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Analisi matematica. — Symébolic calculus in A,(G). Nota 1
di LEONEDE DE MICHELE e PaoLo SoaRrpI, presentata dal Corrisp.
L. AMERTIO.

RIASSUNTO. — Si dimostra che solo le funzioni reali analitiche operano nell’algebra
A(G) se G & un gruppo compatto.

1. INTRODUCTION

Let G be a locally compact group and L’ (G) the Lebesgue space corre-
sponding to the left-invariant Haar measure on G; we denote by || - |l , the
norm in L”(G) and by ' the conjugate exponent of p. It is well known [10]
that the set A,(G) (1 < p < 00) of all functions # on G of the form

(1.1) %=’§fn*.§n

(fn €L’(G), £, € L7(G), 4,(x) = £,z ; [ llp 180 1l < 00) is a Banach

algebra under pointwise multiplication with the norm:

2 a0 = inf 34 117,111 Il

where the infimum is taken over all possible representations (1.1) of #. When
p»=2,A,(G)=A(G), the Fourier algebra of G (see [4]). If L?RL" is
the Banach space tensor product of L? and L”, and if P is the application of
L*®L” into Co(G) defined by P(f®g) =fxg A,(G) may be identified
to the quotient space L’ ®L” /Ker P, and the norm | - lla, is the quotient
norm.

As first proved A. Figa-Talamanca ([6], [7]), A,(G) is related by duality
to the convolutors of L?(G); if G is amenable, the dual space of A (G) is iso-
metrically isomorphic to Cu,(G), the L~convolutors space, by the relation:

(. Ty = 3 (T, )

where T € Cv,(G) and # is as in (1.1) (see [4], [6], [7], [13]). If p = 2, accor-
ding to Eymard’s notations [4], Cz,(G) will be denoted by VN (G).

Let B,(G) denote the set of all bounded, continuous, complex-valued
functions on G which are multipliers of A, (G). B,(G) is a Banach algebra for
the pointwise multiplication wih the usual operator norm. If G is amenable

(*) Pervenuta all’Accademia il 19 luglio 1974.
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A,(G) has a bounded approximate unit (see [5], theorem 3), and the injec-
tion of A,(G) in B,(G) is actually an isometry; B,(G) may also be viewed
as the dual space of L'(G) with the L’-convolutors norm. The duality is
given (see Herz [12]) by :

(e, fy = ff(x)u(x) dx
G

for all € LY(G) and « € B,(G).
When G is amenable B2(G) = B(G), the Fourier-Stieltjes algebra of G;
moreover one gets the following continuous injections (see [13]):

M(G) C €2, (&) C Co(@) C VN (G)
AG) CA G CAG GG

fr<p<r<z2o0rz2<r<p.

In this paper we shall often use the following result due to C. Herz [11]:
if H is a closed subgroup of a locally compact group G, then the restriction
AI,(G)|H of A,(G) to H is exactly A,(H); moreover || fl|y ”A,,(H> < ||fHA15(G).
If p = 2, for all g € A(H) there is f € A(G) such that le =g and || f|lac) =
= & llag-

We say that a complex-valued function F, defined on a subset E of the
complex plane C, operates in A,(G) if the composition F(f) belongs to A,(G)
whenever f € A,(G) and the range of f is in E. If p =2, E is closed and
convex and G is an infinite nondiscrete abelian group it is well known [9]
that F operates in A (G) if and only if F is real analytic in E (and F(0) = o
if G is noncompact). If G is an infinite discrete abelian group and E is a neigh-
borhood of the origin, F operates in A (G) if and only if F is real analytic in
a neighborhood of zero and F(0) = o. These results have been extended to
a large class of noncommutative locally compact groups (see [1], [3], [16]).
If p == 2, the only results the authors know on this subject are due to Drury [2]
and Fisher [8]. Drury proved that only real-analytic functions operate in
A,(G) when G is the 1-dimensional torus T or the Cantor group; Fisher proved,
by different techniques, the same result for any compact abelian group. In this
paper we start from the works of Drury and Rider [16]; by sharpening their
techniques we are able to prove that only real-analytic functions operate in
AL(G) if:

1) G is an infinite abelian group,
2) G is an infinite compact group,

3) G is an infinite discrete amenable group containing arbitrarily
large abelian subgroups;

4) G is a nondiscrete Lie group (see also [15]).

