-weak 
solution. To investigate the converse we first note an easily proved

Lemma i. L et (p e C1 (R”). Then any function u of class B O C°(£2) 
satisfies Q + u — o on S>£2.
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Now let u be an H i-w eak solution of (1), (4) belonging to C2(Q). 
Because Co° (ß )  C B we have L u = /  in ß ; using Lem m a 1 we get

Q + u  =  o on 3Ü and for all v e B  : (Q Î 9j u  —  A7 9j u  —  Bu) • v der =  o.
JdQ

T hus w ith the above choice of the bilinear form Q (u  , v) the parts (4 d), 
(4 b) of our boundary  conditions (4) appear as « natu ra l » and « given » 
boundary conditions respectively.

Sufficient conditions under which the natu ra l boundary  conditions (4a) 
are satisfied in the classical sense are given in the following

LEMMA 2. Let us denote by A the set of points x 0 e 9Û such that fo r  any 
vector z  e N (Q+ (x0)) there exists a neighborhood U 0 of x 0 (on 9Ü) and a function  
v e C ^U q) satisfying v (x 0) =  z and Q'+v(x) =  o fo r  x  e U 0 . Assume that 
9 e C1 (Rw) and that A is dense in  3ti. Let u  , v be of class B. Then

(i)

(ii)

j  w  (Q i 3j  u  —  A7' 3y u —  Bu) der =  o
9Q
implies QL 3y u —  A7 3y u —  Bu =  o 

I w  (Q i 3j  v +  M  dj v +  C' v) der — o
dQ
implies QL 3j  v +  A7 3j  v +  C 'v =  o

fo r  all w e  B 

on 3 £2 , 

fo r  all w e  B 

on 9 Ü .

Remark. T he following result (which is easily proved) can be used to 
check the density  of A in 3Ü: L et V denote the set of points of 9Û having a 
neighborhood (on 3Ü) in which Q+ is of constant rank. Assume th a t 9 e (^(R *) 
and th a t Q+ € C1 (3fi). T hen T C A.

Proof of Lemma 2. W e first localize the problem. Let { Ot } be a finite 
open covering of 3Ü. T hen there exists a continuously differentiable m apping
Ft =  (FÎ , • • •, F ”) which m aps Ot D O onto PT =  {y n <  o , y \  + ------\~yl<  R 2}
and Ot O 3Q onto ST =  { y n =  o , y \  4- * • • +  y l  <  R 2}. Consider fixed 
Ot =  O, Ft =  F ,-  • •. Let B(S) =  { ^ e C j(S )  : Q + u = o  on S } , y  =  ( y l9> • 1),
co dy f =  dei. Then we get

r*
(10) j w  (Q i Flx. dyi u - -  Ay Flx. dyi u — lìti) oj dy' =  o for w e  B (S).

s

Second, we show th a t from (10) it follows

( i i ) s[(Qt-Fiy 9„ u — A'F^ .9n u — Bu)Cy)] =  o for ^ e N (Q ;(y ) ) , y e F ( A n O ) .

For this end let us assume th a t u0 e B, y 0 e F  (A D O ), 20 i N  (Q+ (y0j) and
th a t •?„ [(Q i Fi dyiu0 —  AJ Flx . dy/ u0 —- Bw0) (y0)] >  o. Then there exists a 
neighborhood U 0 of y 0 and a function w0 e C1 (U0) satisfying w0 (y0) =  s0
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and Q+o'oOO 0 f° r y  e U 0 . Now cut off w0 by a suitable nonnegative 
function Ç e C ~ (S) such th a t [(!> 0) (QÌ_ F ^ . a ^ 0— Ay F i . d ^  —  Bu0)] (y) >  o 
for y  € S -  contradiction to (10).

n
Finally, observing th a t R (Q _) =  2  R (Q -) and by condition (D), we see

j =1
th a t the expression in square brackets in (i i) is a vector belonging to N(Q+)i D 
H { R  (Q_) +  R (B I N (Q+))} for y e  F (A n  O). Hence using condition (E3) we 

Q -  3/ u —  A 7 dj u —  Bu — o on A n  O. Thus (i) is proved by continuity 
of all functions occurring. By the same argum ent (ii) is shown, using 
condition (E2) instead of (E3).

4. Smooth solutions

Let us consider the following problem, elliptic for e > 0 :

( I2) Qz(u > v) = . ( / ,  v). for all v e B.

