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SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. — On the ostensible steady state of a dynamical
system. Nota ® di RuTHERFORD AR1s, presentata dal Socio straniero
C. TRUESDELL.

R1ASSUNTO. — In questo scritto si distingue il concetto di stato stazionario ostensibile
di un sistema dinamico da quello del vero stato stazionario come condizione che prevale quando
inputs costanti producono owsputs costanti. Si danno esempi per dimostrare che i due stati
stazionari, sebbene spesso si raggiungano simultaneamente, sono distinti logicamente dacché
lo stato stazionario ostensibile si raggiunge in un tempo finito mentre il vero stato stazionario
puo essere approssimato asintoticamente.

INTRODUCTION

The classical definition of a dynamical system is that it is a triplet
(X, R, ®) whose members are a metric space X (the state space), the set of
real numbers R (the time axis) and a map & XXR — X :(x,?#) satisfying
the axioms:

1) @(x,0)==x, MxeX

2) @(@(x,4) , b)) =0, t+12), VreX,4,4,€R;

3) @ is continuous.
Such a definition leads to a full and satisfying mathematical theofy (see, for
example, Bhatia and Szego, 1970), but with an eye to its more banausic appli-
cations in control theory, this definition has been amplified to make explicit
the role played by the inputs to and outputs from the system (Kalman, Falb

and Arbib 1969). To the formalities of this extended definition we shall turn
in the next section, but for the moment let us continue in an informal vein.

(*) Pervenuta all’Accademia il 1° luglio 1974.

1. — RENDICONTTI 1974, Vol. LVII, fasc. 1-2.
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The invariant set of a dynamical system includes those states which are
independent of time and closed sets of states, such as limit cycles, in which
the system may remain indefinitely. More formally it is a subset S of X con-
sisting of all states x such that

o(x,t)eS, Mt,x€S
)

within this invariant set we distinguish isolated points known as critical points,
or, to speak more familiarly, steady states of the system. With the amplified
definition of a dynamical system we may discern the possibility of having an
ostensible steady state ia which, for constant inputs, the outputs of the system
remain constant. In the ostensible steady state the internal states need not
be constant since constancy is only claimed for that function of them which
appears as the output of the system. That this is a very practical view of the
system is evident from the fact that this ostensible steady state would be what
the operator of the system would regard as its steady state, since every obser-
vation he could make of it would be constant in time.

The distinction between the two steady states would be trivial (or, at
least, trite) if one were always to imply and be implied by the other. Clearly
the true steady state always implies that the outputs are constant and we shall
show that there are many circumstances in which the existence of the osten-
sible steady state does entail that of the true. But we shall also give an example
of a simple system in which the ostensible steady state is reached in a finite
time but the true steady state is not attained until much later.

DEFINITION

The extended definition of a dynamical system X makes it an septuplet
(T,X,Q,I',&,n) whose elements have the following meaning: the time
set T is an ordered subset of the reals (a generalization of the R of the classical
definition which allows for a system to be defined only on a discrete set of
times); X is the stafe set (in the classical definition this is a metric space); U
is a set of input values and Q a class of functions {® : T — U} which are the
inputs; Y is the set of outputs values and I' a class of outputs {y: T —+Y}; &
is the #ransition function which defines the state x(#), given that x (1) was its
state at an earlier time and the input during the interval (v, #) is ® (#)—thus

D:TXTXXXxQ —+X with () =a¢; 7,20, ©);

finally n: TXX =Y is a readout map defining the output y (&) = (¢, x(?))
in terms of the internal state. On the input space Q the following restrictions
are imposed: firstly, that it is not empty; secondly, that if @ and '€ Q and
5 <t2<t3, then o' = in (4, %] and @’ in (%, #3] is also a member of Q.
The direction of time is implied by the fact that & is defined for # > t but not
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necessarily for v > # The transition function satisfies the first two classical
axioms in the forms:

dE;t,x,0)=x MxeX, teT, wel.

Gz ;t1,x,0)=0(3;t,0(;h,r,0)0), MreX, h<t<tzeT.

The special status of the inputs is embodied in the requirement that
O¢;it,x,0)=d¢;7,x,0) if e« =« on (v,?]. The third classical
axiom, that of the continuity of @&, is used to define a smooth dynamical
system for which T = R, X and Q are topological spaces and (v,x, ®)—
—~>&(-;7,%,) is a continuous map TXX X Q—CHT - X).

A dynamical system is constant iff is an additive group under the usual
addition of reals, Q is closed under the shift operator (z: () — w (4 ),
GE;v,x,0) =0+ s;7+s,x,20) for all s€T and the readout map
7 is independent of time. We can now define the steady states of a constant
dynamical system with a constant input by saying that a true steady state
obtains if x(#) is constant and an ostensible steady state if y(#) is constant.

