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Matematica. — On the solvability of boundary value problems for
elliptic-parabolic systems of second order. Nota ® di Jurius DUFNER,
presentata dal Corrisp. G. FicuEera.

RIASSUNTO — Viene considerato un sistema di # equazioni lineari alle derivate parziali
del secondo ordine in # funzioni incognite. Si suppone che il sistema sia ellittico—parabolico
[cfr. la (2)].

Considerato per esso un problema « ben posto », secondo una teoria sviluppata in prece-
denza (cfr. Bibliografia), si da, sotto opportune ipotesi, un teorema di regolarizzazione per
la soluzione debole di questo problema.

1. INTRODUCTION

Let us denote by €2 a bounded connected open set in the real #-space R”.
Let the matrices &” = (), 6= (64), c= () <2, j<m, 1<k, 1< p)
be of C2 (5_2) ,Ct (?2) ,C° (f_l) @ respectively and assume al = ali = A
for all 7,7, 4,/

We shall consider the following system of p linear second order differen-
tial equations

(1) L)y = — @) 9; 3; s+ by d; 1y + cpy oy = f in Q,
or briefly: Lz = — 47 9;9; u+ & ;#+ cu=f in Q. Here z/:(ul Vvt Uy),

f=, 0 ), 0= <, and the usual summation convention is used.
2

We shall suppose that the operator L is elliptic-parabolic in the following
sense

(2) &AL >0 for x€Q,sieR.
Let us further assume that

() (wt+en—bui—ah )@ >q |27 for zeQ,FeR,

5 , v
| 2 |2 = Z (zb)z, G| i =79, by, --,q denoting a positive constant.
=1

In [1], boundary value problems for the equation (1) are formulated which
are correctly posed in a certain sense discussed there; among other things,

*) Pervenuta all’Accademia il 27 settembre 1974.

(1) Denote by Ck'(Q) (Ck (Q)) the set of real-valued functions that are continuous (uni-
formly continuous) in Q together with all their first £ derivatives. Likewise all function spaces
used will be assumed to be real and no distinct notations will be used for product spaces.
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the existence and properties of Ls-weak solutions (see Definition 4 below)
are shown and the smooth solvability in a certain special case is proved.

In this paper we repeat briefly in section 2 what we mean by a correctly
posed boundary value problem for the equation (1) ~ for details see [1]. In
section 3 we formulate our problem, with the aid of an appropriate bilinear
form, as variational problem, so that the boundary conditions are split into
«given» data (which are always of order zero) and «naturaly boundary
conditions. We show that the corresponding Hi-weak solution (see Definition 3),
being sufficiently smooth, satisfies the boundary conditions in the classical
sense. Using results of J. J. Kohn, L. Nirenberg [3], [4] we show in section 4
the existence of smooth solutions, provided that the boundary of Q is no-
where characteristic for L. In section 5 the uniqueness of La-weak solutions
is proved for dim(Q) = 2, assuming that the boundary is noncharacteristic.
This is done with the aid of an elliptic regularization globally defined and
regularizing in tangential direction so that the results of [3], [4] again are
applicable. Finally a standard argument furnishes a result about « weak
equals strong ».

It is assumed in the sections 4 and 5 that the boundary 9Q is noncharac-
terlstlc, ie. det(a” m;n))>o0, (ny,--+,n,) denoting the outward normal.
The case of characteristic boundary has not been investigated intensively as
yet; the following, however, may be said: If 2Q consists, besides of non-
characteristic portions, of a finite number of components on which @ 7; 7;= 0,
then under certain conditions Theorem 1 of section 4 is still valid (see [1],
[3]). The methods used there cannot be applied if characteristic boundary
parts of any other type occur, because the special situation a* 7; #n;= 0
(cfr. [1]) is essentially used. — O.A. Oleinik [5] has treated the D1r1chlet
problem for a single equation (1) with (2), posed first by G. Fichera [2] (being
correctly posed in our sense). However, the methods of [5], based on the
maximum principle for a single elliptic equation, cannot be applied in our
case of systems.