H ere Qs (u , v) =  Q (u , v) T  £ j* bijdi u-dj  v +  u • v dx, and we assume that
Q

the b%J are of class C2(Q) and tha t

C13) b'ki =  blik =  bu (1 <  i , j  <  n , I <  k , /  <  p),

(*4) bii Zi Zj ~> 0 , (d£/ +  z\ Zj >  K 0 e I u |2 in Q for ^  e R,

Ko being a positive constant, | s  |2 == 2  (*v)2- W e rem ark th a t I
i,k

0- '■ P'X / - u n i t  m atrix) has the required properties. U sing the conditions (3) 
and (U) it is easily seen tha t

(U ) Q .(u ,  «) >  Ke| |  «||J + ç \ \  u f 0 for u e  B ,

II u\\m denoting the norm  in U m (Q) for a nonnegative integer m, K =  m in (1, K 0). 
T hus Qz (u ,v )  is coercive over B for s >  o.

To obtain smooth solutions of (9) we proceed in a way sim ilar to th a t of 
Kohn and N irenberg in [3], [4]: Solve (12) for e >  o by a Ee I n  C°°(Q), derive 
a-priori estim ates for the H w-norm of ue independent of s, and conclude th a t 
as s->-o a subsequence o f j h e  ue converges in H w(£2) to a solution of (9).

Let /  belong to C°°(Q). Then according to [3], p. 463 the unique 
solution uz e B (s >  o) of (12) is of class C°°(Q), provided tha t

(16) 9 e C°° (R B) ; aij , Vj  , b' , r  e C°° (Q) ; Ay , B , Q+ e C°° (3Û),

(*7) Q+ is of constant rank  on each com ponent of aQ (2).

(2) (17) is assumed to satisfy the conditions (a), (b), {c) of [3], pp. 451, 452.
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Now we give a-priori estim ates corresponding to those of [4], section 
4, which are derived for a single equation and zero boundary  datas. It m ay 
be verified by a close exam ination of the proofs used there th a t by almost the 
same argum ents (see also [3], section 4 and [4], p. 799) it follows in our case 
of systems and correctly posed boundary  conditions:

Assum e th a t (16), (17) <2> are satisfied. Suppose th a t the principal p a rt of

Qe ( « , v) is sym m etric, i.e. j (aJ +  s btJ) 3,. it • v dx  -  f  (âij +  zbij) 3,. v • 3) u dx
'q q

(this will be the case if A ' =  o on 3£2) and th a t 3Ü is noncharacteristic for L,
i.e. det (aiJ' n i nJl ) > o  on 3 0 . I f  ut is the C00 (O)-solution of (12) for e >  o, 
then there exist constants k >  o, Cm , K independent of e such th a t

( l8) S'I I«. II» +  k z \ \ u , f m+x < C m \\us \ t +  Kl l / l l®.

The only interesting constant Cm arises from a considerable num ber of inte­
grations by parts perform ed locally tangent to the boundary, after a change 
of the dependent variables. T h at is why only the following will be said: Cm 
depends on m, n, p, i /min (det (aJ n ,•»,•)), m ax IT? dM (| y | <  2), m a x | D Y^ / |,

3 0  Q Q

m ax I DY Bh  | (| y | <  i), fu rther (because of the change of the independent 
variables) on m ax | D Y9 | (| y I <  3) and (becaüse of the change of the depen­

dent variables) on m ax j DyQ+ | (| y | <  2), the dependence being such th a t Cm
3Q

increases if the m entioned quantities increase. Thus, if we assume Cm >  q for 
certain m  >  1 we get the following ^-priori estim ate

( !9) II ^ s L <  K ' l l / I U .

It follows im m ediately from Lem m a 1 tha t our smooth solutions uz 
( s > o )  constructed above are of class B°°.=  { ^ e C °°(Q ) : Q+ u =  o on 3Ü}. 
Now from (19) it is concluded in the same way as in [3], [4] tha t a subsequence 
of the uz converges in H w(0 ) to a solution u of (9), u belonging to the closure

00 —mof B in H w (£i) which will be denoted by B°° . W e sum m arize in

T h eo rem  i. Assume that (16), (17) hold. Suppose that M  — o on 9 Q 
( j  =  1 , • * *, h), that SQ is nowhere characteristic fo r  L  and that Cm <  q fo r

■  m
certain m^> 1. Then fo r  any vector f  e H W(D) there exists a solution u  e B°° 
of the boundary value problem (9).

