ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

JOHAN SWART

An axiomatic topological characterization of an uncountable product of real lines

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **56** (1974), n.6, p. 897–898. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1974_8_56_6_897_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Topologia. — An axiomatic topological characterization of an uncountable product of real lines. Nota di Johan Swart (*), presentata (**) dal Socio G. Sansone.

RIASSUNTO. — L'Autore dà condizioni necessarie e sufficienti affinché uno spazio topologico sia omeomorfo al prodotto di un'infinito non-numerabile di rette.

In [5] the Author gave an axiomatic topological characterization of \mathbb{R}^n (*n*-dimensional Euclidean space) and of \mathbb{R}^∞ (countable infinite product of real lines) based on ideas and methods used by J. de Groot in his characterization of the *n*-cell, \mathbb{I}^n , and the Hilbert cube, \mathbb{I}^∞ (see [3]). In view of Anderson's well known result, namely that Hilbert space, l_2 , is homeomorphic to the countable infinite product of lines (see [1] and [2]) a topological characterization of l_2 was obtained. The purpose of this paper is to complete the topological characterization of arbitrary products of lines by giving a topological characterization of an uncountable product of lines.

A topological space X is said to be 2-compact if there exists an open subbase for X such that every open cover of X by subbase elements has a subcover by two elements. A family \mathscr{S} of subsets of X is called *comparable* if for all S_0 , S_1 , $S_2 \in \mathscr{S}$, whenever $S_0 \cup S_1 = X$ and $S_0 \cup S_2 = X$, then $S_1 \subseteq S_2$ (i.e. $S_1 \subset S_2$ or $S_2 \subset S_1$). If X has a comparable open subbase \mathscr{S} relative to which X is 2-compact then X is said to be 2-ccompact. The above concepts are all due to J. de Groot (see [3] and [4]).

Consider now an arbitary product of lines πR_{α} . The open subbase \mathscr{G} of πR_{α} consisting of all sets of the form $p_{\alpha}^{-1}(-\infty,a)$ and $p_{\alpha}^{-1}(a,\infty)$, $a \in R$ and all α , is comparable and furthermore has the property that every open cover of the space which contains at least one member of the form $p_{\alpha}^{-1}(-\infty,a)$ and one of the form $p_{\alpha}^{-1}(a,\infty)$ for each α has a subcover consisting of two of these sets. It is therefore possible to formulate a "multi-2-compactness" condition in terms of open covers containing non-empty members of each of the linearly ordered (by inclusion) subfamilies of \mathscr{G} . This observation is basic to the topological characterization of products of lines.

The theorem below is stated in terms of closed subbases. By a *linked* family of subsets of X we shall mean a family with the property that every pair of members has non-empty intersection. & will denote the class of all linearly ordered (by inclusion) subfamilies E of the subbasis &.

^(*) University of the Witwatersrand, Johannesburg.

^(**) Nella seduta del 29 giugno 1974.

Theorem. A topological space $(X\ , \tau)$ is homeomorphic to $\pi \ \{R_\alpha \ | \ \alpha \in A,$ card $A>\aleph_0\}$ if and only if

- (I) X is T_1 ;
- (2) X is connected;
- (3) There exists a closed subbasis S for X which does not contain X nor φ and which satisfies (4), (5), (6) and (7);
- (4) \mathscr{S} is comparable, i.e. $\forall S_0$, S_1 , $S_2 \in \mathscr{S}$,

$$\left. \begin{array}{l} S_0 \cap S_1 = \phi \\ \\ S_0 \cap S_2 = \phi \end{array} \right\} \Rightarrow S_1 \subseteq S_2 \ ;$$

(5) Each $E \in \mathcal{E}$ is countable and satisfies

$$\cap E = \varphi$$
 and $\cup E = X$;

(6) Every linked $\mathcal{F} \subset \mathcal{S}$ which satisfies

$$E \cap \mathscr{F} = \varphi$$
 and $E \notin \mathscr{F}$ $\forall E \in \mathscr{E}$

has the property that $\cap \mathscr{F} = \varphi$;

(7) $\operatorname{card} \mathscr{E} = \operatorname{card} A$.

The proof is similar to that in [5] and, in brief outline, consists of showing that the linearly ordered subfamilies of X are equivalence classes induced by the comparability relation (\subseteq) , that these occur in conjugate pairs (E_α , E'_α) , $\alpha \in A$ and then constructing for each $\alpha \in A$ a continuous surjection $f_\alpha : X \to R_\alpha$ such that $E_\alpha = \{f_\alpha^{-1}(-\infty, r] \mid r \text{ is a rational number}\}$. X may then be homeomorphically embedded in $\pi \{R_\alpha \mid \alpha \in A\}$ by means of the diagonal map $A : X \to \pi R_\alpha$

$$x \mapsto (f_{\alpha}(x))_{\alpha \in A}$$

REFERENCES

- [1] R.D. Anderson (1966) Hilbert space is homeomorphic to the countable infinite product of lines, «Bull. Amer. Math. Soc.», 72, 515-519.
- [2] R. D. Anderson and R. H. Bing (1968) A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, «Bull. Amer. Math. Soc. », 74, 771–729.
- [3] J. DE GROOT (1972) Topological characterization of metrizable cubes, in: Felix Hausdorff Gedenkband (VEB Deutscher Verlag der Wissenschaften).
- [4] J. DE GROOT and P. S. SCHNARE (1972) A topological characterization of products of compact totally ordered spaces, «Gen. Topology Appl. », 2, 67–73.
- [5] J. SWART (1972) An axiomatic topological characterization of Hilbert space, «Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. », 52, 166-174.