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Geometria. —  Morphisms o f affine Hjelmslev planes. Nota di 
Joseph W. L o r im er  e Norm an D. L an e, presentata (,) dal Socio 
B. S e g r e .

RIASSUNTO. — Si stabiliscono varie proprietà dei morfìsmi fra piani affini di Hjelmslev 
e caratterizzazioni degli isomorfismi fra quelli.

i. Introduction

If P  and L are sets and I C P x L ( | |  C L X L  is an equivalence relation), 
then I f — (P, L , I) ((P, L , I , ||)) is an incidence structure (with paralle­
lism). If and ^  are two incidence structures (with parallelism), then 
a morphism from ^  to is a pair (® , Y), where <D maps Pi to P2, T  maps 
Li to L2, and incidence (and parallelism) is preserved.

Various authors have considered the conditions under which these mor­
phisms are isomorphisms in special classes of incidence structures; cfr. A n­
dré [1], Satz 3.1; Artm ann [2], 1.1; Cronheim [5], p. 2; Dembowski [6]; and 
Corbas [4].

In this paper, we examine the above problem for affine Hjelmslev planes.

1.1. N o ta tio n . Let (P, L , I , ||) be an incidence structure with paral­
lelism. The elements of P  [L] are points [lines] and are denoted by 
P , Q , • • • [ /, m , • • • ]. We write I \\m  for (/ , m) e || and P I / for ( P , /) e I. 
P ,Q I /  shall mean P I/ and QI /. We put g  A h — { P e P  | F i g , k}. If 
A C P, I A I is the cardinality of the set A. Define (P, Q) e ^ P if there exist 
I , m e L  ,l=\p=m, such that P ,Q I l t m. We usually write P ^ Q  for (P, Q ) e ^ P . 
Define, ( / , m ) c ^ L (or l ~ m )  if for every P I/ there exists Q Im  such 
that PrsjQ  and for every Q Im  there exists P I/ such that Q ^  P. If P ^ Q  
[ l ~ m ]  we call P and Q [/ and m] neighbours. If P and Q [/ and m] are 
not neighbours, we write P ^  Q [I * m].

An affine Hjelmslev pla?ie =  (P, L , I , ||), is an incidence structure 
with parallelism, which satisfies the following system of axioms.

(A 1) For any two points P and Q there exists /  e L such that P, QI/.
We write / = P Q  if P * Q;

(A 2) There exist Pi , P2 , P3 € P  such that P,- P) + P,- Fk ; / =j= j  =|= 
k  =f= / ; /  , j , k =  1 , 2 , 3;

(A 3) ^ P is transitive on P;
(A 4) If  PIg , h ,  then g  + h iff \ g / \ h  | =  1;
(A 5) If g  * h ; P, R I^ ; Q , R Ih ; and P ~  Q, then R ~  P, Q;

(*) Nella seduta del 29 giugno 1974*
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(A 6) If g  ~  h ; j  * g  ; ? l g , j ;  and Q Ih , j  ; then P ~ Q ;
(A 7) If g  II h ; P ly , £■; and g  * j \  then j  * h and there exists Q such

that Q lh , j ;
(A 8) For every P e P and every /  e L, there exists a unique line L (P, /) 

such that PIL  (P, /) and / 1| L (P, /).

Let {P, L , I , II) be an affine Hjelmslev plane, henceforth called
an A. H. plane. If II and II' are pencils of parallel lines, we define II ~  IT 
if each line of n  is a neighbour of some line of TP. This is an equivalence rela­
tion. Let II, be the pencil of lines parallel to /. Then 11̂  °° Hm if and only 
if 11[\m  I =  1; cfr. [9], Satz 2.9.
_ W ith^each A. H. plane fffi there is associated an ordinary affine plane

(P, L , I ) .  Here, P and L are the quotient spaces of ^ P and ,
respectively, and P11 if there exists S I/ such that S ^  P. Let Xp and Xl be the
quotient maps of and ^ P , respectively: cfr. [9], Satz 2.6.

If /  e L, there exist P, Q I/ such that P * Q, and if P e P ,  there exist 
/ ,  m  e L such that P I / , m  and /  + m\ cfr. [9], Satz 2.3 and 2.4.

1.2. M orphism s (cfr. [7], 1.2 , 1.3). Let and ^  be A. H. planes.

(a) / =  (® , Y) is a morphism  from to ^  if the following
conditions hold.

(i) ® : Pi -> P2 and Y  : Li L2 are maps;

(ii) O (Pi) I2 Y  (4 ) whenever Pi Ii 4  ;

(iü) Y  (74 ||2 Y  (mf) whenever l1 \hm1 .

