ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Massimo Furi, Mario Martelli

On α -Lipschitz retractions of the unit closed ball onto its boundary

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 57 (1974), n.1-2, p. 61–65. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1974_8_57_1-2_61_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Analisi funzionale. — On α-Lipschitz retractions of the unit closed ball onto its boundary (*). Nota (**) di Massimo Furi e Mario Martelli, presentata dal Socio G. Sansone.

RIASSUNTO. — Sia D il disco unitario di uno spazio di Banach. Si prova che ∂D è un retratto α -Lipschitziano di D se e solo se esiste k> o ed un'omotopia $H:\partial D\times [o\ ,\ I]\to \partial D$ tale che $H(x\ ,o)=x_0$, $H(x\ ,I)=x$ e $\alpha(H(A\times [o\ ,t]))\leq tk\alpha(A)$ per ogni $A\subset \partial D$.

I. Let D be the unit closed ball of a Banach space E and $f: D \to D$ be a Lipschitz map with constant $k \ge 1$. In [2] K. Goebel proved that

$$\eta(f) \leq I - I/k$$

where $\eta(f) = \inf \{ ||x - f(x)|| : x \in D \}.$

It is not known whether there are Banach spaces such that $\eta(f) = 0$ for any Lipschitz map $f: D \to D$. However K. Goebel pointed out that when E is a Hilbert space there are Lipschitz maps $f: D \to D$ with $\eta(f) > 0$ if and only if S, the boundary of D, is a Lipschitz retract of D.

In [4] we proved that Goebel's inequality holds also for α -Lipschitz maps. Moreover we showed that, in any Banach space, S is an α -Lipschitz retract of D if and only if there exists an α -Lipschitz map $f: D \to D$ with $\eta(f) > 0$.

In this paper we succeeded in constructing an example of a Lipschitz map $f \colon D \to D$ such that $\eta(f) > o$. Moreover we gave another formulation of the problem of finding an α -Lipschitz retraction $r \colon D \to S$, which involves the contractibility of S. This formulation is given in terms of the existence of a particular homotopy $H \colon S \times [o, I] \to S$ joining the identity and a constant map.

- 2. Let \dot{E} be an infinite dimensional Banach space. In this paper we always denote by S, D the unit sphere and the unit closed ball of E respectively. We will use the following well-known results concerning S and D.
- i) S is a retract of D, i.e. there exists a continuous map $r: D \rightarrow S$ which makes the following diagram commutative

where j is the inclusion and i_S is the identity on S.

- (*) Supported by Sonderforschungsbereich 72 at Institute for Applied Mathematics, University of Bonn.
 - (**) Pervenuta all'Accademia il 21 agosto 1974.

ii) S is contractible, i.e. there exists a continuous homotopy $H: S \times [0,1] \to S$ joining the identity and a constant map.

Let A be a bounded subset of E. We denote by $\alpha(A)$ the infimum of all $\epsilon > 0$ such that A can be covered with a finite family of subsets with diameter less than ϵ (see Kuratowski [6]). We will use the following properties of α .

- 1) $\alpha(A \cup B) = \max \{\alpha(A), \alpha(B)\}, A, B \subset E.$
- 2) $\alpha(A) = 0$ if and only if \overline{A} is compact, where \overline{A} is the closure of A.
- 3) $\alpha(\overline{co}A) = \alpha(A)$ (G. Darbo [1]), where $\overline{co}A$ denotes the closed convex hull of A.

4)
$$\alpha([o, T] \cdot A) = T\alpha(A)$$
, where $[o, T] \cdot A = \{tx : o \le t \le T, x \in A\}$.

Let $M \subset E$ and $f \colon M \to E$ be a continuous map. If there exists $k \ge 0$ such that $\alpha(f(A)) \le k\alpha(A)$ for any bounded set $A \subset M$ then f is said to be α -Lipschitz with constant k. In the case when k < 1 (k = 1) f is called α -contractive (α -nonexpansive). We recall the following result concerning α -contractive maps [1].

Let $f: \mathbb{C} \to \mathbb{C}$ be an α -contractive map defined on a closed bounded and convex subset of a Banach space \mathbb{E} . Then f has a fixed point.

Using the above result it can be easily seen that an α -nonexpansive map $f \colon C \to C$ is such that $\eta(f) = 0$ [6].

In this paper we deal with α -Lipschitz maps defined in the unit closed ball D of a Banach space E. The fact that $\eta(f) > 0$ will play a key role in our considerations. Therefore we will always assume that the constant k is bigger than 1.

3. Let E_0 be the subspace of C[o, I] consisting of all functions x such that x(o) = o. The following example shows that $S \subset E_0$ is an α -Lipschitz retract of D.

We point out that the problem of whether S is an α -Lipschitz retract of D in any infinite dimensional Banach space is still open.

