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Analisi matematica. —  Symbolic calculus in A^(G). Nota I 
di L eo n ed e  de M ichele  e P aolo S oa r di, presentata dal Corrisp. 
L. A m erio .

R iassunto. Si dimostra che solo le funzioni reali analitiche operano nell’algebra 
A^(G) se G è un gruppo compatto.

i . Introduction

L et G be a locally com pact group and iS  (G) the Lebesgue space corre­
sponding to the left-invarian t H aar m easure on G; we denote by || • || the 
norm  in l î  (G) and by p f the conjugate exponent of p. It is well known [io] 
th a t the set A^(G) (i <  p  <  oo) of all functions u on G of the form

C1-1). « =  £ / « * / «
n = 1

( f n  e L^(G) , g n e L p (G) , g n ( x )  =  g n (x~~1)  , 2  II/»  \\p II«?» II// <  ° ° )  is a B an ach
\ n=l j
algebra under pointwise m ultiplication w ith the norm:

OO
II u ||a^(G ) =  inf 2 ] II/« \\p\\g„ \\p’

n= 1

where the infim um  is taken over all possible representations ( i . i )  of u. W hen 
p  =  2 , A^(G) =  A (G ), the Fourier algebra of G (see [4]). If  l /  eg) i f  is 
the^Banach space tensor product of V  and and if P is the application of 
L^(x)L^ into C0(G) defined by P ( f ® g ' ) = f * g ) A^(G) m ay be identified 
to thè quotient space L^ ® YÎ  /K er P, and the norm  || • | |^  is the quotient 
norm.

As first proved A. F igà-Talam anca ([6], [7]), A^(G) is related by duality  
to the convolutors of i f  (G); if G is am enable, the dual space of A^(G) is iso- 
m etrically isom orphic to Cz^(G), the L^-convolutors space, by the relation:

oo
< « . t >  =  2 < t f n , gn)

n — 1

where T  e C ^ (G )  and u is as in ( i . i )  (see [4], [6], [7], [13]). If  p  =  2, accor­
ding to E y m ard ’s notations [4], O a (G) will be denoted by VN (G).

Let B^(G) denote the set of all bounded, continuous, com plex-valued 
functions on G which are m ultipliers of A^(G). B^(G) is a B anach algebra for 
the pointwise m ultiplication wih the usual operator norm. If  G is am enable

(*) Pervenuta all’Accademia il 19 luglio 1974.
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A^(G) has a bounded approxim ate un it (see [5], theorem  3), and the injec­
tion of A^(G) in Bi&(G) is actually  an isometry; B^(G) m ay also be viewed 
as the dual space of L X(G) w ith the l/-convo lu to rs norm. T he duality  is 
given (see H erz [12]) by

(u  , / )  =  j f ( x )  u(x) dx
G

for all f  e L X(G) and u  e B^(G).
W hen G is am enable Bo(G) =  B(G), the Fourier-Stieltjes algebra of G; 

m oreover one gets the following continuous injections (see [13]):

M (G) C  Cvr (G) G  Cvp (G) C  VN (G) 

A ( G ) C 4 ( G ) C A / G ) C C 0(G)

i f i < ^ > < r < 2  or 2 <Lr p.
In  this paper we shall often use the following result due to C. Herz [11]: 

if H is a closed subgroup of a locally compact group G , then the restriction 
A*(G)|h of A/ G) to H is exactly  A*(H); m oreover | | / | H ||a^(h) <  ||/||a^(G). 
I f  p  =  2, for all ^ e A ( H )  there i s / e A ( G )  such t h a t / | H — g  and ||/||a(G) =  
=  Il g  ||a(H).

W e say th a t a com plex-valued function F, defined on a subset E  of the 
complex plane C, operates in A>(G) if the composition F  ( / )  belongs to Ait(G) 
whenever /  e A^(G) and the range of /  is in E. If  p  =  2, E  is closed and 
convex and G is an infinite nondiscrete abelian group it is well known [9] 
th a t F  operates in A (G ) if  and only if F  is real analytic in E (and F (o) =  o 
if G is noncom pact). I f  G is an infinite discrete abelian group and E is a neigh­
borhood of the origin, F  operates in A (G ) if and only if  F  is real analytic in 
a neighborhood of zero and F  (o) =  o. These results have been extended to 
a large class of noncom m utative locally com pact groups (see [I], [3], [16]). 
If  p  =j= 2, the only results the authors know on this subject are due to D rury  [2] 
and Fisher [8]. D ru ry  proved th a t only real-analytic functions operate in 
A^(G) when G is the 1-dim ensional torus T or the C antor group; Fisher proved, 
by different techniques, the same result for any compact abelian group. In  this 
paper we start from the works of D ru ry  and R ider [16]; by sharpening their 
techniques we are able to prove th a t only real-analytic functions operate in
A ,(G ) if:

1) G is an infinite abelian group,

2) G is an infinite com pact group,

3) G is an infinite discrete am enable group containing arb itrarily  
large abelian subgroups;

4) G is a nondiscrete Lie group (see also [15]).

