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SEZIONE 11

(Fisica, chimica, geologia, paleontologia e mineralogia)

Termodinamica. — 7%e entropy rate admissibility criterion in ther-
moelasticity ©. Nota  di CoNsTANTINE M. DAFERMOS, presentata,
dal Socio Straniero C. TRUESDELL.

RIASSUNTO. — Si caratterizza ’ammissibilita di processi termodinamici con onde d’urto
per corpi termoelastici mediante due criteri, uno dipendente dalla viscosita, I’altro sull’entropia,
e si dimostra I’equivalenza di questi due criteri.

1. INTRODUCTION

The initial value problem for the dynamical equations of elasticity and
thermoelasticity is not well posed in the class of smooth motions [1] so that
an existence theory in the large can be established only for thermodynamic
processes with shock waves. On the other hand, in this class of processes there
is no uniqueness of solutions. This observation was made long ago for the
equations of gas dynamics but in this case the entropy inequality rules out
all but one solution and thus resolves the difficulty. Unfortunately, as we shall
see below, the entropy inequality is not sufficiently powerful to single out a
unique solution for general thermoelasticity. In consequence the theory must
be supplemented with additional constitutive assumptions in the form of shock
admissibility criteria. One method for motivating reasonable admissibility
criteria is to visualize thermoelasticity as an approximation of a more elabo-
rate theory for which uniqueness of solutions holds. In this spirit, we demon-
strate in Section 3 that by visualizing a thermoelastic material as the limit of
a family of thermoviscoelastic materials of the Voigt type one obtains a
shock admissibility criterion, the viscosity criterion. An analogous idea has
already been tested in the study of quasilinear hyperbolic systems and the
experience accumulated so far seems to justify the approach @,

Successful as the result may be, the approach is not entirely satisfactory.
Indeed, conceptually it would be preferable to characterize admissibility of
solutions by the internal structure of thermoelasticity theory itself rather than
through an artificial extension. Somewhat surprisingly it turns out that the

(*) This research was supported in part by U.S. Naval Research Office under contract
NONR Nooo-14-67-A-0191-0009, in part by the U.S. Army Research Office under contract
DA-ARO-D-31-124-73-G~130 and in part by the National Science Foundation under grant
GP 28931X2.

(**) Pervenuta all’Accademia il 1° luglio 1974.

(1) For an elementary survey and a list of references see [2]. Although no general
definitive results are yet available, it is known, for example, that the viscosity criterion gua-
rantees existence, uniqueness and stability of solutions for the model equation #: + f (#)y = o.

8. — RENDICONTI 1974, Vol. LVII, fasc. 1-2.
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viscosity criterion is equivalent to a strengthened version of the second law
of thermodynamics. Specifically we show that the solution which satisfies
the viscosity criterion maximizes at each instant the rate of increase of the
entropy of the body. Unfortunately the proof is computational and does not
provide any clues on whether maximization of the entropy rate is a particular
property of thermoelasticity or a general thermodynamic principle applicable
to a broader class of materials.

In order to avoid cumbersome computations we discuss here admissibility
of solutions for one-dimensional bodies only. The existence theory for quasi-
linear hyperbolic systems suggests that the admissibility criteria should be
developed in the class of functions of bounded variation. However, in order
to avoid technical measure-theoretic arguments and without altering the
spirit of the computations we will work here in the class of continuous and
piecewise smooth thermodynamic processes with a finite number of shock
waves. The proofs can be easily extended to the class of functions of bounded
variation by using the apparatus developed by Volpert [3].

2. THERMOELASTICITY AND THERMOVISCOELASTICITY

We collect below the balance laws of continuum thermodynamics for
one-dimensional bodies and the constitutive equations of thermoelastic and
thermoviscoelastic materials. For a detailed systematic treatment the reader
is referred to the articles of the Encyclopedia of Physics on Classical and Non-
linear Field Theories [4, 5].

A thermodynamic process is the pair (x (X ,%),0(X,?), namely a
motion and a temperature field. We shall use the notation v = %, , # = xy,
d=xyx;, g = 0. In the class of continuous and piecewise smooth processes
with shock waves, the balance laws and the principle of irreversibility, which
are postulated in integral form, reduce to the field equations

pu, = ox -+ pb
(2.1) u,=vgx=d
pe, = od + hx + o7

(2-2) oM = (%)X + e ‘g‘

at points of smoothness, and the jump conditions
, pU [v] +[c]l =0
(2.3) Ulu] +[o] =0
U [e +%7)2] +[ov+ 4 =o0

(2.4) oU [n] + [¢] <o

across singular surfaces.
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The set of balance laws is supplemented by constitutive equations for
6,7M,% and the Helmholtz free energy ¢ = ¢ — 0% which are required to
satisfy the Clausius-Duhem-Truesdell and Toupin inequality (2.2) for all
smooth thermodynamic processes which satisfy the balance laws (2.1). For
thermoelasticity (where the independent variables are =, 6,¢) this require-
ment yields constitutive equations of the form

235  ¢=0@,0 , o=6(,0) , n=4%@,0 , h=h(x,0,¢

R ad . 30
TP o T T

iz(u,ﬁ,g)gzo.