2. CORRECTLY POSED BOUNDARY VALUE PROBLEMS

Let us assume that the domain Q with boundary 8Q can be described
with the aid of a function ¢ € C'(R"):

Q={x€R":9(x)>0} |, aQ={x6R”:cp(x)=o}

|V<p(x)| =1 for x €23Q, so that we may define the outward normal by
(21, -+, m,)=—Vo on Q.

Let A/ (1<j<#) be given symmetric pX p-matrices of class C'(eQ)
satisfying A’ n;=0 on 8Q. Let A be the symmetric matrix of C°(5Q) such that

J(Ajaju‘v—l—Aju-ajv—l—Au-v)dc=o for all u,zfeCl(BQ);

oQ
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do representing elements of volume on 3Q. Settxng b= + cz 1) my, we
assume that each of the matrices Q = a7 #; %, and b= é—l—A are split
continuously into two components:

Q=Q,+Q- , b=B+C on 2Q.

Denote by V, the linear space of real p-tuples, by Q. the transpose of the
matrix Q, and set — in a fixed point of 9Q - R(Q,)={z€V,:2=0Q, 3, y€V,},

N@Qy)={z€V,:Q,2=0} ,R(B'INQL)={z€V,:2=B'y,y e NQ")}.
Denote by + (®) the sum (direct sum) of subspaces of V,. Then we require

(Ep RQ)O®REQI)=RQ) on 2Q
(E) {RQO+REINQLIN{RQ)+ REC|IN@Q)N}={o} on 3Q
(Es)  {RQY+RECINQIN{RQ)+RBINQ)}={o} onaQ
() 2:(C—B)z=0 (¢e€N(@QL.) on 2Q
(D) RQODRAY +---+R(A"  on Q.

DEFINITION 1. Assume that the operator L satisfies (2), (3). Suppose
that the matrices Q, ,Q_, B ,C €C*(3Q) and A’ e C! Q) (1 <j<n) satisfy
(E1), (Eg), (Es3), (U), (D). ]f P:i: denotes a pair of projectors so that Q. =P, Q,
then using the notations Q' = a” n, QL =P,Q we call

(1) Lu=f in Q,
W @ Q 3u—Au—Bu=0 on 2Q
4 (%) - Q.u=0 on 2Q

a correctly posed boundary value problem.
In what follows we only consider such correctly posed problems.

Denote by L*=—0a"3,8, 4 (— & —24",)5, 4+ (' —¥&|;—a¥;) the
formaladjoint of L and by (, ) the scalarproduct in L2(Q). Then the following
Green’s formula holds:

Lo, v) — (u, o) = J [—o(QL o, u— A 0,4 —Bu) + 0, v(Q})u)] +
oQ

+ [#(@QL 3,2+ A 3,9 +C'v) — 3, u(QL)?)] do.

Thus, observing that N(Q+) = m N((Q D), the followingy definition is suggested:
DEFINITION 2. The &oundary value problem

(%) L's»=¢g in Q ,
©) (@ QL % v+A3;v+Cv =0 on 3Q
) Q,v=0 on 3Q

is called the formal adjoint boundary value pfoélem to (1), (4).
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It is obvious that the correctness of (1), (4) implies the correctness of (3),
(6) and vice versa. We remark that in general the boundary datas of order
zero contained in (4) neither are the same as (46) nor are the same as the zero
datas contained in (6). However this zs true in such points of 9Q which are
noncharacteristic for L, i.e. for which det (a7 #; n;) > o.

3. H;-WEAK SOLUTIONS

In order to define weak solutions belonging to Hl(Q) we construct
an appropriate Green’s formula. Let ¢eC*(R"),A',... A* e C*(Q),
B eC'(3Q) and let A',---,A” and B be extended 1nto Q as Cz(Q)-— and
C! Q)— functions respectively. Then the matrices 47 = o7 + Ag, —A B
and B = — Bgy; are of class C*(Q) and C (Q) respectively. Integrating
by parts and using A = (A’ P, —A <P|,>|, ; on 2Q we obtain

@ Q0= Q.0 — [ @yu— Ao u—Bu)vds,
Q
(8) Q(u,v):f 470, u-9;v+[(@%, +8)—Blo,u-v—Bu.o;v+
Q
—|—(c——-Bﬂ,~)u-vdx=["’3 u-3; v+
0

+ = [@+ ) o wv— (@) + &) w5, 0] +

—l—%(zc—éi[i—aijlij)u-vdx +—£~f(2—2B)u~vdo‘.
o)

DEFINITION 3. Denote by B the closure in Hi(Q) of
B = {uECl(ﬁ) :Qy%=o0 on oQ}.

