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Analisi matematica. —  Symbolic calculus in A/ (G). Nota II (#) 
di L e o n e d e  d e  M i c h e l e  e P a o l o  S o a r d i ,  presentata dal Corrisp. 
L . A m e r i o .

R iassunto. — Si dimostra che solo le funzioni reali analitiche operano nell’algebra 
A^(G) se G è un gruppo abeliano infinito, oppure un gruppo mediabile discreto con sottogruppi 
abeliani arbitrariamente grandi, oppure un gruppo di Lie non discreto.

4. The abelian  case; nondiscrete groups

In  this section we need the following results of I. Khalil ([7], Theorem  5, 
Lem m a 7),

P ro p o sitio n  i . Let I L T  be a closed interval and 9 a continuous function  
on I; let C be a positive number. Then the following statements are equivalent:

0  f or ever finitely supported measure p. on T  supported by I

<  C II [A ||Ĉ (T)
E

2) there exists ^ e A^(T), ||^||A fT) <  C, such that fo r  every x  e l  <p(x) =  ty(x).

PROPOSITION 2. Let p. be a Radon measure on the real line R, supported 
by a closed interval I Ç [—  1/10,1/10] .  Let p. be the Radon measure on T 
defined by

T  R

fo r  every 9 continuous on T. Then\

II ^ Hc^(R) — 2 II ^ Hc^(T) •

For every com plex-valued function /  supported in (—  iz , tu) we shall denote 
by s ( f )  the function on T  defined by

+00

s ( f ) ( e ix) =  2  f ( x + 2 nn)
«=— OO

for all ^  e R. T he next theorem  is a consequence of K halil’s results.

THEOREM 2. Let f  be a complex-valued function defined on R with support 
in f — 7T , tu). The following statements are equivalent'.

1 ) / e A / R ) .
2) J ( / )  e A p (T). (*)

J <p(0 d[i(0 =  I <p(eix) d[i(x)

(*) Pervenuta alPAccademia il 19 luglio 1974.
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Proof. 2) implies i). Indeed, by [4], Theorem  1, s ( f ) ( e ix) belongs 
to B^(R). L et h e A p  (R) be a function such th a t supp h C (— n , re) and 
h (x) — I for eveiT  *  e s u p p / .  T hen f ix ')  =  h{x) s ( f )  (e’x) for all *  and so
/ 5 6 V(R)-

1) implies 2). It suffices to prove th a t s ( f )  belongs to A p(T) locally 
at every point of T (see [9], Ch. 6). A t first we prove th a t s ( f )  belongs to 
A^(T) locally at zero. L et k e A p(R') such th a t supp h C [—  1/10, 1/10], 
o <  h(x)  <  I , h(x)  =  I in a neighborhood of zero.

Then s(hf )  e Ap(T).  Indeed, there exists C > o  such that, for every 
R adon m easure fj. on R  w ith finite support contained in [— 1/10 , 1/10] and

II ^  IIĉ ch) ^  1 we have:

j  h{x) f ( x )  dy.(x)
R

<c.

By Proposition 2

Sup / s(hf )  (t) dfi(*) <  2 C

where the suprem um  is taken over all Radon measures with finite support 
contained in the natu ral image of [— 1/10 , 1/10] in T and Cz^(T)-norm 
not larger than  1. By Proposition 1 s(kf )  e A p(T); consequently s ( f )  belongs 
to A / T )  locally at zero.

Now, triv ially , s ( f )  eA ^(T ) locally at tt; by translation it is easily seen 
tha t s ( f )  belongs to A^(T) locally at every point of T.

THEOREM 3. Let G be an infinite nondiscrete abelian group . Let Y be a 
complex-valuedfunction defined in a closed convex subset E o/C. Then F  operates 
m  Kp(fj) i f  and only i f  F  is real-analytic in E. Moreover F (o) — o i f  G is 
noncompact.

Proof. It is well known ([9], 2.4.1.) th a t G contains an infinite compact 
group or a closed subgroup isom orphic to the real line R,

In  the first case, since A^(G)jH =  A^(H) for every closed subgroup H, 
the theorem  follows from  Theorem  1. In  the second case, Theorem  2 allows 
us to apply  the same argum ents as in [9] 6.6.4.

5. T h e  d is c r e t e  a m e n a b l e  case

T hrough this section G will be an infinite discrete am enable group; we 
shall suppose, for the sake of simplicity, that the function F, operating in 
■A^(G), is defined in [—-I ,1 ] .  M any argum ents of this section are the same 
as in our previous paper [3].
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Lemma 4. There are positive numbers S and M such that fo r  every 
f  6 B^(G) with | | / | | B (G) <  § it follows

(5-0  F ( / ) e B , ( G )

(5-2) | | F ( / ) | | V G ) < M .

Proof. Since G is am enable, there is in AjS(G) a bounded approxim ate 
unit. T hen it is easy to see, just as in [3], Proposition 1, th a t the statem ent 
is true for finitely supported  functions. Then, let f e  Bp(G), | | / | | B <  8/2.
For every finite set K  Ç G it is possible to find a finitely supported function 
vK such th a t vK(x) =  1 if x  e K  and || vK ||B <  2.

Therefore f

(5-3) F  ( / )  (x) =  lim F  ( fvK) (x)
K

for all x  e G, and

(54 ) I |F ( > k)||V G )< M .

Since G is discrete and the un it ball of is closed for the com pact conver
gence ([4], 3.2), (5.1) and (5.2) follow from (5.3). and (5.4).

