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Equazioni differenziali. — Periodic solutions of certain third order
differential equations. Nota @ di J. O. C. Ezrmwo, presentata dal
Socio G. SANSONE.

RIASSUNTO. — Questa Nota considera le equazioni della forma

(1 FHY@I e i+ 0w =40 +g0,5,2)
dove ¢, 9,0, 2, ¢ sono funzioni continue dei loro argomenti (£ + ) =p@), ¢(t+ow,x,y)=
¢

=g(#,%,y) per ®> 0, costante, e £, 1,y qualunque. Nel caso speciale g=o0 e /;5 (s)ds

0
limitato per # qualunque allora la (1) ha una soluzione w—periodica se esistono due costanti
a==0,%4>o tali che

y

) b@sgmeso , (xlzh: ) ([dOd—a)=om per [y
0

Se 1) & sostituita dalla condizione piti restrittiva 20 (x)sgna < — 8 < o (7| = /%) Tesistenza

di una soluzione perlodlca vale per I'equazione (1) per |¢ (¢, ,)| <o + Blx| con  +B
costanti e B <

1. Consider the differential equation
(1.1) ¥+ak+o@x)&400=7p@®

where @ =0 is a constant and ¢ (x), 0 (x) and p (¢) are continuous functions
depending only on the arguments shown, and 2 (¢) is w-periodic in ¢ that
is p (¢ + ©) = p (¢) for some real number « ==o.

In Appendlx 3 of his paper [1] Reissig showed that if P(¢) = ‘ p(s)ds

t

is bounded and if further 0 satisfies the two conditions: o
(1.2) 10 (x)—=o as |x|—> oo,
(1.3) 28 () >0 (<o) for |x|>#%,

then (1.1) has at least one w-periodic solution, for all arbitrary o.
A careful study of Reissig’s proofs will however, reveal that in the two
special cases:

(@) a>o0 and x0 (x) <o (|x|>4%)
(if) a<o and x0 (x) > o0 (x| =4)
or, to put it more compactly, when

(1.4) x0 (x)sgna <o (|| >4%)

(*) Pervenuta all’Accademia il 19 luglio 1974.
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the existence of an w-periodic solution can indeed be established for (1.1)
without the explicit use of (1.2) on 0; and the object of the present treatment
is to draw attention to other extensions of the result which are equally valid
subject to the same (1.4) or to the stronger condition:

20 (x) sgn @ < — 8a |

for some constant § > o.
We shall deal first with the equation

(1.5) E+d@E+o@a+0@ =20

where ¢ is continuous and depends only on &, the basic conditions on ¢, 0
and p being the same as before.
y

Let ¥ (y) = ‘. ¢ () dn. We shall prove here
0

THEOREM 1. Swuppose that P(t) is bounded for all t, and that there exisr
constants a==0,h >0 such that

(1.6) Y()—ay=0@1) as |y|—>oo,
(r.7) 20 (x)sgna <o (|| = A).

Then there exists at least one w-periodic solution of (1.5).

With a stronger restriction on x0 (x) sgn @, it is possible to extend our
treatment to the perturbed system

(18) FHI@E+e@E+OIWr+oe@=20O+e¢¢, x,%

in which the basic conditions on ¢, ¢, 0 and p are as in (1.5 and ¢ (¢, x, %)
is continuous and satisfies ¢ (# + o ,x,y) = g, W), for all ¢, x,y. We
shall indeed prove here

THEOREM 2. Swuppose that P (f) is bounded for all t, and that further:

(i) There exist constants a <=0,k >0 and 8 > 0 such that (1.6) holds
and such that

(1.9) 20 (x) sgnaé—SxZ (x| = 4)
(ii) there are comstants o.> 0 ,B = 0 such that

(1.10) lg(t,z,y)| <o+ Blx| Jor all ¢,x,y.

Then (1.8) has at least one w-periodic solution if B < 3.
Note that because the conditon (1.7) contrasts sharply with the ¢ Routh-
Hurwitz requirements ”’

a>o0 , z0@) >o0
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for (1.1), there is no basis whatever for comparing the present theorems with
the existence theorems (such as given in [2], [3]) for equations (1.1) of the
dissipative type.