For thermoviscoelasticity (where the independent variables are = ,d, 0, £2)
the constitutive equations are of the form

(2'6) QJ:(TJ(%,Q) ’ G=8‘(%,d,e,g) ’ le:;l(u’(D ’ ;‘=Z<u:d:6:g)

o . o 3)
G—‘P"é;"}"'r(usd)e)g) ) —_ _ée“

F,d,0,0d+ 20000 o5

3. THE ViscosiTy CRITERION

Consider a thermoelastic body .# characterized by its constitutive
equations LT) , 6,7, % of the form (2.5). We visualize . as a limiting member
of a family of thermoviscoelastic bodies which is constructed by the following
procedure: We begin with functions * (#,d,0,g) and % (u,d,0,g) which
satisfy (2.6)3 and for each u > o we consider the body .#, with constitutive
equations

(3-I> LTJU'(%,O)=!IJ<%,9) ’ 8u<”:d)e:g)=&<u:6)'{_%(”’5"‘{’6»5%’)
“7]“(%,6)—:;)(%,9) ’ /;u.<u’d’eyg)=/;(”’0’g>+£<usy*d’e’ug>-

Observing that (2.6)3 implies, in particular, (%,0,0,0) =o, ﬁa(u, 0,0,0)=o0,
we conclude that the constitutive equations of .#, reduce as @ —0* to the consti-
tutive equations of .#. This observation motivates the following admissibility
criterion for solutions: We shall say that a continuous and piecewise smooth
thermodynamic process (x (X ,#), 0 (X, £), satisfying the balance laws, is
admissible if for each p > o there is a smooth process (x, (X, %), 6, (X, %)) of
M, which satisfies the balance laws and tends to (¢ (X,#), 6(X, %) as u — o*.
Since the viscosity criterion is not the main object of this note we shall not
make the sense of convergence precise but, roughly speaking, we require
that for small u (2, (X, %), 0, (X, #) approximates the profiles of the shock
waves of (x (X ,#),0(X,?).
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An 1mportant feature of the above criterion is that it is independent of
the choice of %,% and can be expressed as an admissibility condition on the
shock waves of (x (X,#), 0(X,#) in terms of the constitutive equations of
A itself. This fact is familiar from the theory of hyperbolic systems (see, e.g., [6]
for a general description of the idea and [7] for a systematic discuésion) so
that we shall only present here a brief sketch of the derivation of the shock
admissibility condition.

Let (X,1) be a fixed point on a shock wave of (x(X,8,0(X,?) and
let U be the speed of propagation and (#_,v_,0,£), (%, ,v,,0,g,) be
the limits from the left and right. For p > o we introduce new coordinates

= —;—{U (X —X,) +2—1,},E= %{X—X‘L—U (t—1,)}, tangential
and normal to the shock wave, where (X, ,7,) tends to (X,1) as p— o*.
We write (x, (X, ), 0, (X, %) and (2.1) in terms of {, £ and we let u— o*.
Since (x, (X ,?),0, (X, ) approximates the profiles of the shock waves of
(x(X,8,6(X,9), (u,,v,, &,) must tend, as p. — o*, to functions (2,7, , &)
of £ alone which satisfy the system of ordinary differential equations

(3:2)  eUZy () 4 6 (5 (8) , 0) + % (9 () , 59 (£) , 0, 0) = o
Uiy () + 9 (§) = 0
oUe (25 (), 0) 4 (8 (9 (8) , 8) + % (wy(8) , 55 (%) , 0, 0)) 5y (B)
(g (8), 0, 80 (B)) + 4 (2 (B) , 75 (5) ,B,0) = 0.

Eliminating 7, (§) between (3.2); and (3.2); and integrating the resulting
equation once we conclude that for every point # between #_ and #, the
interval defined by # and #, is positive invariant under the dynamical
system generated by the equation

(3-3) % (g (8) , — Uty ) , 8, 0) = pU? (2 (§) — )
— (5 (5 (8) ,0) — 6 (_, 0))