Lemma 5. I f  G contains abelian subgroups of arbitrarily large order, 
then there exists b >  o such that, fo r  sufficiently large r:

(5-5) Sup II e‘S UB >  elr.
feSr PK }

Proof. F irst suppose th a t G is not of bounded exponent. T hen G con
tains an elem ent of infinite order or a rb itra rily  large cyclic finite subgroups.

In  the first case G D Z  (the relative integers). Since only real-analytic 
functions operate in A^(R), (5 .5) is necessarily true if G =  R  (see [9], 6 .7. 1.).

Notice th a t I. K halil proved ([7], Theorem  1) th a t a function u defined 
and continuous in R  belongs to B^(R) and || u ||B <  C if and only if for
all X >  o belongs to B^(Z) w ith norm  not larger than  C. Denote
now by  Sr the set of the real-valued functions in B^(Z) with norm  not larger 
than  r. B y K halil’s result:

(5-6) Sup II e'l ||B (Z) >  ^br-
f e  Sr

Since there is in A^(Z) a bounded approxim ate unit, we get (5.6) with Sr instead 
of Sr . Since the restriction is a norm  decreasing application of B^(G) into 

P- 59), (S-S) is true.
I f  G contains finite cyclic subgroups of arb itrarily  large order Gr , then, 

since Gr is compact, it is possible, by Lem m as 1 and 2, to repeat the first part 
of the proof of Theorem  1 for such groups.

Finally, let G be of bounded exponent; then G m ust contain arb itrarily  
large abelian subgroups w ith the same finite exponent. Therefore, by  [6] 3

3. — RENDICONTI 1974, Voi. LVII, fase. 1-2.
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I.I3-I2, there exists a prim e num ber q such th a t G contains abelian subgroups 
of order ya, w ith a a rb itra rily  large. I t  is again possible to repeat the second 
p art of the Theorem  i.

Remark . W e have incidentally  proved, for the groups we are dealing 
with, th a t B /G )= H L °°(G ).

Lemma 6. Let G be as in Lemma 5* Then there exists a set A Ç G such 
that i f  f  e B^(G) and supp f  Ç A, then in f \ f (x)  \ =  o.

A
Proof. Assume, by w ay of contradiction, th a t the lem m a is false. Then, 

by the same technique as in [3], lemma, it is possible to approxim ate in 
L°°(G)-norm the characteristic function of every subset of G; by theorem  
3.3 of [2], applied to the Stone-Cech com pactification of G, one gets 
B^(G) =  L°°(G), which is absurd by the previous rem ark.

Now the same proof as in [3], Proposition 3, gives:

LEMMA J. Tet G satisfy the same hypothesis as in Lemma 5; then F is 
continuous in a neighborhood of zero.

THEOREM 4. Let G be a discrete amenable group containing abelian sub
groups of arbitrarily large order. Let F be a complex-valued function defined in 
[— I ,1] .  Then F  operates in  A^(G) i f  and only i f  F  A real-analytic in a neigh
borhood of zero and F  (o) =  o.

Proof. I t suffices to rem ark  tha t the foregoing lemmas are all th a t is 
needed in order to apply  the proof of Helson, Kahane, K atznelson and R udin [5]

Remark. T he assum ptions of Theorem  4 are satisfied, for in stan ce , by 
the following groups:

1) am enable groups containing an infinite abelian subgroup (in p arti
cular infinite abelian groups);

2) am enable groups of unbounded exponent;
3) am enable groups of bounded exponent containing arb itra rily  large 

finite subgroups;

4) am enable infinite groups having as exponent one of the following 
num bers: 2, 3, 4, 6.

1) and 2) are trivial; in order to establish 3) rem ark  th a t (see [8], proof 
of Proposition 4), by Sylow’s theorem, the finite arb itra rily  large subgroups 
of a group of bounded exponent contain large y-groups for some prim e num ber 
q. On the other hand, a ^-group of order qn contains an abelian group of order 
qa, where a ( a +  i ) > 2 n (see [6], I I I .7.3).

To establish 4) rem ark th a t B urnside’s conjecture is true for groups of 
exponent 2, 3, 4, 6 (see [6], I I I .6.7.).

Therefore such groups are locally finite and so they  contain arb itrarily  
large finite subgroups.
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Notice th a t B urnside’s conjecture is not true in general; there are groups 
of sufficiently high exponent which are not locally finite [ i ]. However, the 
A uthors do not know examples of infinite groups not containing abelian sub
groups of arb itra rily  large order.

6 . The nonamenable case; L ie groups

L et us now consider functions operating in the A p algebra of a not neces
sarily  am enable locally com pact group like, for instance, Lie groups. O ur 
starting  point is the following: if G contains an infinite closed subgroup H 
satisfying the assum ptions of one of the previous theorems, then, since 
A ^(G )|h =  A ^(H ), only real-analytic functions operate in A^(G). Suppose, for 
instance th a t G contains an infinite abelian subgroup; then one gets:

THEOREM 5. Let Ox be a locally compact group containing an infinite 
abelian subgroup H , and let F be a complex-valued function defined in  [—• 1 , 1 ] .  
Then, i f  the closure of H is nondiscrete, F  operates in A p(fj) i f  and only i f  it 
is real-analytic in  [—  1,1],  and  F  (o) =  o ÿ  G is noncompact. I f  G is discrete, 
then F  operates in A p (G) i f  and only i f  it is real-analytic in a neighborhood of 
zero and  F  (o) =  o.

Remark . By this theorem  only real-analitic functions operate in the 
algebra A p of a nondiscrete Lie group, since it contains nondiscrete one-para
m eter subgroups. By the same theorem , if G is the discrete free group w ith 
two generators, a com plex-valued function operates in A^(G) if and only 
if it is real-analytic in a neighborhood of zero and F (o) =  o.
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