Example. Consider the map $\varphi: D \to D$ defined by

$$\varphi(x)(t) = g((\mathbf{I} - t) | x(t) | + t)$$

where

$$g(\tau) = \left\{ egin{array}{ll} k au\,, & \mathrm{O} \leq au \leq \mathrm{I}/k \ & \mathrm{I}\,, & \mathrm{I}/k \leq au \leq \mathrm{I}\,, & k > \mathrm{I}\,. \end{array}
ight.$$

Since g is continuous and piecewise differentiable with $|g'(\tau)| \le k$, g is Lipschitz with constant k. It follows that

$$\begin{split} &|\varphi(x)\left(t\right)-\varphi(y)\left(t\right)|=|g\left(\left(\mathbf{I}-t\right)|x(t)|+t\right)-g\left(\left(\mathbf{I}-t\right)|y(t)|+t\right)|\leq\\ &\leq k\left|\left(\mathbf{I}-t\right)|x(t)|+t-\left(\mathbf{I}-t\right)|y(t)|-t\right|=k\left(\mathbf{I}-t\right)\left|\left|x(t)|-\left|y(t)\right|\right|\leq\\ &\leq k\left|x(t)-y(t)\right|. \end{split}$$

Thus $\varphi: D \to D$ is a Lipschitz map with constant k. We need only to prove that $\eta(\varphi) > 0$. Let $x \in D$. Clearly there exists $t_0 \in (0, 1)$ such that $(\mathbf{I} - t_0) |x(t_0)| + t_0 = \mathbf{I}/k$. This implies that $\varphi(x)(t_0) = g(\mathbf{I}/k) = \mathbf{I}$. On the other hand $|x(t_0)| = (\mathbf{I}/k - t_0)/(\mathbf{I} - t_0)$. Therefore

$$\|\varphi(x) - x\| \ge |\varphi(x)(t_0) - x(t_0)| > 1 - 1/k$$

and so $\eta(\varphi) \ge 1 - 1/k$.

The following theorem shows that if S is an α -Lipschitz retract of D then for any $\epsilon > 0$ there exists an α -Lipschitz map $f: D \to D$ with constant $I + \epsilon$ such that $\eta(f) > 0$.

Theorem 1. Let Q be a bounded closed and convex subset of a Banach space E. Assume that there exists $k_0 > 1$ such that any α -Lipschitz map $f \colon Q \to Q$ with constant k_0 has the property $\eta(f) = 0$. Then any α -Lipschitz selfmap of Q has the same property.

Proof. Let f be an α -Lipschitz selfmap of Q with constant k>1 and let $0<\lambda<1$. Define $f_{\lambda}(x)=(1-\lambda)\,x+\lambda f(x)$ for any $x\in Q$. The map f_{λ} is α -Lipschitz with constant $1-\lambda+\lambda k$. Moreover $\eta(f_{\lambda})=\lambda\eta(f)$. Since there exists $0<\lambda_0<1$ such that $1-\lambda_0+\lambda_0\,k\leq k_0$ and any α -Lipschitz map g with constant less than k_0 has $\eta(g)=0$ the theorem is proved. Q.E.D.

It is known that the unit sphere S in an infinite dimensional Banach space is contractible, i.e. there exists a continuous homotopy $H: S \times [o, r] \rightarrow S$ joining the identity and a constant map.

Theorem 2 below shows that the problem of finding an α -Lipschitz retraction $r\colon D\to S$ is equivalent to the one of the existence of a continuous homotopy $H\colon S\times [0,1]\to S$ with particular properties. We need the following Proposition.

PROPOSITION I. Let X be a complete metric space and let F be a family of subsets of X such that for any $\varepsilon > 0$ there exists a finite subfamily $\{F_1, F_2, \dots, F_n\}$ of F with the property that $\alpha(X|\cup_i F_i) < \varepsilon$. Assume that the restrictions $f|F, F \in \mathcal{F}$, of a continuous map $f: X \to X$ are α -Lipschitz with constant k. Then f is α -Lipschitz with the same constant.

Proof. Assume first that \mathscr{F} admits a finite subfamily $\{F_i: i=1,2,\cdots,n\}$ which is a covering of X. If A is any bounded subset of X we have

$$\begin{split} \alpha(f(\mathbf{A})) &= \max \left\{ \alpha(f(\mathbf{A} \cap \mathbf{F}_i)) : \ i = \mathbf{I} \ , \mathbf{2} \ , \cdots, \ n \right\} \leq \\ &\leq \max \left\{ k\alpha(\mathbf{A} \cap \mathbf{F}_i) : \ i = \mathbf{I} \ , \mathbf{2} \ , \cdots \ n \right\} = k\alpha(\mathbf{A}). \end{split}$$

Assume now that \mathscr{F} has not the above property. Consider the family \mathscr{B} consisting of the sets which are complements of finite unions of elements of \mathscr{F} . Clearly \mathscr{B} is a filterbase. Moreover by assumption $\inf\{\alpha(B): B \in \mathscr{B}\} = o$. Therefore, by a result proved in [3], we have

- a) the set $K = \bigcap \{\overline{B} : B \in \mathcal{B}\}\$ is non-empty and compact.
- b) For any neighborhood U of K there exists $B \in \mathcal{B}$ such that $B \subset U$.

