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Equazioni differenziali ordinarie. — Asymptotic order of solutions 
of ( r y 1)' q y  =  o. Nota di J. M ich a e l D o lan  e G en e A. K la a sen , 
presentata(,) dal Socio G. S an son e.

R iassunto. — Gli Autori generalizzano la norma euclidea introducendo la così detta 
norma D la quale consente di provare tre teoremi i quali collegano il comportamento degli 
integrali dell’equazione differenziale lineare del secondo ordine (ry ')'+  py =  o col compor­
tamento dell’integrale

/ r
t (s) d^ [x e C' [a , 00].

Com prehensive surveys of the literature of the selfadjoint linear second- 
order differential equation

(1) (Vyy +  Py — o where r  >  o and r  , p  e C [a , 00)

are real valued functions can be found in Buckley [1], H artm an  [2], Swanson [3] 
and W illett [4]. In  particu lar num erous papers deal w ith the topics of boun­
dedness and asym ptotic order of solutions of (1). The purpose of this paper 
is to im prove certain well-known boundedness criteria for solutions of equa­
tion (1) (B arrett [6, p. 424]) by  introducing a m ore general norm  than  the 
Euclidean norm . This technique yields a m ethod for estim ating the ra te  of 
grow th of solutions of (1) and provides an im provem ent of a result found in 
H artm an  [2, p. 510]. In  addition, conditions are given under which no solu­
tion of (1) tends to zero at 00.

I. Introduction of D -norm

T he m ethod which will be used m ay be stated, initially, for the vector 
m atrix  equation

(2) Y ' =  A Y , A e C  [a , oo),

where A  is an n X n  m atrix  function.

T he following two definitions will be needed:

DEFINITION i . Let denote the set of matrices D such that (f) D c C'[a> 00) 
and (if) D is positive definite on [a , 00).

(*) Nella seduta del 29 giugno 1974.
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D efinition 2. I f D e S t ,  then || • ||D (the D-norm) is defined by || Y ||d =  
=  Yt  DY, where Y is a vector function in  EK.

If  Y is a  nontrivial solution of (2) and  D e S ,  then it is easily seen tha t

(3)
11 Y Up _  Yt Ud Y 
II y ||d yt dy

on [a , 00) ,

where U D =  —  [AT D +  DA +  D ']. (It should be observed th a t || Y ||D >  o 
on [a , oo)*). L et Z =  D 1/2 Y, then  (3) becomes

(4)
Il Y Up __ Zt Rd Z 
|Y ||d Zt Z

on [a , 00)

where R D =  D ~1/2U d D “ 1/2 is a sym m etric m atrix .
T he first lem m a is an  easy consequence of the fact th a t the right-hand 

side of (4) is a Rayleigh Q uotient and the fact th a t the j-th  eigenvalue function 
of R d is continuous (Lancaster [7, p. 30]).

LEMMA 1. I f  Xd and  Xd , respectively, denote the maximum and m in i­
mum eigenvalue function fo r  R D , D e then Xd and  Xfi are continuous on 
[a , 00) and

t

(S) Il Y ||D (a) exp l' f ô  (s) dsj <  || Y ||D (t) <
a

t

^  Il Y ||D (a) exp £ j Xd ( s )  d jJ  , t  >  a .

2. The D-norm and second order equations

W e wish to apply  Lem m a 1 to equation (1) with a properly chosen m atrix  
D. It is clear th a t equation (1) takes the form (2) if

/[A2 0 \
L et D =  1 1 where [A>o and is continuously differentiable on [a,oo),

then the following lem m a gives estim ates of bounds for the corresponding 
eigenvalue functions Xd and Xfi of the m atrix  RD .

4. — RENDICONTI 1974, Voi. LVII, fase. 1-2.
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Lemma 2. I f  y .eC r [a, 00) is positive and i f  Xd (f) and  Xd (f) are respecti­
vely the m inim um  and maximum eigenvalue of RD(7) fo r  each t e [a ,00) then

+

Proof. By definition,

R d =  D - 1/2U d D-

T ~ î \ ]  on

Ì-1/2 ^  JL D “ 1/2 [At D +  DA +  D '] D “ 1/2 =

(I +  Pt2)

- p ( i  +  fX2) \  / — o

O I

Consequently, the eigenvalues of R D are X =  —  
from which (6) follows immediately.

Lem m a 1 and Lem m a 2 are now used to prove the m ain theorem .