EXAMPLES

We shall confine attention to constant systems which can be represented
by differential equations. If X is a linear vector space of # dimensions, Q
one of 7 dimensions and I" of », then a smooth linear system can be represen-

ted by
(€] # = Fr = Go, .
(2) v = Hz,

when F is # X% matrix, G an zXm and H an »X#%. A constant state x must
satisfy

o0 = Fx 4+ Go,
i.e.
(3) x=—F'Go and y=—HF'Go.
Thus 2 = x — x satisfies

4) , 2 = Fz

and if the eigenvalues of F have negative real parts the steady state is stable.
With an initial state xy = x(0),

x(¥) = x + (exp Ft) (g — x)
() y(@ = ¥+ H (exp F?) (xo — ).

Then if the system is completely observable (or, as some have it, constructible)
both x(#) and y(#) only approach their steady state values asymptotically
as £ —o0. The approaches to the true steady state and to the ostensible one
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are entirely similar since, if — A is the greatest eigenvalue of F, each component
of x and y will ultimately differ from the corresponding component of x and y
by a quantity proportional to exp — Az

By way of contrast we may consider a system in which both steady states
are reached at the same time. Let X be the space of piecewise continuous
functions on 0 < z < Z whose values at any instant ¢ are x(z,#) and which
satisfy

© % -+ % +x=o0.
Then the boundary condition at 2 =10

¥ x(0,)=o
specifies the input, while the output is

® y@&) ==xZ,2.

The steady state is a function of z satisfying

dx
T T
giving
©) x(2) =we* and y = wel

If we confine attention to constant initial conditions with

(10) x(z,0) = x
then
we?, o<zt }
£ =
(10 2@, 9 xget, t<z<Z |’

(12) y (@) ={

xge, t<Z
we?, 1<t '
Thus at the instant # = Z, both the true steady state x(2) and the ostensible
steady state y are achieved simultaneously.

However if we consider the system governed by

2 2
(13) a—f—l—(x—l)a—j—kx:o
with input
(14) x(0,%) = o,

initial state

(15) x(z,0) = %,
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and output
(16) y@O==xZ,9,

we have an example which shows the distinction between the true and osten-
sible steady states. First let us observe that if

«©

(17) co>I,Z>Ju——I du = & —1—In o,
i

u©

then there is no continuous solution to the steady state equation
dx
(IS) (x——I)E—Fx—O.

In fact the steady state solution consists of a continuous segment in 0 < x < {
wherein x(z) drops from o to x;, according to the equations

(19) s =0 —x(z)—In[o/x(@)]

(20) = o—x —In (o).

At z=7{ there is a discontinuity from a; = x({ — 0) to x5 =x({ + 0) where
(21) L) =1

and the solution then rises continuously in { < 2 < Z according to the equa-
tions

(22) 2 = {+ x,—x(2) + In [x(2)/x5]
(23 Z="C4+x,— 1 + In (1/xy).

It may be shown that for any @ and Z equations (20), (21) and (23) suffice
to determine {, x; and x,. Under the assumptions of equation (17) the output
is independent of ® and Z being

(24) y=r

We shall now show that the ostensible steady state is established in a
finite time

(25) To = {

Inxg, xp>1,

o , X < I.

This depends only on the initial state which we take to be a constant. (Similar
results can be obtained for arbitrary initial conditions, but we are concerned
to give the simplest example rather than the most general result). By contrast
we shall see that the true steady state is only approached asymptotically
as ¢ — oo though there is a particular combination ® ,Z and x,, that allows
it to be reached in a finite time

In <x0/x2) y Xp > 1,
In (1/xy) or co, xy < I.

(26) T = {
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The solution can be constructed from characteristic curves which satisfy
the characteristic equations

dz dz
(27) T =1, g =x—1

—_—— == — X

*ods
Hence a characteristic through #,2', x' is given parametrically by
(28) t=¢+s , =2 4+2(1—e)—s |, x=2x e

A family of characteristics for # = 2’ = 0 and various #’ is shown in fig. 1;
the value of x decreases monotonically along a characteristic and its slope
becomes negative when x drops below 1.

Fig. 1.