In general, we shall write I , ||, and L  for l { , [|,. and L -, respectively, for 
i  =  I , 2, unless ambiguity arises.

If f  satisfies only (i) and (ii) we shall call f  an incidence morphism, or an 
I-morphism. /  is a neighbour-preserving I-morphism if P ^ Q  implies 
3>P ^  OQ and I ~ m  implies Y / ^  Ym; cfr. [8], p. 136.

(*) f =  is an epimorphism  if O and Y  are both surjective.

(c) f  —. 1 'T) is a monomorphism if C> and Y  are both injective.

(d )  f  — (0  , Y) is an I-isomorphism if f  is an I-morphism such that 
O and Y  are bijective and Pi Ii l\ <=> O (Pi) I2 Y  (lì). If, in addition, 
4  lb m i <=» Y /j ||2 Y m x then /  is an isomorphism. If ^  > then /  is an 
automorphism*

Remark. For ordinary affine planes, the concepts of an I-isomorphism 
and an isomorphism are identical) cfr. 2.3. However, P. Bacon has constructed 
an I-isomorphism between two A. H. planes which is not an isomorphism;

[3]» Corollaries 3.11 and 3.12.
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2. M orphisms of ordinary a ffine  planes

We shall first consider the special case where =  sdx and ^  “  «^2 
are ordinary affine planes, and /  =  (® , Y) is an-morphism. In this case, 
the analysis of morphisms is made easier due to fact that parallelism is defined 
in terms of incidence. Let I.P. denote the property P I / if and only if <D (P) 
IT  (/). By using the methods of V. Corbas in [4], one can easily verify the 
following statements.

2.1. Lemma, (i) I f  Y  is injective, then l\\ m whenever Y  (/) || Y  (m)\
(2) I f  f  is a morphism and  Y  is surjective, then ® is surjective\
(3) I f  ® is surjective and f  has I.P., then f  is a morphism\
(4) f  has I.P i f  and only i f  f  is an Y-monomorphism\
(5) I f  ® surjective, then Y  is surjective.

2.2. The main result of Corbas in [4] is the following assertion.
I f  f  is an Y-epimorphism, then <D and XY are both injective.

2.3. From 2.1 and 2.2, we readily obtain the following characterizations 
of an isomorphism.

THEOREM. Let f  =  (® , Y) : sdx -> be an Y-morphism. Then the 
following are equivalent:

(1) /  is an isomorphism\
(2) f  is an Y-isomorphism;
(3) f  ìs an I -epimorphism\
(4) ® is surjective\
(5) Y  is surjective and f  is a morphism .

3. Morphisms o f A. H. planes

3.1. The objective of our paper is the proof of the following result.

THEOREM. Let f  == (<E> , Y) : ^  be a morphism . The the following
statements are equivalent.

(1) f  is an isomorphism\
(2) <D and Y  are bijective\
(3) ® is surjective and  Y  is injective\
(4) ® is surjective, I \\m whenever Y  (/) || Y  (m), and f  is neighbour- 

preserving.
For the proof of our theorem, we first establish some preliminary lemmas.

3.2. LEMMA. Let f  =  (® ,Y) : ->■ be an Y-morphism. I f  ® is sur­
jective then A surjective.
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Proof. Let /2 in ^ . Choose P2 and Q2 on /2 such that P2 * Q2. Then 
there exist distinct points Pĵ  and Q1 in such that <D (P,) =  P2 and 
$  (Qi) =  Q'2 • Select any line h  through Pi and Qi. Since P i , Qi 14, we have 
P2 , Q2 IT“ (li). Hence T  ( f )  =  /2.

3-3- Lemma. L e t f  — (O ,Y) : be a morphism. The the following
statements are valid-.

(1) I f  T‘ is injective, then P ~  Q implies O (P) ~  O (Q);
(2) Y  (L (P , /)) =  L (O ( P ) , Y  (/));
(3) I f  P * Q and  0> (P) *  <E> (Q), then Y  (PQ) =  O (P) 0> (Q);
(4) I f  n ,  ~ nm and  r i^ (/J -  lT j ,^ ,  then <D ( l f m )  =  Y  (/) A Y  (m).

3.4- Lemma. Let f  =  (<J>,Y) be a morphism such that <I> is
surjective and  Y  is injective. Then

(1) ( Q | Q IY  (/)} =  { <D(P) |P I /} ;
(2) I f  I r*j m, then Y  (/) ~  Y  (ni).

Proof. (1) S i n c e / i s  a morphism, { <E> (P) | PI/} C {Q | Q IY  (/)}. Now 
take Q IY  (/). Then there exists P such that (P) =  Q. Now Y (/)  =  
=  L (<D (P) , Y  (/)) — Y  (L (P ,/)), by Lemma 3.3. Since Y  is injective, 
/  =  L (P, /) and so PI/.

