ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

SIMEON REICH

Asymptotic behavior of semigroups of nonlinear contractions in Hilbert spaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **56** (1974), n.6, p. 866–872.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1974_8_56_6_866_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Analisi funzionale. — Asymptotic behavior of semigroups of nonlinear contractions in Hilbert spaces. Nota di SIMEON REICH, presentata ^(*) dal Socio G. SANSONE.

RIASSUNTO. — Sia S (t, x) un semigruppo di contrazioni non lineari definite in un sottoinsieme D di uno spazio di Hillert. Si dimostra che S (t, x)/t per $t \to \infty$ tende ad un limite per ogni $x \in D$. Questo limite è indipendente da x ed è in relazione con i generatori di S.

I. INTRODUCTION

Let D be a non-empty subset of a real Hilbert space H. A mapping $T: D \rightarrow H$ is said to be a (nonlinear) contraction if $|Tx - Ty| \le |x - y|$ for all x and y in D. A semigroup (of nonlinear contractions) on D is a function $S:[o,\infty) \times D \rightarrow D$ satisfying the following conditions:

(I.I) $S(t_1 + t_2, x) = S(t_1, S(t_2, x))$ for $t_1, t_2 \ge 0$ and $x \in D$;

(1.2)
$$|S(t, x) - S(t, y)| \le |x - y|$$
 for $t \ge 0$ and $x, y \in D$;

(1.3)
$$S(o, x) = x$$
 for $x \in D$;

(1.4) $\lim_{t \to t_0} \mathcal{S}(t, x) = \mathcal{S}(t_0, x) \text{ for } t, t_0 \ge 0 \text{ and } x \in \mathcal{D}.$

The purpose of this note is to study a certain aspect of the behavior of S (t, x) when $t \to \infty$.

We shall denote the closure of D by cl(D). Its convex hull will be denoted by co(D) and its convex closure by clco(D). We also define

 $|| D || = \inf \{ |x| : x \in D \}$ and $D^0 = \{ x \in D : |x| = || D || \}.$

The identity operator (on D) will be denoted by I.

If A is a subset of $H \times H$ and $x \in H$, we define $Ax = \{y \in H : [x, y] \in A\}$ and let $D(A) = \{x \in H : Ax \neq \emptyset\}$. The range of A is defined by $R(A) = \bigcup \{Ax : x \in D(A)\}$. Such a set A is said to be monotone if $(y_1 - y_2, x_1 - x_2) \ge 0$ for all $x_i \in D(A)$ and $y_i \in Ax_i$, i = 1, 2.

A monotone set is maximal monotone if it does not admit a proper monotone extension. If A is monotone one can define, for each r > 0, a singlevalued function $J_r : R(I + rA) \rightarrow D(A)$ by $J_r = (I + rA)^{-1}$. We also define the Yosida approximation of A, $A_r : R(I + rA) \rightarrow H$, by $A_r = (I - J_r)/r$.

(*) Nella seduta del 29 giugno 1974.

Suppose that

(1.5)
$$R(I+rA)\supset D(A) \quad \text{for all } r > 0.$$

Then there exists a semigroup S on cl (D (A)) such that for each $x \in D$ (A) and $t \ge 0$

(1.6)
$$S(t, x) = \lim_{n \to \infty} J_{t/n}^n x = \lim_{n \to \infty} \left(I + \frac{t}{n} A \right)^{-n} x$$

[5, p. 271]. We shall say that S is generated by -A via the exponential formula (1.6).

Let A be monotone and consider the initial value problem

(1.7)
$$\begin{cases} \frac{\mathrm{d}u}{\mathrm{d}t} + \mathrm{A}u \ni 0 \quad \text{a.e. on} \quad (0, \infty) \\ u(0) = x \end{cases}$$

where $x \in D(A)$. Suppose that $v : [0, \infty) \to H$ is (Bochner) integrable on every interval of the form [0, T], $T < \infty$. Let $u(t) = u(0) + \int_0^t v(s) ds$. Then $u : [0, \infty) \to H$ is absolutely continuous (on [0, T]), differentiable a.e. on $[0, \infty)$, and $\frac{du}{dt} = v$ a.e. on $[0, \infty)$. Such a function u is called a solution of the IVP (1.7) if $u(t) \in D(A)$ a.e. on $(0, \infty)$ and u(t) satisfies (1.7). Since an absolutely continuous function which is differentiable a.e. is an indefinite integral of its derivative, we could have assumed that u is absolutely continuous and differentiable a.e. Since H is reflexive, it is sufficient, in fact, to assume that u is absolutely continuous on every interval of the form [0, T].