Then a function w€B is called an Hi-weak solution of the boundary value

prodlems (1), (@), if
©) Q(u,v)=(f,v) for all veB.

Because L is degenerated elliptic it does not make sense in general to
look for solutions in H;(Q). However we shall later make assumptions such
that our solutions are smooth enough.

‘Using the notation |]u||0 (u,un), it follows from (2), (3), (U) that
Qu,w) =g« ||0 for » € B. Hence an Hi-weak solution of (1), (4) satisfies
the a-priori estimate ¢ || % o < 1Al -

‘Obviously any classical solution of class C* (Q) N C¥(Q) is an H;-weak
solution. To investigate the converse we first note an easily proved

LEMMA 1. Let @ €C'(R"). Then any function u of class B C° Q)
satisfies Qyu =0 on oQ.
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Now let # be an Hi-weak solution of (1), (4) belonging to C? Q).
Because C3°(Q)CB we have Lu=f in Q; using Lemma 1 we get

QL% =0 on 9Q and for all 7/€B:f(Q{"_a]-u——Ajaju—Bu)'vdc=o.

Thus with the above choice of the bilinear form Q (%, v) the parts (4a),

(4 6) of our boundary conditions (4) appear as «naturaly and «given»
boundary conditions respectively.

Sufficient conditions under which the natural boundary conditions (44)
are satisfied in the classical sense are given in the following

LEMMA 2. Let us denote by A the set of points xy € 9Q such that for any
vector 2 € N(Q' (xy)) there exists a nezg/zborhood Uy of xy (o7 9Q) and a function

v €CY(Uy) satisfying v(xy) = 2 and Q' v(x) =0 for x€U,. Assume that
¢ € C'(R") and that A is dense in Q. Let u,v be of class B. Then

) fw(Qf;a,.u—-Afa,-u—Bu)dc=o for all weB
e ‘ .
implies QL3 u—A3;u—Bu=o0 on 3Q,

(ii) Jw(Qiajv+Aj8jv+C’v)dc=o for all weB
oQ

implies Q. v —I—Ajajv—l-C'v =o0 on Q.

Remark. The following result (which is easily proved) can be used to
check the density of A in 2Q: Let I" denote the set of points of 39Q having a
neighborhood (on 3Q) in which Q, is of constant rank. Assume that ¢ € C'(R”)
and that Q, €C'(3Q). Then I'C A.

Proof of Lemma 2. We first localize the problem. Let { O;} be a finite
open covering of 9Q. Then there exists a continuously differentiable mapping
F. = (F1, -+, F3) which maps O,NQ onto P,={y, <0,  +---+ 2 <R%
and O,N3Q onto S, ={y, =0, +--- —}—y?, < R®}.  Consider fixed
O,=0, F,=F,---. Let B(S)={#€Ci(S): Qru=00nS}, "= (91, *,¥u_1)s
o dy’ = do. Then we get

(10) | w(@Q Fio,u—A Fl2,u—Bu)ody'=o0 for weB(S).

Second, we show that from (10) it follows
(11) 2[(QL Fu3,u—A Fy o, —Bu)(»]=o for zeN(Q, (5), ¥y € FANO).

For this end let us assume that %, € B, y, € F(ANO), z, € N(Q, (3,)) and

that z,[(Q”. F. :; Oy, o — A’ F. ., O, 1 — Buty) (yo)]> 0. Then there exists a
neighborhood U of ¥, and a functlon w, €CH(Uy) satisfying w,(¥e) = 2,
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and Q) wo(y) = o for y € U;. Now cut off w, by a suitable nonnegative
function € € C°(S) such that [(Cwo) Q. FL 0y ttg— A F 9,9 — Bug)] (¥) =0
for ¥ € S — contradiction to (10).