Therefore the results obtained for p  =  2 in [9] and [16] are extended 
to the general case. The result 3) is new also for p  =  2.
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2. The compact case: preliminary lemmas

Let p  be a fixed num ber, 1 <  >̂ <  00. Then

Lemma i . Let  G be a locally compact amenable group with the following  
property: there exists b >  o such that fo r  some positive number r  there is a 
compact subgroup Gr C G and a real-valued function f r e Kp (G) such that\

Then

Mr IhyG) <  r

e r Ĉvf<.Gr) ^  ß

(2.1) Sup II eV II
/ 6Sr V G>

>  e*

where Sr is the set of all real-valuedfunctions f e  A p (G) of norm not larger than r.

Proof Since the application B^(G) Ap(Gf) is norm -decreasing (see 
[S]y P- 59- R em ark 2) we have, by duality:

=  </'!* ’• > < 1 1 ^ 1 1
- i f  LJ r G

A*«V> 1 ,,Ĝ (Gr) <  !
-br

"BAG) • e

Hence || d*r ||B (G) 2> e r, and (2.1) follows.

LEMMA 2. Let G be a compact group and  [x a Radon measure on G of 
norm I . Then

(2-2) II llc^(G) — Il llvN(G)

where <7 =  2/p' i f  1 <  p  <  2, and a =  2\p i f  2 <  p  <  00.

Proof. The inequality  (2.2) is a straightforw ard consequence of the 
Riesz-Thorin theorem , by interpolating between L 1 (G) and L2(G) if i< p  <  2, 
and between L 2 (G) and L°°(G) if 2 <  p  <  00.

LEMMA 3. Let H be a finite abelian group of order q* and exponent 
where q is a prime number. I f  a >  ßN fo r  some integer N, then H contains at 
least N independent elements of order q.

Proof. On account of a well known theorem  (see, for instance, [14] 
1.13.12) there are n cyclic subgroups H, of order qy^ ( i =  1 , • ' •• ,#)  with 
1 <  Y* <  ß, such th a t H is isom orphic to the direct product of Hi , • • •, H „ . 
Since

M
2  Yi

=  q t=1 <  qn&

T — 1
it follows n >  N. If  h{ is a generator of H*, the elements iSi * are n inde­
pendent elements of order q.
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3. The compact case: the matn result

Theorem i . Let G be an infinite compact group and  F  a complex-valued 
function defined in a closed convex subset E  of C. Then F  operates in A^(G) 
i f  and only i f  F  is real-analytic in  E.

Proof. Since A^(G) is a regular sym m etric algebra, we have only to show, 
in order to apply the classical proof of Helson, Kahane, Katznelson and Ru- 
din ([9]; see also [17] ch. 6), th a t there is b >  o such th a t (2.1) holds when r  
is sufficiently large. W e divide the proof into several steps.

1) G has no bounded exponent. T hen either of two is true:

d) for every positive integer S there is a cyclic finite subgroup H of 
order larger th an  S and, consequently, there is a character on H of order larger 
than  S;

b) G contains a closed infinite m onothetic subgroup H and so the dual 
of H has not bounded exponent ([17], 2.33).

In  both cases there are closed abelian subgroups of G with continuous 
characters of arb itra rily  large order. This allows us to generalize an argum ent 
of D rury .