(2) Let I <̂ >m. Choose R IY  (/). By (1), R =  O (P) for some point PI/.
Then there exists Q Im  such that P ~  Q. By Lemma 3.2, <I> (P) ~  O (Q).
Hence Y  (/) ~  Y  (m).

Similarly, every point of Y  (m) is a neighbour of some point of Y  (/).

3.5. Lemma. Let f  =  (O ,Y) : ^  -»■ dd  ̂ be a morphism. Then the follo­
wing statements are equivalent'.

(1) P I/ i f  and only i f  O (P) IT  (/);
(2) f  is a monomorphism\
(3) T  is injective.

Proof. To show that (i) implies (2), we shall first prove that ® is injective. 
Suppose that P Q- Then we m ay choose /  such that PI I  but Q il. By (1), 
O (P) IT  (/) but ® (Q) I T  (/). Hence #  (P)=}=0 (Q). Similarly, we can 
verify that T  is injective.

It is obvious that (2) implies (3). Finally, we shall show that (3) implies (1). 
Let T  be injective. Suppose that ® (P) IT  (/). Then ® (/) =  L (® (P) ,T (/)) =  
=  T  (L (P, /)), by Lemma 3.3. Since T  is injective, / =  L ( P , /) and so PI/.

3-6. Lemma. Let f  ■= (® ,T ) : be a morphism such that T . / j
injective. Then 1 1| m whenever T  (/) || T  (ni).

Proof. Assume that Y  (/) [| Y  (m). If l=%=m, then there exists P I/ 
such that Vim.  Put y =  L (P, m)\ thus j \ \ m .  Then Y (y ) ||Y (* » ) and so 
'F C/)II'F <A But Ply, /  implies O (P) lY (y) , Y  (/), and so Y ( y ) = Y ( / ) .  
Since Y  is injective, y =  /  and so /  [| m.

59. — RENDICONTI 1974, Voi. LVI, fase. 6,
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3.7. Remark. In 1.2, we require an isomorphism to have the properties 

PI/«=> O (P) IT  (/) and /  y m  «==> T  (/) || T  (m) .

Lemmas 3.5 and 3.6 show that this definition is redundant with respect 
to both incidence and parallelism.

3/8. Let Aut dd and Aut dd denote the groups of automorphisms of dd 
and dd\ cfr. 1.1.

We call an automorphism / =  (O ,T) of Aut dd a neighbouring automor­
phism  if ® (P) ^  P and T  (/) ^  I for each P and I. The set of neighbouring 
automorphisms shall be denoted by N Aut dd.

In view of Lemma 3.4, if f  e Aut dd, we may p u t /==  ( / , / ) .  We shall 
establish a relationship between Aut dd and Aut dd.

3-9- Theorem . The map A: Aut dd~>A\it d d ( f - > f ) ,  where J  (P) — 
~ f -  (P) and  J  (J) — /  ( O f or a n y  P  ̂P  cmd any /g L , is a group homomorphism 
and  X ° f  — J  0 X* Moreover, N Aut dd A kernel of h and

Aut e^/N Aut dd ̂  h [Aut ^f7] .

Proof. We first show th a t / i s  well-defined on P. Let P ■= Q. Then P ^  Q, 
and so / ( P )  ~ / ( Q ) ,  by Lemma 3.3. Hence / ( Q )  =  / (Q )  =  / ( P )  = / ( P). 
Similarly, Lemma 3.4 shows that /  is well-defined on L. Now we show that 
J  e Aut. dd. Let PI/. Then there exists S I/ such that S ^  P. Hence / ( S) I 
/  (/) and / ( S )  ~ / ( P )  and s o / ( P )  I f f ) .  By definition, /  is surjective. Then 
by 2.3, f e  Aut 34?. Next.

(X of)  (P) =  x (/(P )) = f W )  = 7 (P ) =  (Jo z) (P)
and

(7°7) (P) =  (/< *)(?) =  7 (F P5)) =  (/» I) (F).

Hencé h is a homomorphism. Finally, / e  Ker Ä if and only if / ( P) =  P and 
/ ( / )  — / if and only if / ( P )  ^  P and / ( / )  ~ / .

3.10. LEMMA. I f  f  '.dd^-^dd^ ts a neighbour-preserving \-epimorphism , 
then ]  \ ddx -> dd^, ivell-defned as in 3.9 O (Pi) =  O (Pi) and  T(Zi) =  T (4), 
A also an \-epimorphism. Hence by 2.3, /  A ætz isomorphism.