Finally, observing that R(Q_) = Z R(Q’) and by condition (D), we see

that the expression in square brackets in ( I11)is a vector belongmg to N(Q+) N
N{RQH+RB|N Q' )} for y € F(AN O). Hence using condition (E3) we
get Q’ 9; u—A’é) #—Bu=0 on ANO. Thus (i) is proved by continuity
of all functions occurring. By the same argument (i) is shown, using
condition (Eg) instead of (Es).

4. SMOOTH SOLUTIONS

Let us consider the following problem, elliptic for ¢ > o0 :
(12) Qc(u,v)=(f,v) for all v €B:

Here Q.(x,v) =Q(u,v)+ ¢ [b"fa,; u-9;v+ n-vdx, and we assume that
o

the 47 are of class C3(Q) and that

(13) Gi=tbh="0 (1<i,j<n,1<k,l<p)
(14) biidiz >0, (a5 + b)) di 5 > Koe|ul?  in Q for £ €R,

Ko being a positive constant, ]z|2=2(zf)2. We remark that 47 = 8”
Tk

(I': pX p-unit matrix) has the required properties. Using the conditions (3)
and (U) it is easily seen that

(15) Qc(,0)=Kel|lu|} +¢llu|} for ueB,

[| 21, denoting the norm in H,, (Q) for a nonnegative integer 72, K = min (1, Ky).
Thus Q. (%, v) is coercive over B for ¢ >o0.

To obtain smooth solutions of (9) we proceed in a way similar to that of
Kohn and Nirenberg in [3], [4]: Solve (12) for e> 0 by %, € BN C*(Q), derive
a-priori estimates for the H,-norm of #, independent of ¢, and conclude that
as € >0 a subsequence of the #, converges in H,,(Q) to a solution of (9).

Let f belong to C*(Q). Then according to [3], p. 463 the unique
solution 7, € B (e>0) of (12) is of class C*(Q), provided that

(16)  9eC*(R") ; a7,67,8,ceC*(Q) ; A ,B,Q, eC®(Q)

)] Q, is of constant rank on each component of 3Q @),

(2) (17) is assumed to satisfy the conditions (@), (&), (c) of [3], PP. 451, 452.
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Now we give a-priori estimates corresponding to those of [4], section
4, which are derived for a single equation and zero boundary datas. It may
be verified by a close examination of the proofs used there that by almost the

same arguments (see also [3], section 4 and [4], p. 799) it follows in our case
of systems and correctly posed boundary conditions:

Assume that (16), (17) @ are satisfied. Suppose that the principal part of
Q. (#,v) is symmetric, i.e. J-(‘” +e6”)0; u- -, vdx = [(‘” e6”) % v-9;, udx

(this will be the case if A’ = 0 on 9Q) and that 2Q is noncharacteristic for L,

ie. det (@7 n; n;) >0 on Q. If , is the C*(Q)-solution of (12) for ¢ > o,
then there exist constants 2 > o, C,,, K independent of ¢ such that

(18) gl e |54 Fe |2 yy < Coll e+ K| FIR.

The only interesting constant C,, arises from a considerable number of inte-
grations by parts performed locally tangent to the boundary, after a change
of the dependent variables. That is why only the following will be said: C,,
depends on 2, #, p, I/I‘l’lln (det (@” n; n))), max DY a7 | (|y|<2), max IDYé;e;|

max | D" BU} vyl <), further (because of the change of the 1ndependent
variables) on max | D" ¢/ (|y| < 3) and (because of the change of the depen-
Q .

dent variables) on max |[D'Q, | (| y| < 2), the dependence being such that C,,
Q

increases if the mentioned quantities increase. Thus, if we assume C,, > ¢ for
certain 72 > 1 we get the following a-priori estimate

(19) Il 2te [l < KN £ 1L -

It follows immediately from Lemma 1 that our smooth solutions 7,
(e >0) constructed above are of class B® = {# €C®(Q):Q\ z =0 on 2Q}.
Now from (19) it is concluded in the same way as in [3], [4] that a subsequence
of the %, converges in H,,(Q) to a solution % of (9),  belonging to the closure

of B in H,,(Q) which will be denoted by‘ﬁz’m. We summarize in

THEOREM 1. Assume that (16), (17) hold. Suppose that N' = o on 3Q
=1, ,n) that 3Q is nowhere characteristic for L and that C,, < g fo for

certain m>1. Then Jor any vector f € H,,(Q) there exists a solution u € B
of the boundary value problem (9).