The IVP has at most one solution. This solution is Lipschitzian on $[0, \infty)$. If u, v are two solutions of the IVP, then $|u(t) - v(t)| \le |u(0) - v(0)|$ for all $t \in [0, \infty)$. It follows that if the IVP has a solution for each $x \in D(A)$, then a semigroup can be defined on cl (D (A)). This is said to be the semigroup generated by -A via the initial value problem (1.7). If A satifies (1.5), then it must coincide with the semigroup generated by the EF (1.6) [3, p. 371]. On the other hand, if A is closed $(x_n \in D(A), y_n \in Ax_n, x_n \to x \text{ and } y_n \to y \text{ imply that } [x, y] \in A$, then the EF semigroup is also the IVP semigroup [8, p. 252].

2. Asymptotic behavior

At the beginning we shall study the behavior of a given semigroup without metioning possible generators. Let N denote the set of all non-negative integers, and let $\{c_n : n \in \mathbb{N}\}$ be a sequence of real numbers which satisfy

$$(2.1) 0 < c_n \leq 1 for all n \in N;$$

(2.2)
$$\sum_{i=0}^{\infty} c_i \quad \text{diverges.}$$

In the sequel we shall denote $\sum_{i=0}^{n} c_i$ by a_n .

58. - RENDICONTI 1974, Vol. LVI, fasc. 6.

LEMMA 2.1. Let D be a subset of a Hilbert space H and let $T: D \rightarrow H$ be a contraction. Suppose that there exists a sequence $\{x_n : n \in N\} \subset D$ such that

(2.3)
$$x_{n+1} = (1 - c_n) x_n + c_n \operatorname{T} x_n , n \in \mathbb{N}.$$

Then $\{x_{n+1}|a_n : n \in \mathbb{N}\}$ converges.

Proof. Extend T to a contraction $Q: H \to H$ [13, p. 92]. Since (2.3) holds when T is replaced by Q, $\lim_{n \to \infty} x_{n+1}/a_n = -v$ where v is the element of minumum norm in cl (R (I - Q)) [10, p. 695].

COROLLARY 2.2. Let D be a subset of a Hilbert space H. If $T: D \to D$ is a contraction and $x_0 \in D$, then $\lim T^n x_0/n$ exists (and is independent of x_0).

 $n \rightarrow \infty$

Proof. Lemma 2.1 can be used with $c_n = 1$ for all *n*. (See also [9, p. 238]).

THEOREM 2.3. Let S be a semigroup on a subset D of a Hilbert space H. Then $\lim_{t\to\infty} S(t, x)/t$ exists for each $x \in D$ (and is independent of x).

 $i \rightarrow \infty$

Proof. Denote the mapping which assigns to each $y \in D$ the point $S(I, y) \in D$ by T. Fix a point $x \in D$. By Corollary 2.2, $\lim_{n \to \infty} S(n, x)|n = \lim_{n \to \infty} T^n x/n = -v$ exists. Let ε be positive. There is an N such that $|T^n x/n + v| < \varepsilon$ for all n > N. Let M satisfy $|T^n x/n| \le M (n > N)$, $|S(t, x)| \le M (0 \le t \le I)$, and let t_0 be greater than max $\{M/\varepsilon, N + I\}$. If $t > t_0$, [t] = n, and t - [t] = p, then

$$|S(t, x)/t + v| \le |S(t, x)/t - S(n, x)/n| + + |S(n, x)/n + v| \le |S(n, S(p, x))/(n + p) - S(n, x)/n| + + \varepsilon \le |S(p, x) - x|/t + p|S(n, x)|/(nt) + \varepsilon \le 2M/t + M/t + \varepsilon < 4\varepsilon,$$

as required.

In order to identify the limit obtained in Theorem 2.3, we shall need a few auxiliary propositions.

LEMMA 2.4. Let u be the solution (if it exists) of the IVP (1.7). Then

t

(2.4)
$$| u(t) - u(0) | \le t || Ax ||.$$

Proof. We have
$$u(t) - u(0) = \int_{0}^{t} \frac{\mathrm{d}u}{\mathrm{d}t}(s) \,\mathrm{d}s$$
. Therefore
 $|u(t) - u(0)| \le \int_{0}^{t} \left|\frac{\mathrm{d}u}{\mathrm{d}t}(s)\right| \,\mathrm{d}s \le t \,\|\operatorname{Ax}\|$ by [3, p. 369].

A closed subset $B \subset H$ is said to have the minimum property [9, p. 237] if it contains a point the norm of which equals $\| clco(B) \|$.

