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Equazioni differenziali ordinarie. — 4symplotic order of solutions
of (y')+gy=o0. Nota di J. MicuaeL DoLaNn e GENE A. KLAASEN,
presentata @ dal Socio G. SANSONE.

RIASSUNTO. — Gli Autori generalizzano la norma euclidea introducendo la cosi detta
norma D la quale consente di provare tre teoremi i quali collegano il comportamento degli
integrali dell’equazione differenziale lineare del secondo ordine (7y')'+ gy = o col compor-
tamento dell’integrale

¢

!

Comprehensive surveys of the literature of the selfadjoint linear second-
order differential equation

w2

p u ($)ds , wmeC [a, oo].

(1) (7y)+py=o0  where »>0 and r,p€eC [a, o)

are real valued functions can be found in Buckley [1], Hartman [2], Swanson [3]
and Willett [4]. In particular numerous papers deal with the topics of boun-
dedness and asymptotic order of solutions of (1). The purpose of this paper
is to improve certain well-known boundedness criteria for solutions of equa-
tion (1) (Barrett [6, p. 424]) by introducing a more general norm than the
Euclidean norm. This technique yields a method for estimating the rate of
growth of solutions of (1) and provides an improvement of a result found in
Hartman [2, p. 510]. In addition, conditions are given under which no solu-
tion of (1) tends to zero at oo.

1. INTRODUCTION OF D-NORM

The method which will be used may be stated, initially, for the vector
matrix equation

(2) Y'=AY, AeCla, ),
where A is an »X#» matrix function.

The following two definitions will be needed:

DEFINITION 1. Let 9D denote the set of matrices D such that (i) D € C'[a, o)
and (42) D is positive definite on [a , o).

(*) Nella seduta del 29 giugno 1974.
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DEFINITION 2. If D € 9, then | - ||p (the D-norm) is defined by | Y |5 =
= Y' DY, where Y is a vector function in E".

If Y is a nontrivial solution of (2) and D € 9, then it is easily seen that

IYl, YUY
IYl, Y'DY

(3)

on [a,oc0),

where Up = % [A"D + DA +D’]. (It should be observed that lYl|p>o
on [a, 00):). Let Z=D" Y, then (3) becomes

Y|, Z'R,Z

1Yl z'z

oy

on [a,oc0)

where R, = DU, D i5 a symmetric matrix.

The first lemma is an easy consequence of the fact that the right-hand
side of (4) is a Rayleigh Quotient and the fact that the j-th eigenvalue function
of Rp is continuous (Lancaster [7, p. 30]).

LEMMA 1. If A5 and N5, respectively, denote the maximum and mini-
mum eigenvalue function for Ry, D € D, then N5 and A5 are continuous on
[@, c0) and

¢

~

() 'Y [lp (@) eXp[ /7\5 () dS] <IYib® <

t

”~

gHYHD(a)exp[.//kﬁ(s)ds], t>a.

a

2. THE D-NORM AND SECOND ORDER EQUATIONS

We wish to apply Lemma 1 to equation (1) with a properly chosen matrix
D. It is clear that equation (1) takes the form (2) if

I

Y=(:J:,) and A=(—; :

20
Let D= (i I) where >0 and is continuously differentiable on [,00),

then the following lemma gives estimates of bounds for the corresponding
eigenvalue functions A$ and A5 of the matrix Rp.

4. — RENDICONTI 1974, Vol. LVII, fasc. 1-2.
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LEMMA 2. If neC'[a,o00) is positive and if \p (£) and N (f) are respecti-
vely the minimum and maximum eigenvalue of Ry (f) for each t € [a,00) then

;\—>__‘_[£_‘i' _ ﬁ_ﬁ“ and
© P="72 e @ T
st |2 +[2—2] = o

Proof. By definition,

p=D U, D =_D"ATD+DA+D]D "=

I ’ 2 I 2 [ 2

- — 1 — fnilalt Ll )
L [we 2 g p(+ ¥ 0\ [ "
E : . T2 \le s

o I 7<I+(»L> o o1 7—E o

: _ 1| w2, (e P2
Conseque‘mtly, the elgen'values . of Ry are A= — [7 + V (?) + (7 — ;) }
from which (6) follows immediately.