2. PROOF OF THEOREM 1. We shall deal first with the case:
a>o0 and 20 (x) <o (|x|>4).
The proof is by way of the auxiliary third order differential equation
@10 FH{0—wae+up @)} &+ pe @) &+ {1 —w ex +pd ()} = wp (0

involving a parameter y € [0, 1], where ¢ < 0 is an arbitrarily fixed constant.
Note that, as in [1], the equation (2.1) reduces to the constant coefficient
equation

X 4ak +cx=o0

when p. = o0 and to the equation (1.5) when . = 1. The auxiliary equation (2.1)

however is not the same as the one used in [1] and its chief advantage lies

in the fact that its periodic solutions can be written out easily in the form of
x

an explicitly defined integral equation. Indeed let @ (x) = f ¢ (§)ds and

0
let X, F be the column vectors, and A the 3.X 3 matrix, given by

‘x O
(2.2) X=(J’ F=<—‘F(y)+ay—¢(x)+1’(l‘)>,
z cx — (x)
(@] 1 O
A= O —a 1
—c o O

Then (2.1) can be checked readily to be equivalent to the 3-vector system
(2.3) X = AX + uF (X, %)

Note here that F(X,#) = F (X ,#+ ), since the boundedness of P (£)
necessarily implies that ( # (#)d#=o0 and therefore that P(¢) is w-periodic.

0
Also the characteristic equation for the matrix A, namely the equation

NM+altcc=o0

has no purely imaginary roots if ¢ == 0, so that the matrix (e=2® —T) (where
I is the identity 3X 3 matrix) is invertible. From these it is now a straight-
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forward matter to deduce (by, for example, adapting the argument on pp. 27—
28 [4]) that

LEMMA X = X (). is an w-periodic solution of (2.3) if and only if X
satisfies the integral equation

(2.4) X =uTX

where
+o
(TX)) = J (ehe — Iy elt-9A F (X (s), ¢) ds.

¢

If B denotes the linear space of all w-periodic 3-vectors X (#) which are
defined and are continuous for all # in [0, ©], equipped with the norm

X1 =0s<135m(lx<f>l + 1y @+ 12D,

the usual arguments will show that the mapping T defined in the lemma is a
completely continuous mapping of B into itself. Thus, by Schaefer’s version
(see [5]) of the Schauder-Tichonov fixed point theorem, the existence of a
point X € B fixed under T, which corresponds in an obvious way (in view
of the lemma) to an w-periodic solution of (1.5), is assured if it can be shown
that there exists a fixed positive constant D, independent of p, such that

(2.5) [ X < D,.

for all solutions X € B of (2.4) with o < u < I.

As to the actual proof of (2.5) it will again suffice here, in view of the
characterization (2.4) of all w—periodic solutions of (2.3), to show that there
exists a fixed positive constant Dy, independent of u (0 < p < 1), such that

(2.6) [x (&) < Dy

for all w-periodic solutions of (2.1) (with o < u < 1) since the functions
(W () —ay) and P (¥) appearing in the definition (2.2) of F are both
bounded. The main tools for (2.6) are the two equations:

(0]

) [ —wer +ub@)dr=o
0
(2.8) ([m&z— ux {¥ (&) — ax + P (H)}] dl—f {(1 — ) ex? + pxb (x)} de=o0
, 0

o

0

obtainable either by integrating (2.1) directly or by first multiplying (2.1)
by x and then integrating. Now the fact that ¢ < o and %6 (x) < o (|x| > 4)
shows, in combination with (2.7), that

(2.9) lx(v)| < A for some 7€ [ow],
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and at the same time enables us to derive the following estimate for the inte-
grand in the second integral on the left hand side of (2.8):

(1 — @) ex+ pxf () < Dy
for arbitrary x and p€[o, 1], where D, = % max |0 (x)|.
|x| <4

Also, since (¥'(y)—ay) and P are bounded and « is positive, the
remaining integrand in (2.8) necessarily satisfies

ai® — i (¥ (#) —ak + P} > —ai®—Dy (o<pu<1)

for some fixed Dg. Thus, by (2.8),
{502 d¢ < 2 Dy -+ D) wa™.
0

from which, since

lx @O < |z ()] + |fxd¢j

T+

gix(r)[-;-ml/?(fxzdt), rt<t< 1+ 0

T

by Schwarz’s inequality, we obtain, on using (2.9), that
x| <ri+of{zD +Ds)a1?  (r<t<t+ o).