T h eo rem  i. Let fx c C ' [a , 00) be a positive function on \ a , 00) and y  
be any nontrivial solution of (1).

fi) I f  fx '< o  on [a yo6) then there exists constants m  >  o and  M >  o

such that m  exp
- I

__p_
r jx 0 ) ds) < T + (f) and

KwO +  (ry ')  i 00 <  M exp JA ___ P_
r fx (s) di* I on [a , 00).

(ii) I f  fx' i> o then there exists m  >  o and  M >  o such that

m  exp __p_
r (x 0 ) di' I <  [({xy) +  (rÿ ) ] (i) and

y 2+  (— ) I 00 <  M exp Ü __P_
r jx (Yjd.n on [a , 00).

Proof. D =  ^  implies th a t || Y ||2D =  ( { x y f f  (ry 'f .

Considering the case [x' <  o, Lem m a 2 implies th a t Xd >  —--------
[A 2

and Xd <  — — —  — . Lem m a 1 then yields:

J t __Ü
r  (X

2 r  [x

Y H2° (ÿw ) exP

<11 Y III) (a) exp J
(s) d rj <  K w )2 +  ( r / ) 2] (t) <

( j ) d j .J i __
r  (X
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Conclusion (i) of Theorem  i is obtained from these inequalities where we
1 I! ^  Id (a ) j t \ / t n a r  112' /  \  achoose m ------anc* M =  || Y ||d (d). A  sim ilar argum ent will yield con­

clusion (ii) of this theorem .
One m ight expect m ore generality  in Theorem  i if the m atrix  D is allowed

/ <p2 o \
to take the m ore general diagonal form D =  I , .  | . This is however not

\  °  r  /
the case since D is of the form used in Theorem  i and the scalar coefficient
1 /[i-2 o \

plays no role in the theory. If  I i is replaced by a positive definite

but not diagonal m atrix  in the above discussion then two com plications arise. 
U nder these circum stances D ~ 1/2, and Xd and Xfi are difficult to com pute and 
m oreover || Y ||D takes a form which includes a term  of the form gyry' for 
some function g  determ ined by D. T he presence of this term  requires a more 
careful analysis and will not be considered in this paper.

T he following corollaries yield inform ation about the asym ptotic order 
and boundedness of solutions of (i).

C o r o l l a r y  i . Suppose {— —  e L i [a, oo) fo r  some positive function  

p . e C ' [a i oo) and let y  he any nontrivial solution of (i).

(i) I f  j i /<  o, then as t - > o o y  == O (ji.“1) and ry l =  O (i)  and there

exists an m  > o  such that y 2 -f  m on [a , oo).

(ii) I f  \if '> o, then as t -> oo y  =  O (i)  and ry f =  O (ji.) and there exists 
an m > o  such that (ji.y)2+  (ryr)2:>  m on [a , oo).

This result follows im m ediately from  Theorem  I and needs no proof. 
Corollary i can be considered a generalization of a result of B arrett 

[6 , p .424], viz., if for some positive num ber h, it is true th a t ^  — --j e 
e L i [a, 00) then y  =  O (1) and ry f =  O (1) at 00 for each solution of (1).

T he following corollary is a generalization of a result stated in Loud [5] 
and credited to Liapanhoff, viz., if A  (f) is defined bounded and piecewise 
continuous for t> a  and x0 is a nontrivial vector solution of x'(t) =  A(t)  x  (t), 
t >  a, then there is a num ber X0 such th a t for X >  Xo, lim x0 (t) e~Xt =  o.

/ —> 00
C o r o l l a r y  2. I f  fo r  some number X , ----------   <i K on fa ,00) whererit) em — '

K is a positive constant, then fo r  each nontrivial solution y  of (1);
K. K(i) y  =  O (eaf) fo r  a >  —  and ry '=0 (e^) fo r  ß j> — +  X whenever2 2

X > o  and
K K(ii) y  =  0  (eat) fo r  <v>------- X and ry '=  0(e3*) fo r  ß >  —  whenever X <  o.2 2

Proof. O nly conclusion (i) will be proved since conclusion (ii) is proved 
by a sim ilar argum ent. Suppose X >  o and let y. =  ex*, then jj(/> o. I t fol-
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lows from  conclusion (ii) of Theorem  1 tha t for some M >  o,
t

[ / +  { f .)2] co < M exp ü
r

P_ (s) di* on [a , 00).