Lemma 1 and Lemma 2 are now used to prove the main theorem.

THEOREM 1. Let n€C' [a, 00) be a positive function on [ a, o) and y
be amy momtrivial solution of (1).

(i) If W' <o on [a,00) then there exists constants m >0 and M > o

o+ ()

(&) and

7

t
such that m exp (— f iad ——é ’ () ds) <

[(w)*+ )] (< Mexp ( f | £ —% ’ (s) ds) on [a, oo).

i) /) "> 0 then there exists m >0 and M >0 such that
w

o[-

a

[y2+ (%')zj BH<M exp( f

a

L2 ds) < (W) + ey @) and

¢

i_él(s)ds) on [a, o).

7

uroy . . 2 2 ne
Proof. D= o 1 implies that || Y |[p = (w) "+ ()"

Considering the case p/ <o, Lemma 2 implies that A5 >+ — L
g » p m

. 2
and A< % % —-% ‘ . Lemma 1 then yields:

¢

Joxp(— [ |4 — 2| @as) <t + (M1 0 <

2 w2 (2
1Y 1B @ (3

a

<IVIb@esp [[£— 2| ar.
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Conclusion (1) of Theorem 1 is obtained from these inequalities where we

Y2 (¢
choose m = ” 2”'(3 )a ) and M=| Y|} (). A similar argument will yield con-

clusion (ii) of this theorem.
One might expect more generality in Theorem 1 if the matrix D is allowed

2o
to take the more general diagonal form D = ((P 4;2) This is however not

the case since 4) D is of the form used in Theorem 1 and the scalar coefficient

20
4)2 plays no role in the theory. If (p; : ) is replaced by a positive definite

but not diagonal matrix in the above discussion then two complications arise.
Under these circumstances D_m, and A} and A5 are difficult to compute and
moreover || Y [|p takes a form which includes a term of the form gyry’ for
some function g determined by D. The presence of this term requires a more
careful analysis and will not be considered in this paper.

The following corollaries yield information about the asymptotic order
and boundedness of solutions of (1).

COROLLARY 1. Swuppose (% —_ %) € Li[a,00) for some positive function

w€C'[a,00) and let y be any nontrivial solution of (1).

(D) If p'<o, then as t—>ocoy =0 (ut) and ry' = O (1) and there
exzsts an m >0 such that y2 -+ ( ) >mon [a, o).

(i) If p'=o0, then ast—ocoy = O (1) and ry' = O (W) and there exists
an m>o such that (wy)2+ (ry'V'>m on [@, o0).

This result follows immediately from Theorem 1 and needs no proof.
Corollary 1 can be considered a generalization of a result of Barrett

?

[6, p. 424], viz., if for some positive number %, it is true that ﬁ—-/z— €

€Li [a, 00) then y = O (1) and 7y'= O (1) at oo for each solution of (1).
The following corollary is a generalization of a result stated in Loud [5]
and credited to Liapanhoff, viz., if A (#) is defined bounded and piecewise
continuous for #>a and ¥, is a nontrivial vector solution of x'(¥)=A(¢) x (),
¢ > a, then there is a number XA, such that for A > %o, lim xy (£) e =
t—>00

o
COROLLARY 2. [If for some number A\ (;> ? g\? < K on [a,00) where

K is a positive constant, then for each nontrivial solution y of (1);

1) y=0 () for a > ~I§— and ry'=0 (*) for p > %—l— A whenever
A=>0 and

(i) y=0(*) for a> ~12<~ — A and ry'=0(e*) for B> lj— whenever A< 0.

Progf. Only conclusion (i) will be proved since conclusion (ii) is proved
by a similar argument. Suppose A >0 and let p=¢", then p'>o. It fol-
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lows from conclusion (ii) of Theorem 1 that for some M > o,

[yzjl_(%/«)?] & <M exp(]{%—%‘(s)ds) on [a,o0).