Consider first ® > %9 > 1 with Z satisfying the inequality (17). Then
the characteristics emanating from the #-axis are all parallel and have a smaller
slope from the characteristics emanating from the z-axis. In the neighbour-
hood of the origin two sets of characteristics would overlap did a discon-
tinuity not intervene. At such a point as P in fig. 2. There is a discontinuity
from x;, on the left, to x5, on the right, where x, is determined by following the
variation of x along the characteristic AP and x, by following BP. Thus if

sp and s, are the parameters at P along AP and BP respectively and Pisz = &,
= 7 we have

(29) =0, E=0(—e)—s =o0—x —In(fr,)
and

(30) Xy = Xge~ , T =55 =In(x/xp).
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Moreover the speed of the discontinuity is
dg
(31) §=%<x1+x2)_1~

The path of the discontinuity can be found by combining equations (29)—(31)
to give a differential equation for x; in terms of x,, namely

dx1 . xl(f—l)

— I
(32) T m(m—1) x=—2—(x1+x2).

This equation is integrated until
(33) (s —Inx) — (1, —Inx) = Z— (0 — In &) + 1

when a point (R, in fig. 2) is reached on a characteristic (CQR) which just
touches 2z =Z (at Q). Thereafter x; and x, must satisfy equation (33) since
at a point s on the discontinuity x; is given by the characteristic US and x,
by a characteristic SV which is just tangent to z=Z at V. It requires a
special relation between Z, @ and xg for (#;,,) to be equal to (x;, x,) at R.

t S
U |
R
|
|
P/ |
| \Y}
|
A |
|
| Q
|
|
|
0 B c
4
Fig. 2.

If this relation happens to be satisfied then the discontinuity has arrived at
z={ at time #= T = In (xg/x;). In all other cases the value of £ — ¢ as
T — oo and (x, xp) — (x;, %,) on the curve given by equation (33). However
- y(@)==x(Z,t) is constant and equal to 1 at all points above Q. Thus the
ostensible steady state is-achieved in time Ty = In xy even though apart from
exceptional cﬁrcumstances, the true steady state is only approached asymp-
totically.

If @ > 1> x9 >0 we again require a discontinuity to avoid the over-
lapping of characteristics for the characteristics emanating from the z-axis
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have negative slope (cfr. fig. 3). The shock path may be traced using the same
equations as before up to the point L on the characteristic DL through z=7Z
with x =xp < 1 at D. Between DL and DM there is a centered simple wave
region covered by characteristics emanating from D with values of ¥ at D ran-

I
Kl
{

0 Z D
Fig. 3.

ging from xo to 1. Thus a point N on the shock path IM would have to satisfy
7 =owe" , E=o0—z —In(o/x)
G4

xp=2x'e |, Z=E+x—x +In(x|xy) , 7v=In(x'[xy).

These equations can be combined to give an equation for x’ as a function of
x; and x, namely

(35) Z=w—x;+ 25— 2" + In (x' 11 /0x,).

With x' so determined the relation between x; and x, on the shock path is
given by

(36) drn _ m(pe—a)(x—r1 .

d}; - Xa (x—-x’) (xl——— I)

It is in fact convenient to regard x' as the parameter along this part of
the shock path and integrate the equations

(37) dri  m(re—2)(x—1) dres _ xe(x—2x')
37 dr T A (x—a) (1—1) & (x—x)

dg (Z2—2") (¢—1) o dr  me—x
(38) & T T T Ae—m | A A e—my

The first pair of equations must be integrated simultaneously but the second
pair can then be integrated by quadratures. This integration continues until
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!

x'=1 when the point M is reached. Beyond this point (on MK) the path
of the discontinuity approaches its steady state value asymptotically in just
the same fashion as before. There will again be a particular condition on
©,Z and xo that makes x; -+ x; =2 at M; in this case x; = x; , ¥, = x, at
M and the true steady state is achieved in finity time T = In (1/x,). However
we note that y(£) = x(Z,#) = 1 for all #>> 0. Thus the ostensible steady
state is attained instantaneously even though the true steady state is (excep-
tional circumstances apart) only approached asymptotically.

CONCLUSION

The examples given show that the ostensible steady state of a dynamic
system is clearly distinguishable from the true steady state and, being an em-
minently practical concept, is worthy of being so distinguished. It has been
shown that in many cases both are achieved simultaneously or approached
asymptotically in the same manner, but that there are cases in which the osten-
sible steady state is attained in a finite time (or even instantaneously) where
the true steady state is achieved at a later time or approached asymptotically.

Control theory envisiges the dynamical systems of an ‘ input-output ”
character (see e.g. Kalman, Falb and Arbib 1969, p. 10) in which no attention
is paid to the internal state space X. (Such are the popular boxes, of which
Norbert Wiener remarked that he supposed they were black, ex officio).
The ostensible steady state is thus the steady state of an input-output system.
But a warning note should be added when the control of a system is studied
merely in an input-output sense. Namely that there are often constraints on
a real system that are as important to the internal variables as to the output
and a mode of control which observes these constraints on the output but
allows then to be violated within may be as fatal to the system itself as a control
which disregards the constraint altogether.
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