PROPOSITION 2.5. Let A be a monotone set in a Hilbert space H. Suppose that —A generates a semigroup S on cl(D(A)) through the initial value problem (1.7). If cl(R(A)) has the minimum property, then for each $x \in cl(D(A))$ $\lim_{t\to\infty} S(t, x)/t = -v$ where v is the element of least norm in cl(R(A)).

Proof. Let $x \in D(A)$, |v| = d and $\varepsilon > o$. There is $[y, z] \in A$ such that $|z - v| < \varepsilon$. We have $|S(t, x) - x| \le |S(t, x) - S(t, y)| + |S(t, y) - y| + |y - x| \le 2 |x - y| + t ||Ay|| \le 2 |x - y| + t |z| \le 2 |x - y| + t (d + \varepsilon)$. If follows that $\limsup_{t \to \infty} |S(t, x) - x|/t \le d$. On the other hand, $(x - S(t, x))/t = \frac{1}{t} \int_{0}^{t} -\frac{du}{dt} (s) ds \in \operatorname{clco}(R(A))$. Therefore $|S(t, x) - x|/t \ge d$. Thus $\lim_{t \to \infty} |x - S(t, x)|/t = d$ and $(x - S(t, x))/t - \frac{1}{t \to \infty} v$. The result follows.

The method of proof of this Proposition can be used to establish a result of Crandall mentioned (without proof) in [1, p. 166].

LEMMA 2.6. Let S be generated by — A through the exponential formula (1.6). Then

(2.5)
$$|S(t, x) - x| \le t ||Ax||$$

for each $x \in D(A)$.

Proof. We have

$$|J_{t/n}^{n} x - x| \le n | J_{t/n} x - x| \le n (t/n) || Ax || = t || Ax ||.$$

LEMMA 2.7. Let S be generated by — A through the EF (1.6). Then (x - S(t, x)|t belongs to clco (R(A)).

Proof. We have

$$(x - J_{t/n}^n x)/t = \frac{1}{n} \sum_{i=0}^{n-1} (J_{t/n}^i x - J_{t/n}^{i+1} x)/(t/n)$$

and $A_r y \in AJ_r y$. The result follows.

PROPOSITION 2.8. Let A be a monotone set in a Hilbert space H. Suppose that -A generates a semigroup S on cl (D (A)) through the exponential formula (1.6). If cl (R (A)) has the minimum property, then for each $x \in cl$ (D (A)) $\lim_{t\to\infty} S(t, x)/t = -v$ where v is the element of least norm in cl (R (A)).

Proof. We can mimic the proof of Proposition 2.5 with the aid of Lemmas 2.6 and 2.7.

PROPOSITION 2.9 [7, p. 385]. Let S be a semigroup on a subset D of a Hilbert space H. Then there exists a semigroup on clco (D) which extends S. PROPOSITION 2.10 [2, p. 257; 6, p. 417; 7, p. 396]. Let S be a semigroup defined on a closed and convex subset C of a Hilbert space H. Then there exists a unique maximal monotone $A \subset H \times H$ with cl(D(A)) = C such that — A generates S through both the initial value problem (1.7) and the exponential formula (1.6).

THEOREM 2.11. Let S be a semigroup on a subset D of a Hilbert space H. Let A be the unique maximal monotone subset of $H \times H$ with cl(D(A)) = clco(D)such that -A generates the extension of S. Then $\lim_{t\to\infty} S(t, x)/t = -v$ for each $x \in D$ where v is the element of least norm in cl(R(A)).

Proof. We can combine Proposition 2.10 with either Proposition 2.5 or Proposition 2.8 because cl(R(A)) is convex [12, p. 89].

COROLLARY 2.12. Let S be a semigroup on a closed and convex subset C of a Hilbert space H. Let A be the unique maximal monotone set with cl(D(A)) = C such that — A generates S. Then the element of least norm in cl(R(A)) is the element of least norm in $cl(R(I - S(I, \cdot)))$.

Proof. Combine [9, Corollary 3] with Theorem 2.11.

3. THE MINIMUM PROPERTY

We turn now to the converse problem namely, given a monotone A such that — A generates a semigroup S, how can $\lim_{t\to\infty} S(t, x)/t$ be related to A? By Propositions 2.5 and 2.8 it suffices to show that cl (R (A)) has the minimum property. It is obvious, for example, that if $o \in cl (R (A))$, then cl (R (A)) has the MP. Simple examples show, however, that cl (R (A)) does not always possess the MP. The following result is a generalization of [9, Theorem 3].