T he integrand above is bounded by K and hence y 2<  and
fy* \2

< M e KV~a) from  which follows conclusion (0-
T he next theorem  generalizes some well-known results (Bellman 

[8, p. i n ] ,  H artm ent [2, p. 510], Leighton [9]).

Theorem 2. Suppose p >  o, (pr)f>  o {(p r) '<  0} on [ 0 , 0 0 )  and
-—= G Li [a , 00). I f  y  is any nontrivial solution of ( r y f  f -  (p -f- q) y  — o 
v pr
on [a ,00) then y  =  O (1) and ry '=  O (fpr) \y =  O ) and ry 1 — O (i)( at oo.

( \yprj  \
Proof '. M aking use of Corollary 1 and choosing [l =]Ip r  we notice tha t

(pr)f>  o implies th a t ( i />  o. Also — — Èd^JL. =  e L i  [a , 00) and hencer [x y pr
y  =  O (1) and r y f=  O (}!pr). A  sim ilar argum ent covers the bracketed case.

Some of the references in the introduction of this paper give sufficient 
conditions for at least one solution of equation (1) to have limit zero at 00. 
Corollary 1 m ay be used to state sufficient conditions tha t no solution tends 
to zero at 00. These sufficient conditions are given in term s of the oscillatory 
behavior of (1). See B arrett [6] or Swanson [3] for a discussion of oscillation 
theory.

Theorem 3. I f  e Li [a , 00) where [i. >  o f  <  o on [a , 00),
then (i) no solution of (i) tends to zero at 00 i f  equation (1) is oscillatory, and  (ii) 
no solution of (1) tends to zero at 00 i f  equation (1) is nonosdilatory and

- ^ L i  [ò ,00) fo r  b >  a.

Proof. If  y  is a solution of (1), then by part (i) of Corollary 1 there exists 
k  >  o such th a t o <  k  <  |~y2 -j- j (t) for f >  a. Suppose, contrary  to
(i), th a t there is an oscillatory solution y  of (1) such th a t lim y  (f) =  o, then

t —>- 00
there is a num ber b >  a such th a t h >  o on [£,00). This contra­
dicts the oscillatory behavior of y  and y r.

Secondly, contrary, to (ii), suppose y  is an eventually positive solution

of (1) such th a t \ i my ( f )  — o. Let c > a  be such tha t
t —>- 00 L  ̂ J 2t

for t  >  c} then y  <  —  ~  eventually  and y  (f) <  y  (c)-----— J '  (s) d̂ *.

c
B ut y  6 L i [b , 00) implies th a t y( t )  becomes negatively unbounded for large t. 
This contradiction forces the conclusion th a t no nontrivial solution has a 
zero limit.
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By an appropriate choice of D, it is possible th a t the D-norm  of solutions 
of (i)  m ight be bounded but the Euclidean norm, || Y \ f=  y 2-j- (ry’)2, m ight 
be unbounded. Hence the D -norm  can give more inform ation about the boun­
dedness of solutions in th a t case. The following exam ple will indicate such a 
situaton.

Let r (t) =  /2a and p  (f) =  t2cc [i +  a (a —  i) t~2] in equation (i)  where 
[a , oo) =  [i , co). I f  p, (t) =  t201 [i +  a (a — i) jf-2]-i/2 for t >  I then

—  — =. o and for sufficiently large t, it can be shown th a t p, >  o and 

sgn p /=  sgn a. U sing Corollary i we obtain the following inform ation.

If  a <  o then y  =  O (r~2a) and ry' =  O (i)  as t -> oo.
I f  a =  o then y  =  O (i)  and ry ’ — O (i) as t oo.
If  a >  o then y  =  O (i)  and ry ’ — O (t2a) as / ->  oo.

Thus if a >  o we conclude th a t all solutions of (i)  are bounded. However, 
since the general solutions of (i)  is y  (t) =  t~a (A sin /  +  B cos f), y 2-\- (ry’)2=  
=  O ( / '“ *) and hence the Euclidean norm  is unbounded if a >  o.

In  conclusion it is noted th a t one can relax the continuity hypothesis on 
p  and r  som ewhat and still obtain the results of Theorem  I . All th a t is required

is th a t Xd , Xd and L
r

t are locally integrable on [a , oo).

T he A uthors wish to express their appreciation for the helpful inform ation 
received from Prof. J. Heidel, D .B. H inton and A. S. Householder of 
the U niversity  of Tennessee M athem atics D epartm ent.
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