Let ]„(x) be the n-th Bessel function (n relative integer); there is a real 
num ber a such th a t

(3-1) 0 < t f < l / 2

and

(3-2) 2 l J „ ( « ) l < J o ( * ) <  I
»4=0

(see, for instance [18], p. 16).
Let us set j n =  J n(d); there exists n0 >  o such that

S  IÀI ^  C1 — io)/2 -
\n \> n 0

Let {X„} be a sequence of positive integers such tha t

(3-3) X„+1 =  2 nQ\  n =

for every r  >  1 Let N =  [r] +  1 and

N N
(3.4) s  =  2  no K  ■= 2 Xo n0 2  (2 noy .

n—0  n—0

By the foregoing rem ark, there exists an abelian closed subgroup Gr C G 
with a continuous character <pr of order larger than  S. Since 9r e A (G r) Ç  
CAp(Gr')) there exists hr e A (G ) such th a t <pr =  hr|Gr and ]|?rllA(Gp =  II^IIA(G)*
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Hence

(3-5)

Let

II ^  Ha.(G) — II Ihren II 9;A (G) Yr HA ( G J =  I.

r =  -A- S  ( ? /  — ?.. Xf) •J=1

Denote by  f r the real-valued function

Then f \ Gr =  gr and, by (3.1) and (3.5),

11- ^ r Ha . (G) —  r Ha(G) —  r  •

a . ks —a .
W e have e 2 ^r =  U S T V S, where

(3-6)

(3-7)

hk.
U s =  s  in  ?;

|«I <»0

v s =
|»|>«0

1; II
VN (G ) A I j g A

• n i i v .
VN (Gr) s g  A 'A (G J <

For every subset A  of { i , 2 , • • •, N }. le t  us consider the product J J U S; its
,   se A

Fourier coefficients are, by (3.3) and (3.4), products of the form JJ .À A  conse­

quently, if I A  I denotes the cardinality  of A, one gets

II n  u s il < y r
I L e  A | |V N (G p

Since eêr =  J I  (U/ +  V,), it follows 
1=1

i i ^ i i v „ ( <vs s i n u , . n v

Therefore, by lemma 2

i i f / ' k nw s ( - i 4 A r -

Thus lem m a 1 applies with b — a log j •

2) G has bounded exponent. As proved in [16], proposition 4, there 
exists a prim e num ber q such tha t the continuous hom om orphic images of G 
contain abelian subgroups of order q01, w ith a arb itrarily  large.
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Therefore by Lem m a 3, if r  >  1 and N =  \r] +  1, there exists an abe­
lian group H r , contained in some hom om orphic image of G, with N independent 
characters. W e denote by 9 i , • • •, 9N > these characters. T hey can be viewed 
as coordinate functions on the preim age Gr of H r in G (see [16]). Let hs(s — 
— I,* • - , N) be the extension preserving the A (G ;,)-norm (as in the foregoing 
case) of 9j to the whole of G. W e shall distinguish two subcases.

a) q >  3.

By (3.1), (3.2) and elem entary properties of Bessel functions one gets 
the following inequalities;

+ 0 0  + 0 0

(3-8) cg =  2  h t  <  S i  À i  =  Ik——oo k——oo

(3-9) c* > S n  •

N- N
Let gr — — ^  (9j ■— 9 J  and f r =  —  ^  (hs — hs); as before f r is real-valued

22 ^=1
and II/ ,  ||VGf)

One gets:

^=1 
<  r.

(3-10)
N /  +OO \ N ( q - 1 /  +OO \ \

* = n
s = i  \ « = _ o o  /  j = i \ / = o \  k = — 0 0  / /

and by (3.9)

(3- n )
+ OO 

Æ = —OO <  2  \Jk \ <kyo
(/== I — O-

Because of (3.10) and the independence of the cps , II egr llVN(G ) is the m axi­
m um  of the num bers

where l{ is any integer between o and q —  1 . By (3.11)

| | ^ | | VN(Gp< ( 0 N-

Therefore the theorem  follows, by (3.8), from Lem m as 1 and 2 with 
b =  —  a log Og.

b) q =  2.

In  this case the theorem  follows by a straightforw ard com putation. Let
N

gr =  — (9s +  9 s)- Since cps(x) =  db 1 for every x  e Gr ,gr m ay  be w ritten
2 j= 1
N

as a 2  9s > and it can be extended as before to a real-valued function f r on
j= i
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G with (G)-norm  not larger than  r. Therefore

N
e*r =  YL (cos (a 9s) +  i  sin (#<p,)) =

s—1 
N

— IT  (c°s a +  t <ps sin a) .
S=1

By independence:

II e'gr HvN (Gr) ^  m ax ((cos » (sin a)N) ■

Let c =  m ax (cos a , sin a); then, by  Lem m a 2

By applying again Lem m a 1, w ith b =  —  a log (c), the theorem  is completely 
proved.
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