This estimate is the same as (2.6) since x (¢) is w-periodic, and the theorem is
hereby established for the case: @ > 0 and %6 (x) < o (|| = A).
It is not necessary to write out a separate proof for the case

(2.10) a<o , z20(x)>o0 (x| = %).

For, the substitution #= —=+s in (1.5) reduces (1.5) to the equation
- - — ,_ d
(an) 2"+ @EN2"+e@) 2 +0(x)=p() , (Eg,xzx(—-s))
in which the functions ¢ , 6 (x) satisfy
‘ p
(2.12) J b dn—a,y=0(1) as |y|>oc0 and 20(x) <o (|x|=>4A)

0
¢ I3

where @, = — @ > o, if (2.10) holds, and ‘ﬁ (s) ds is bounded if [p (s)ds
o v

bounded. 0 0
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3. PROOF OF THEOREM 2. Again we shall treat only the case
(3.1) a>o and 0 (x) < — 3«2 (|| = %)
in some detail, since the other case:
a<o and x0(x) =82 (|x|=4)

can be obtained in the same way as before by means of the substitution
t=—ysin (1.8)

The procedure in the case (3.1) is almost as in § 2, and I shall thus sketch
only the outlines. The auxiliary equation and the 3-vector F, for example,
are the same as before except only that p is to be replaced in the auxiliary
equation by p -+ ¢ and the entry cx — 0 (x) in F by ex — 0 (x) + ¢ (#,x,%)
but the matrix A is unchanged. Next, with ¢ subject to the restriction (1.10),
it is easy to check from the form of F that an estimate such as (2.6) for all
w-periodic solutions of the corresponding auxiliary equation will again secure
(2.3) and thus the existence of an w-periodic solution of (1.8).

The two main steps in the verification of (2.6) are (2.9) and an estimate
«©

for f;ﬁz d¢; and as before, the starting point for (2.9) is the equation

0
®

(3.2) [(6—wer +u0@—p—g (2, 2Hdr=o

0

which one obtains by integrating the corresponding auxiliary equation from
t=o0 to f=ow. If we assume henceforth that § < 8, then it is clear from (1.9)
and (1.10) that

(3.3) O(x)—qg@t,x,2)<o0, if x>k,
and that
(3.4) 0(x)—q@,x,2)>0, if x< 2,

where %y = max [%, « (3 — B)™]. With ¢ fixed negative as usual, it follows
from (3.2), with o < u < 1, and from (3.3) and (3.4) that

(3.3) [z (t)] < 4, for some 7€ [0, w]

which is the required analogue of (2.9).

[t remains to obtain an estimate for ' #2d¢. We have, after multiplying

0
the corresponding auxiliary equation by x and then integrating from # = o
to ¢ = w, that
(3.6) [[a#— e (¥ (&) — -+ PY) dt — [[(1— ) e2+ g {48 () — )] de =,

0 0



60 Lincei — Rend. Sc. fis. mat. e nat. — Vol. LVII — Ferie 1974

As before

[0}

(3.7) ([axZ_w';{‘P’(x)——ax—i—P}] dz‘Z%a ‘,‘;&dt—Dzw.

i

0 0
Also, by (1.9) and (1.10) if B < § then
—x0(x) +xg(@,x,5)>—D,

for some fixed constant D, whose magnitude depends only on /,2,8,38
and 0; and hence

=Wt ud @ LAl = — Do ==

v

0

The above estimate, when combined with (3.6) and (3.7) shows that
J;L"z d¢ < a(Dy + D) wa?

0

and the boundedness result (2.6) can now follow as before, in view of (3.5).
This concludes the verification of the theorem.
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