Observing that (2.6)3 implies, in particular, T (x,d, 0, o)zzz o, we deduce
that the above condition is equivalent to

o 5 >o0 if U>o
6 (#,0)—o (u_,0) __PUZ{

(3-4) <o if U<o

U— U

‘for every # between #_ and #,. Noting that on account of (2.3)
eU% = [6] [#]™}, we conclude that (3.4) is equivalent to the following
statement: if (0, —u)U>o0 (or (#, —u_)U < o) the chord which joins
(u_, 6 (u_, 8)) with (%, , & (u, ,0)) lies below (or above) the graph of 6 (-, 6)
between #z_ and #, (compare with Wendroff [8]). This condition will be
called the viscosity admissibility criterion.
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We now study the relationship between the viscosity criterion and the
entropy inequality (2.4). Eliminating [4] between (2.3)s and (2.4) and using
(2.3); and (2.3)y we arrive at

(35 PUB[n] + [ = — U [¢ + -0*] — [o7]

= U {5 (o, + o) [ — o [41)
=U§%(a(u+,6) +&(u_,é))(u+——u_)-f;(u,6)du§.

We observe that the right-hand side of (3.5) is U times the (signed) area bet-
ween the chord which joins (#_, & (#_,0)) with (., & («, ,0)) and the graph
of 5(-,0) between #_ and u,. Therefore, every solution which satisfies the
viscosity criterion satisfies automatically the entropy inequality (2.4). The
converse, however, is not generally true. Indeed, (2.4) and the viscosity
criterion are equivalent only when for each fixed 6 & (-,0) is convex or
concave. This explains why for polytropic gases the entropy inequality is
sufficient to single out the admissible solution.

4. THE ENTROPY RATE ADMISSIBILITY CRITERION

In the previous section we have seen that the entropy inequality is in
general weaker than the viscosity criterion. Here we show that the viscosity
criterion follows from a strengthened version of the second law af thermody-
namics.

DEFINITION. A continuous and piecewise smooth thermodynamic process
(x(X,9),0(X,2), satisfying the balance laws, is admissible according to
the entropy rate criterion if for eack T > 0 it maximizes the rate of increase
of the entropy of the body over the set of processes which satisfy the balance laws
and coincide with (x (X ,t), 0 (X, 8)) fort < .

The following proposition establishes the equivalence of the viscosity
and the entropy rate criterion.

THEOREM. ZKEuvery continuous and piecewise smooth thermodynamic process
which satisfies the viscosity criterion satisfies also the entropy rate admissibility
criterion. ,

The proof proceeds as follows: We consider a thermoelastic body with
reference configuration the interval [@, ] and constitutive equations (2.5).
For any continuous and piecewise smooth process (x(X,?#), 0(X,?) with
a finite number of shock waves @ which satisfies the balance laws, the rate

(2) For normalization we assume that each shock wave is defined on a time interval
which is closed from below and open from above.
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of entropy increase.at t > o is given by
5

(4.1) —%;fpﬂ de=— 3 oU [1] +prmdx

a

where the first summation runs over all shock waves which intersect [a, 8]
at time 7 and the second summation runs over all intervals into which [a,d]
is partitioned by the above shock waves. At points of smoothness one deduces
with the help of (2.1) and (2.5)

A

= ('()‘)X‘F o

62

7

—I-PF

so that (4.1) gives
5

D* Y
(42) o7 |endr=— 3

shocks

(U [ +[§])+f(’?;‘ +p%)dx+§:

a

Using (3.5) we rewrite (4.2) in the form

b
Dt [ U
(4-3) thpndx=-27

shocks

§%<& (e, 0) + 6 (1, O)) (o, — 1) —

a

uy 14
— [ ]+ [ (o) ar it

a

I3

a

Thus, if two processes coincide for #< r, their rates of entropy increase at
= may differ at most in the summation term on the right hand side of (4-3)
and this only at points where new shock waves are branching out. The compa-
rison of such terms is quite tedious and is contained in the proof of Theorem
2 of [9] so that it will not be repeated here. The comparison verifies that the
rate of entropy increase is maximized by the process which satisfies the visco-
sity criterion.

The theorem justifies the entropy rate criterion but the proof leaves some-
thing to be desired since it does not reveal any intrinsic reason why the propo-
sition is true and thus does not provide any clues on whether maximization
of the entropy rate is a particular property of thermoelasticity or a general
thermodynamic principle. ‘

It is conceivable that the solution which maximizes the rate of entropy
increase will also maximize at each instant the entropy of the body over the
class of processes which satisfy the balance laws and assigned initial and boun-
dary conditions. However, I have been unable to verify this conjecture.

There are strong indications that the viscosity (and hence the entropy
rate) criterion guarantees existence, uniqueness and stability of solutions
but so far this has been established rigorously only for the model equation

u; + f (w)x = o.
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It is possible to characterize admissible solutions of the equations of non-
linear hyperelasticity by an analogous criterion. The appropriate requirement
is that admissible solutions minimize the rate of decrease cf the mechanical
energy of the body. The equivalence of this and the viscosity criterion has
been established in [9].
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