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JOHAN SWART, An axiomatic topological characterization, ecc. 897

Topologia. — An axiomatic topological characterization of an
uncountable product of real lines. Nota di JoHAN Swart ), presen-
tata ®? dal Socio G. SANSONE.

R14SSUNTO. — L’Autore da condizioni necessarie e sufficienti affinché uno spazio topo-
logico sia omeomorfo al prodotto di un’infinito non—numerabile di rette.

In [5] the Author gave an axiomatic topological characterization of R”
(n-dimensional Euclidean space) and of R® (countable infinite product of
real lines) based on ideas and methods used by J. de Groot in his characte-
rization of the z-cell, I”, and the Hilbert cube, I* (see [3]). In view of Ander-
son’s well known result, namely that Hilbert space, /4, is homeomorphic to
the countable infinite product of lines (see [1] and [2]) a topological charac-
terization of /, was obtained. The purpose of this paper is to complete the
topological characterization of arbitrary products of lines by giving a topolo-
gical characterization of an uncountable product of lines.

A topological space X is said to be 2-compact if there exists an open sub-
base for X such that every open cover of X by subbase elements has a sub-
cover by two elements. A family & of subsets of X is called comparable if for
all So,S1,S: €%, whenever SoUS; = X and SgUS, =X, then $;5S,
(i.e. S1C Sz or S2CSy). If X has a comparable open subbase Frelative to which
X is 2-compact then X is said to be 2-ccompact. The above concepts are all
due to J. de Groot (see [3] and [4]).

Constder now an arbitary product of lines ®R,. The open subbase ¥ of
nR, consisting of all sets of the form p-1(— oo, @) and p7! (a,00),2 €R and
all «, is comparable and furthermore has the property that every open cover
of the space which contains at least one member of the form p-1(— oo, a)
and one of the form p ! (a, co) for each a has a subcover consisting of two
of these sets. It is therefore possible to formulate a ‘ multi-2-compactness "’
condition in terms of open covers containing non-empty members of each of
the linearly ordered (by inclusion) subfamilies of . This observation is basic
to the topological characterization of products of lines.

The theorem below is stated in terms of closed subbases. By a Zimked
family of subsets of X we shall mean a family with the property that every
pair of members has non-empty intersection. & will denote the class of all
linearly ordered (by inclusion) subfamilies E of the subbasis &.
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THEOREM. A topological space (X , <) is homeomorphic to m{R,| a € A,
card A > Ro} if and only if

(1) X s Ty
(2) X is conmected,
(3) There exists a closed subbasis & for X which does not contain X nor ¢
and which satisfies (4), (5), (6) and (7);

(4) & is comparable, i.e. ¥YSy , S1, Sz € &,

SoNS; = o} ( —

=25158S:;

SoMSy = o

(s) Each E € & is countable and satisfies

NE=¢ and UE=X;
6) Every linked F C F which satisfies
EnF =9 and E+F VEEeE
has the property that NF == ¢ ;

) card & = card A.

The proof is similar to that in [5] and, in brief outline, consists of showing
that the linearly ordered subfamilies of X are equivalence classes induced by
the comparability relation « S », that these occur in conjugate pairs (E, , Eq),
« € A and then constructing for each « € A a continuous surjection f, : X— R,
such that E, = {fs ' (—oo,#]|7 is a rational number}. X may then be
homeomorphically embedded in ©w{R,|a €A} by means of the diagonal
map A: X - wR,

2+ (fo (%))oea
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