The integrand above is bounded by K and hence y2< MeK¢- 9 and
(ry ) < MeK¢-9 from which follows conclusion (i).

The next theorem generalizes some well-known results (Bellman
[8, p. 111], Hartment [2, p. 510], Leighton [9]).

THEOREM 2. Swuppose p>o, (pr)=o0{(pr)<o} on [a,co) and
2_€li[a,o0). If y is any nomtrivial solution of )+ G+ y=o0

Vopr
on [a,00) then y =0 (1) and ry'= O (Jpr) ly =0 (ﬁ) and ry'= Q (1>< at oo.
/s
Progf. Making use of Corollary 1 and choosing = | pr we notice that
(p7)' = o implies that p'>o0. Also % — ﬁ:—g V— €L [@,00) and hence

y=0 (1) and 7y'=0O (Jpr). A similar argument covers the bracketed case.

Some of the references in the introduction of this paper give sufficient
conditions for at least one solution of equation (1) to have limit zero at oco.
Corollary 1 may be used to state sufficient conditions that no solution tends
to zero at co. These sufficient conditions are given in terms of the oscillatory
behavior of (1). See Barrett [6] or Swanson [3] for a discussion of oscillation
theory.

THEOREM 3. If |— u]eLl [@, c0) where >0 u'<o on [a,c0),

then (i) no solution of (1) z‘ends 2o zero at oo if equation (1) is oscillatory, and (ii)
no solution of (1) tends to zero at oo if equation (1) is nomoscillatory and

el [6,00) for 6> a.
Proof. If y is a solution of (1), then by part (i) of Corollary 1 there exists

/>0 such that o <4< [y2 + (%)2] (#) for ¢ >a. Suppose, contrary to
(1), that there is an oscillatory solution ¥ of (1) such that lim y (£)= o, then
t—=o0

there is a number 6 > a such that (%—)22% #>0 on [b6,00). This contra-
dicts the oscillatory behavior of y and y'.
Secondly, contrary. to (ii), suppose ¥ is an eventually positive solution

of (1) such that limy () =o. Let ¢>a be such that [ ] GOP== é >0
t—>o00

for t>¢, then y < — —fir eventually and y () <y (c)— —f—f% (s) ds.

But i € L1[6,00) implies that y(#) becomes negatively unbounded for large ¢

This contradlctlon forces the conclusion that no nontrivial solution has a
zero - limit.
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By an appropriate choice of D, it is possible that the D-norm of solutions
of (1) might be bounded but the Euclidean norm, || Y |P= 3*+ (ry")?, might
be unbounded. Hence the D-norm can give more information about the boun-
dedness of solutions in that case. The following example will indicate such a
situaton.

Let »(£)=#* and p (#)=#*[1 + « (a — 1) #2] in equation (1) where
[@,00) = [1, c0). If p@=14a(e—1)2]"12 for # > 1 then

%——é:o and for sufficiently large # it can be shown that p>o and

sgn p'= sgn a. Using Corollary 1 we obtain the following information.

If « <o then y =0 (#2) and 7y’ = O (1) as ¢ — oco.
If « =0 then y =0 (1) and »y' = O (1) as #—> oco.
If « > 0 then y = O (1) and 7y’ = O (#**) as ¢ oo.

Thus if @« > o0 we conclude that all solutions of (1) are bounded. However,
since the general solutions of (1) is ¥ (¢) = £ (A sin -+ B cos £), y*+ (ry')’=
= O (#/*)) and hence the Euclidean norm is unbounded if o> o.

In conclusion it is noted that one can relax the continuity hypothesis on
2 and 7 somewhat and still obtain the results of Theorem 1. All that is required

is that A%, Ap and } % —«é are locally integrable on [a, co).

The Authors wish to express their appreciation for the helpful information
received from Prof. J. Heidel, D.B. Hinton and A. S. Householder of
the University of Tennessee Mathematics Department.
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