Proof. Let P2  ̂«^2 î thus P2 € ^2  • Since <D is surjective, there exists Px e « ^  
such that O (Pi) =  P2 . Then ® (Pi) =  ® (Pi) =  P2. Similarly, T  is surjective. 
Finally, let Pi Hi ; thus there exists Sx e ddx such that Si I/i and Si ^  P i . Then 

(Si) IT  (4) and so 0  (Si) IT  (4 ); i.e., ® (Si) IT  (4 ). Since Pi =  Si, we 
have <D (Pi) IT  (4 ).

3 .11 • Lemma. I f  f  : ddx ~>dd  ̂is a neighbour-preserving I-epimorphism , then
(1) P ~ Q < = > ® ( P ) ~ ® ( Q ) ; '
(2) / - w ^ T ( / ) - T ( 4
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Proof, (i) By 3.10, /  is an isomorphism, and so

P *  Q <==> P =H Q <=> $  (P) ® (Q) ® (P) =H ® (Q) <=> ® (P) +  o  (Q).
We can Verify (2) in a similar fashion.

3.12. Proof of Theorem 3.1. Clearly, (1) implies (3). To show that (3) 
implies (2), we need only to verify that T  is surjective, since O is injective 
by Lemma 3.5. Choose h e La. By 1.1, we can choose P2 , Q2 I/2 such that 
P2 ^  Q2 • Then there exist Pi and Qi such that ® (Pi) =  P2 and ® (Qi) =  Q2. 
By Lemma 3.3, Pi Qi. By Lemma 3.3, again T  (Pi , Qi) =  ® (Pi) ® (Qi) =  
=  P2 Q2 =  h- Next, (2) implies (4), by 3.3, 3.4 and 3.6. Finally we show that
(4) implies (1). By 3.2, /  is an epimorphism. Let P ,Q  e J j ,  P =J= Q. If 
P Q, then ®P *  ®Q, by 3.11, and so ®P =f= ®Q. Suppose now that P=f=Q 
but P ~  Q. Choose a line /  through P such that I is not a neighbour of any line 
through P and Q; cfr. 1.1. Thus Q I/. Select a point R I/ such that R + P. 
Then R *  Q, by (A3), and by 3.11, OR OP, <FQ. As RP =f= RQ, we have 
R P -fR Q . Hence Y  (RP)-Jf-Y (RQ), and by 3.3, 0>R O P -f  (DR OQ.
Hence OP OQ. Thus O is injective.

Next we wish to show that Y  is injective. Let /  ,m  e , /  =j=m. If 
/-[f-w, then Y/-J|-Wm,  and Y/=J=Ym. Next, suppose and l \ \m.
Choose P I/ and j  + I such that Ply. By (A7), j  + m, and there is a point 
Q \m  , j) and Q = pP . Since O is injective Op =f= OQ. By 3.11, Yy *  T / ,T w . 
Since (DPI Y / , Yy; and OQI Yw , Y/, we obtain Y / =|= Ym ,  otherwise Y / 
would be a neighbour of Yy.

Assertion (1) of Theorem 3.1 now follows from 3.5.

Remark. The Authors have show that an automorphism of a Desar- 
guesian A.H. plane <^with a coordinate ring H can be represented by a non- 
singular semi-linear transformation of the left module structure on H x H .  
This result can also be derived by embedding JfTn the projective Hjelmslev 
space over the Çree module H x H x H :  cfr. ([8], 2 and 8).

B ib l io g r a p h y

[1] J. André (1969) -  Über Homorphismen projektiver Ebenen, «Abh. Math. Sem. Univ, 
Hamburg», 34, 98-114.

[2] B. Artmann (1971) -  Dessarguessche Hjelmslev-Ebenen n-ter Stufe, «Mitt. Math. Sem.
Univ. Giessen», 1-19. *

[3] P. Bacon (1971) -  Hjelmslev planes with small invariants, Master’s thesis, University 
of Florida, Gainsville.

[4] V. CORBAS ,(1965) -  La non esistenza di omomorfismi propri fra  piani affini, « Rend. Mat. 
e Appi. », 24, 373-376.

[5] A. CRONHEIM (1965) -  T-groups and their geometry, «Illinois J. Math. », 9, 1-30.
[6] P. Dembowski (1959) -  Homomorphismen von \-Ebenen, «Arch. Math.», io , 46-50.
[7] D. D rake (1973) -  The structure o f n-uniform translation Hjelmslev planes, «Trans. Amer. 

Math. Soc. », '175, 249-282.
[8] H. H. LÜCK (1970) -  Projective H jelmslevräume, « J. Reine Angew. Math. », 243, 121-158.
[9] H. Lüneburg (1962) -  Affine Hielmslev-Ebenen m it transitiver Translationgruppe, 

«Math. Z.», 79, 260-288.