Suppose that B® CC? (Q). Then the solution % of Theorem I satisfies
our original boundary value problem (1), (4) in the classical sense. This
follows with ‘the aid of Lemma 1 and Lemma 2, observing that (17) implies

I =A=2Q
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5. Ly—~WEAK AND L,-STRONG SOLUTIONS

DEFINITION 4. Let f€La(Q). Then a function ueLs(Q) will be called a
Lo-weak solution of (1), (4), if L*v, u) = (v, f) for all v € C*(Q) satisfving (6),

It was proved in [1] that a correctly posed boundary value problem
(1), (4) always has a Le-weak solution z with the property

(19) inf lutw|<gt|fI,

weN (L)

N@L)={z€Ls(Q): (L*v, u) = o for v €C*(Q) satisfying (6)}. Let us now
consider the uniqueness of Ls-weak solutions.
We need some Green’s formulae. Corresponding to (7) we get

(20) L'y, %) =Q"(v, u) —f [Q0,v4+ A 9,9+ C'v]-uds,

20
Q" ,un) = Qu,v). We use the notations Qi (v, %) = Q*(v, u) +
+ ef(b"ja,-waju +v-%)dx and Li=1*1+ e(—9; 47 9; +I). Then we obtain

Q

(21) (Liv, )= Q: (v, x) ——f[(Q" + et n)o, v+ A'9,v+Cv]-uds.
Q

In order to prove uniqueness we first solve smoothly the boundary value
problem

(22) : Liv=g in Q, (6 (e > 0)
for g € C*(Q). Assuming (16), (17), the solution v = v, € B of

Qi (v, u) =(g,n) for u€B (e >o0)
is of class C*(Q). Let us require 7 #; = 0 on 3Q, so that the e-term in the

boundary integral of (21) vanishes. Then it follows by Lemma 2, (ii) that
v, is the desired solution of (22).
Now let % € N (L) and let 7, be the C*(Q)-solution of (22) corresponding
to g€C®(Q). Then we get (g,2%) = (Liv,,u) = e((—2;86”3; +1) v, , w),
thus
(g, #)| < const. ¢ || v, [l | [l

Let us assume that (18) holds with C; < ¢. Then
(g, #)| < const. || g [l ully for =>o;
consequently z = o in La(Q). We summarize in

THEOREM 2. Assume the existence of matrices 87 satisfying (13), (14)
and 6" n; =0 on 3Q (j=1,---,m). Let (16), (17) hold. Suppose that
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A'=0 0on 3Q (=1, -, n) and that 3Q is noncharacteristic Jor L. Let in
addition q >Cy. Then Lo-weak solutions of (1), (4) are umique; the same
holds for Le-weak solutions of the formally adjoint problem (3), (6).

For the case 7 = 2 the following matrices 4” can be used in Theorem 2:
=+l , F=(Gh+tel , == gl

It is obvious that &7, = 0 on 9Q and that (13) and the first condition

of (14) are satisfied. The second part of (14) holds because det (o 7, 7%;) >0
on 3Q.

Finally we use Theorem 2 to show « weak equals strong ».

DEFINITION 5. Let f€L2(Q). Then a function u € Lo (Q) will be called
an Lo-strong solution of (1), (4) (in the sense of K. O. Friedrichs), if there exists
- a sequence u; € C* (Q) satisfying (4) such that

l#;—nl| >0 , ||Lu,—f|| —>o (J = o0).
Clearly any Las-strong solution is a Ls-weak solution. Conversely we have

COROLLARY. Suppose that the assumptions of Theorem 2 hold. Then a
Le-weak solution of (1), (4) is actually a Lo-strong solution.

Proof. Using Theorem 2, there is a sequence u; ECZQQ—) satisfying (4)
such that || Lu#; — f|| -0 (/7 = o0). The Corollary then follows with the aid
of (19), observing that N(L) = {o}.
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