Let A be a bounded subset of X. We want to prove that $\alpha(f(A)) \leq k\alpha(A)$. This is true if $\alpha(A) = 0$ since \overline{A} is compact. Assume $\alpha(A) > 0$. There exists a neighborhood $V \supset f(K)$ such that $\alpha(V) < k\alpha(A)$. Let U be a neighborhood of K such that $f(U) \subset V$. There exists a finite subfamily $\{F_1, F_2, \cdots, F_n\}$ of \mathscr{F} with the property that $\bigcup_i F_i \subset X/U$. Put $A_0 = A \cap U$ and $A_i = A \cap F_i$, $i = 1, 2, \cdots, n$. We have

$$\begin{split} \alpha(f(\mathbf{A})) &= \alpha \left\{ \left. \bigcup_{i=0}^{n} f(\mathbf{A}_i) \right\} = \max \left\{ \alpha(f(\mathbf{A}_i)) : \ i = \mathbf{0} \ , \ \mathbf{1} \ , \cdots, \ n \right\} \leq \\ &\leq \max \left\{ \alpha(\mathbf{V}) \ , \ k\alpha(\mathbf{A}) \right\} = k\alpha(\mathbf{A}). \quad \mathbf{Q.E.D.} \end{split}$$

THEOREM 2. Let D be the unit closed ball in a Banach space E and let S be the boundary of D. The following two conditions are equivalent

- i) there exists an α -Lipschitz retraction $r: D \rightarrow S$ with constant k,
- ii) there exists a homotopy $H: S \times [o, I] \rightarrow S$, joining the identity and a constant map such that

$$\alpha(H(A \times [o, t])) \leq tk\alpha(A)$$

for any $A \subset S$ and $t \in [0, 1]$.

Proof. i) \Rightarrow ii). Define H(x,t) = r(tx). We have $\alpha(H(A \times [0,t])) = \alpha(r([0,t]\cdot A)) \le k\alpha([0,t]\cdot A) = tk\alpha(A)$. ii) \Rightarrow i). The map $\pi: S \times [0,t] \to D$ defined by $\pi(x,t) = tx$ is a quotient map. Since H is constant in the set $\pi^{-1}(0)$ there exists a unique continuous map r which makes the following diagram commutative

Obviously r is a retraction since H(x, I) = x for any $x \in S$.

Let 0 < q < I and put $F_n = \{x \in D : q^{n+1} \le ||x|| \le q^n\}$, n = 0, I, \cdots The family $\{F_n : n = 0, I, \cdots\}$ satisfies the assumption of Proposition I.

Let us prove now that r/F_n , n = 0, $1, \cdots$ is α -Lipschitz with constant k|q. Take $A \subset F_n$ and put $\hat{A} = \{x/||x|| : x \in A\}$. Since $\hat{A} \subset [0, 1/q^{n+1}]$. A we have $\alpha(\hat{A}) \leq \alpha(A)/q^{n+1}$. On the other hand $r(A) \subset H(\hat{A} \times [0, q^n])$. Therefore

$$\alpha(r(A)) \leq q^n k\alpha(\hat{A}) \leq k\alpha(A)/q$$
.

By the above Proposition it follows that r is α -Lipschitz with constant k/q. Since this holds for any q < 1 we have that r is α -Lipschitz with constant k. Q.E.D.

REFERENCES

- [1] DARBO G. (1955) Punti uniti in trasformazioni a codominio non compatto, « Rend. Sem. Mat. Univ. di Padova », 24, 353-367.
- [2] GOEBEL K. (1973) On the minimal displacement of points under lipschitzian mappings, «Pac. Jour. of Math.», 45, 151–163.
- [3] FURI M. and MARTELLI M. (1970) A characterization of compact filterbasis in complete metric spaces, « Rend. Ist. Mat. Univ. di Trieste », 2, 109–113.
- [4] Furi M. and Martelli M. (1974) On the minimal displacement of points under α-Lipschitz maps in Normed Spaces, « Boll. Un. Mat. Ital. », (4), 9, 791–799.
- [5] FURI M. and VIGNOLI A. (1970) On α-nonexpansive mappings and fixed points, «Atti Acc. Naz. Lincei», 48, 195–198.
- [6] KURATOWSKI C. (1958) Topologie, «Monografie Matematiczne», 20, Warzawa.