---m _
Suppose th a t B°° C C  (£2). Then the solution u of Theorem  1 satisfies 

our original boundary  value problem  (1), (4) in the classical sense. This 
follows w ith the aid of Lem m a 1 and Lem m a 2, observing th a t (17) implies 
T =  A =  aD.
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5. L2-W EAK AND L2-STRONG SOLUTIONS

D efinition 4. Let f  Then a function  ^eL2(Q) w ill be called a
l^rweak solution of {1), (4), i f  (L* v , u) =  (v , / )  fo r  all v € C2(Q) satisfying (6), 

It was proved in [1] th a t a correctly posed boundary  value problem  
(1), (4) always has a L2-weak solution u  w ith the property

(19) in f II u +  w  II < $ '- 1 | | / | |  ,
w e N  (L)

N (L) =  {u  E L2 (D) : (L*v , u) =  o for v e C2(Q) satisfying (6)}. Let us now 
consider the uniqueness of L2-weak solutions.

W e need some G reen’s formulae. Corresponding to (7) we get

(20) (L* v , u) =  Q* (y , u) — T [ Q 3 d j  v +  M  d j  v +  C' v] • u  der,
?Q

Q* (y , u) =  Q (u y v). W e use the notations Q* (y , u) =  Q*(^ , u) +  

-f* £ j (biJ di v-djU - f v - u ) d x  and L* =  L* +  e(—  dj bij 3,- +  I). T hen we obtain
Q

(21) (L* v , u) =  Qe (y , u) —  f  [(Q-7 -f  zblJ nf) dj v +  A J dj v +  C' v] • u der.

In  order to prove uniqueness we first solve smoothly the boundary  value 
problem

(22) L* v =  g  in Q, , (6) (e >  o)

for g  e C°°(Q). Assum ing (16), (17), the solution v =  vz € B of

Q* (v ,u )  =  (g , u) for u e B (s >  o)

is of class C°°(Q). Let us require tf3 =  0 on 3Ü, so th a t the s-term  in the 
boundary  integral of (21) vanishes. Then it follows by Lem m a 2, (ii) th a t 
vz is the  desired solution of (22).

Now let u e N (L) and let vs be the C°° (O)-solution of (22) corresponding 
to ^ e C ° ° ( ü ) .  T hen we get (g , u) =  (L*vz , u) =  e((— dj blJ d{ +1) vz , u)t 
thus

\(g  , u ) \ <  const. £ | K I | 2 | M I 0 -

Let us assum e th a t (18) holds with Ci <  q. Then

I (g , u)\ <  const. y g  ||x y u  Ho for s >  o ;

consequently u =  o in L2(Q). W e sum m arize in

Theorem 2. Assume the existence of matrices btJ satisfying (13), (14) 
and b13 n{ =  o on 3>ß (J == 1 , • • • , n). Let (16), (17) hold. Suppose that
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A7 =  o on d£i ( j  =  I , * • • , « )  Æ/zaf that 3£2 is noncharacteristic for  L. Let in 
addition q > C  1. L^rweak solutions of (1), (4) unique; the same
holds fo r  L2-weak solutions of the form ally adjoint problem (5), (6).

For the case n =  2 the following m atrices bij can be used in Theorem  2:

b11 =  (9^  +  9) I , £22 =  (9^ +  9) I , b12 =  b21 =  —  9 |i 9|2 I.

It is obvious th a t tf* — o on 3£2 and th a t (13) and the first condition 
°f (14) are satisfied. The second part of (14) holds because det (aij % nj) >  o 
on 9£2.

Finally we use Theorem 2 to show «weak equals strong».

D e f i n i t i o n  5» Let f  e L,2(£2). Then a function u e L2(£2) w ill be called 
an L»2-strong solution of (1), (4) (in the sense of K . O. Friedrichs'), i f  there exists 
a sequence Uj eC 2 (£2) satisfying (4) such that

Il uj  —  ^  Il o , y L uj — f  y -> o ( / ' -> 00).

Clearly any L2-strong solution is a L2-weak solution. Conversely we have

COROLLARY. Suppose that the assumptions of Theorem 2 hold. Then a 
L,<i-weak solution of (1), (4) is actually a L2-strong solution.

Proof. U sing Theorem  2, there is a sequence uj E C2 (£2) satisfying (4) 
such th a t II "Luj— / | |  -> o (y -> 00). T he Corollary then follows with the aid 
of (19), observing th a t N (L) =  { o }.
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