Therefore the results obtained for p = 2 in [9] and [16] are extended
to the general case. The result 3) is new also for p = 2.
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2. THE COMPACT CASE: PRELIMINARY LEMMAS

Let p be a fixed number, 1 < p < co. Then

LEMMA 1. Let G be a locally compact amenable group with the following
property: there exists b >0 such that for some positive number r there is a
compact subgroup G, CG and a real-valued function f, € A,(G) such that:

”fr “AP(G) <7
—lf’! 7 —br
H e k ”Cvﬁ(G,,) <e
Then
if br
(2_[) %25 ” 4 “B?(G) 2 e

where S, is the set of all real-valued functions f € A,(G) of norm not larger than r.

Proof. Since the application B,(G) - A,(G,) is norm-decreasing (see
[5], p. 59. Remark 2) we have, by duality:

. if7|G _zfr[G z-'/rl‘G —’fr!cr zfr —br
I = <e 7,e r> < ” e r”Ap(Gr)” € ”Cvp(G,) < ” 4 ”Bﬁ(G) € .
Hence | ¢ ||y o =€”, and (2.1) follows.
?

LEMMA 2. Let G be a compact group and y a Radon measure on G of
norm 1. Then

(2.2) ” 1 ”c,,p((‘,) < “ W “VN(G)

where 6 = 2[p'if 1< p <2, and 6 =2[p if 2<p < oo.

Proof. The inequality (2.2) is a straightforward consequence of the
Riesz-Thorin theorem, by interpolating between L'(G) and L2(G) if 1< p < 2,
and between L?(G) and L¥(G) if 2 < p < oo.

LEMMA 3. Let H b¢ a fiﬁz’te abelian group of order ¢* and exponent gb
where q is a prime number. If o > BN for some integer N, then H contains at
least N independent elements of order gq.

Progf. On account of a well known theorem (see, for instance, [14]

[.13.12) there are 7 cyclic subgroups H; of order ¢"(s = 1, -, #) with
1 <v; <8, such that H is isomorphic to the direct product of Hy ,---, H,,.
Since

ZY

F=g= <qg*

Y1 ‘
it follows % > N. If %, is a generator of H;, the elements 4/ are 7 inde-
pendent elements of order g¢.
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3. THE COMPACT CASE: THE MAIN RESULT

THEOREM 1. Let G be an infinite compact group and F a complex-valued
Sfunction defined in a closed convex subset E of C. Then F operates in A,(G)
if and only if F is real-analytic in E.

Proof. Since A,(G) is a regular symmetric algebra, we have only to show,
in order to apply the classical proof of Helson, Kahane, Katznelson and Ru-
din ([9]; see also [17] ch. 6), that there is 4 > o such that (2.1) holds when »
is sufficiently large. We divide the proof into several steps.

1) G has no bounded exponent. Then either of two is true:

@) for every positive integer S there is a cyclic finite subgroup H of

order larger than S and, consequently, there is a character on H of order larger
than S;

b) G contains a closed infinite monothetic subgroup H and so the dual
of H has not bounded exponent ([17], 2.33).

In both cases there are closed abelian subgroups of G with continuous
characters of arbitrarily large order. This allows us to generalize an argument
of Drury.

Let J,(x) be the #-th Bessel function (# relative integer); there is a real
number @ such that

3.1 o< a<1/2

and

(32) 2 11.@ <T@ < 1
n=0

(see, for instance [18], p. 16).
Let us set 7, = J,(2); there exists 7y > 0 such that

2 1l = 0 —Jpl2.

|n]=70
Let {A,} be a sequence of positive integers such that
(3'3) ;\"+1=2n07\n 7=0,1,"-"

for every » >1 Let N = [] + 1 and

N, N
(3-4) S = 26”07\”= 27\0”020(2”0)"-

By the foregoing remark, there exists an abelian closed subgroup G, CG
with a continuous character ¢, of order larger than S. Since ¢, €A (G,) C
C A4(G,), there exists 4, € A(G) such that @, = 4,/ and || Cllac) =117l -
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Hence
(3-5) 1l = 1 gy = 1190 ) = 1

Let

fo= 3 G — ).

Then frlG,:gr and) by <3I> and (35)1
1 e < 1y < 7

A —A

We have e?(q)’:—q)’ I Ug + Vg, where
(3'6> US = | [g jn CP:’MJ
<3‘7) VS = [; ]n ,;;\

For every subset A of {1,2,---,N} let us consider the product J]Us; it

seA

Fourier coefficients are, by (3.3) and (3.4), products of the form H]n ; conse-
quently, if | A | denotes the cardinality of A, one gets

<.
VN(G,)

seA
Since ¢%r = ﬁ (U, 4 V), it follows
=1 :
18,
lle ”VN(G —24 QU b HU
N
Ny (1—]J + Jo \N
=2 () R a0 = ()

Therefore, by lemma 2

<2

VNG, &

TV 6, <

VN(@G,) s@A

T,

o

o 0y < (S22

. . 2
Thus lemma 1 applies with 4 = o log ( T, ) .
2) G has bounded exponent. As proved in [16], proposition 4, there
exists a prime number ¢ such that the continuous homomorphic images of G
contain abelian subgroups of order ¢* with « arbitrarily large.
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Therefore by Lemma 3, if » > 1 and N = [r] 4+ 1, there exists an abe-
lian group H,, contained in some homomorphic image of G, with N independent
characters. We denote by ¢;,- -+, ¢y, these characters. They can be viewed
as coordinate functions on the preimage G, of H, in G (see [16]). Let 4, (s =
=1, -+, N) be the extension preserving the A(G,)-norm (as in the foregoing
case) of ¢, to the whole of G. We shall distinguish two subcases.

a) ¢ =3.

By (3.1), (3.2) and elementary properties of Bessel functions one gets
the following inequalities;

+0o0 +00

(3.8) ¢, = 2 Jig < 2 Jag =1
k=—00 k=—00

(3.9) 6> 27
£+0

N N R

Let g, = 7‘2— E (p,— @,) and f, = zi Z, (h,— h,); as before f, is real-valued
s=1 s=1

and [1£, o) <7

One gets:
N +o00 N g—1 o
(3.10) ¢ = I_Il ( =2_°°]n %) = El (/20 (<P§ ;_‘oo””’))
and by (3.9)
(3.11) P <Z|/k|<c (=1,--,9g—1).

Because of (3.10) and the independence of the o, | ¢
mum of the numbers

“r HVN(G) is the maxi-

(50

k=—o00

where /; is any integer between o and ¢ — 1 . By (3.11)
|| &% ”VN(GV) < ().

Therefore the theorem follows, by (3.8), from Lemmas 1 and 2 with
b=-—oclog (c,).

b) ¢ = 2.

In this case the theorem follows by a straightforward computation. Let

g, = % Z (o, 4+ @,). Since @,(x) = 4+ 1 for every x € G, , g, may be written

Z

as a Z @,, and it can be extended as before to a real-valued function f, on
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G with A,(G)-norm not larger than ». Therefore

gl:""” = g (COS (‘ZCP:) + Z sin (‘Z(P.v)) =

N
=] (cos @+ 7 ¢, sin Q).
s=1
By independence:
i N . .
Il €% [lyxn (@, = max ((cos @) , (sina)").

Let ¢ = max (cos @, sin @); then, by Lemma 2
i, N
[ e"”cvﬁ(G) < (o).

By applying again Lemma 1, with 4 = — o log (¢), the theorem is completely
proved.
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