PROPOSITION 3.1. Let A be monotone. Suppose that there exists a sequence $\{x_n : n \in \mathbb{N}\} \subset \mathbb{D}$ (A) such that

$$(3.1) x_{n+1} = x_n - c_n y_n \quad , \quad n \in \mathbb{N},$$

where $y_n \in Ax_n$ and $\{c_n : n \in \mathbb{N}\}$ satisfies (2.1) and (2.2). If $\{y_n : n \in \mathbb{N}\}$ converges, then cl (R (A)) has the minimum property.

Proof. Let $v = \lim_{n \to \infty} y_n$ and $a_n = \sum_{i=0}^n c_i$. Since $x_0 - x_{n+1} = \sum_{i=0}^n c_i y_i$, $(x_0 - x_{n+1})/a_n \to v$ and $x_{n+1}/a_n \to -v$. If $u \in D(A)$ and $w \in Au$, then $(w - y_{n+1}, u - x_{n+1}) \ge 0$. After divding by a_n and letting n tend to infinity we obtain $(w - v, v) \ge 0$. Thus $(z - v, v) \ge 0$ for all $z \in clco(R(A))$ and $|v| = \| clco(R(A)) \|$.

PROPOSITION 3.2. Let a monotone and closed A satisfy (1.5). If there exists a maximal monotone extension B of A with $D(B) \subset cl(D(A))$, then cl(R(A)) has the minimum property.

Proof. Let $z \in D$ (B). For each r > 0 there are $x_r \in D$ (A) and $y_r \in Ax_r$ such that $z = x_r + ry_r$. Since $x_r = \int_r^B z$ and $y_r = B_r z$, $\lim_{r \to 0} x_r = z$ and $\lim_{r \to \infty} y_r = B^0 z$ where $B^0 z = (Bz)^0$. Thus $z \in D$ (A) and $B^0 z \in Az$. Thus D(B) = D (A) and $B^0 = A^0$. Now let v be the element of least norm in cl (R (B)), and let $v_n \to v, v_n \in Bx_n$. Then $|v| \le |A^0 x_n| = |B^0 x_n| \le \le |v_n|$. It follows that $A^0 x_n \to v$.

Although the next result is known [2, p. 244], we present a different, direct proof which does not use Brézis' variational inequality. (We do employ variants of some known ideas).

PROPOSITION 3.3. Let a monotone and closed A satisfy (1.5). If cl(D(A)) is convex, then there exists a maximal monotone extension E of A with D(E) = D(A).

Proof. Denote cl (D (A)) by C and let E = A + B where $B = \partial I_C$ (the subdifferential of the indicator function of C) and D(E) = D(A). B is maximal monotone. If r > 0, 0 < t < 2/r and $y \in H$, then the equation $y \in x + 1$ $+ tBx + tA_r x$, which is equivalent to $x = \int_t^B (y - tA_r x)$, has a solution in C by Banach's fixed point theorem. If follows that $B + A_r$ is maximal monotone. Let $y \in H$ and let $x_r \in D(B)$ satisfy $y \in x_r + Bx_r + A_r x_r$ for each positive r. Fix $u \in D(A)$ and $w \in Bu$. Since $y - x_r - A_r x_r \in Bx_r$, we have $(w + A_r u - y + x_r + A_r x_r - A_r x_r, u - x_r) \ge 0$ and $(w + A_r u - y + u - y) \ge 0$ $-(u-x_r)$, $u-x_r \ge 0$. Thus $|u-x_r|^2 \le |u-x_r| |w+A_r u-y+u|$ and consequently $\{x_r\}$ is bounded. We also have $(y - x_r - A_r x_r, x_r - z) \ge 0$ for every $z \in C$. Taking $z = J_r^A x_r$, we obtain $(y - x_r - A_r x_r, rA_r x_r) \ge 0$ and $|A_r x_r|^2 \le |A_r x_r| |y - x_r|$. It follows that $\{A_r x_r\}$ is bounded too. Denote $y - x_r - A_r x_r \in B x_r$ by b_r . We have $x_r - x_s + b_r - b_s + A_r x_r - b_r$ $-A_s x_s = 0$. Since B is monotone, it follows that $|x_r - x_s|^2 \le -(A_r x_r - A_s x_s)^2 \le$ $-A_s x_s$, $x_r - x_s$). We also have $x_r - x_s = rA_r x_r - sA_s x_s + J_r^A x_r - J_s^A x_s$. Since $A_r x_r \in AJ_r^A x_r$ and $A_s x_s \in AJ_s^A x_s$, we obtain $|x_r - x_s|^2 \le -(A_r x_r - A_r x_s)^2$ $-A_s x_s$, $rA_r x_r - sA_s x_s$. Thus $\{x_r\}$ converges to $x \in \mathbb{C}$. $|J_r^A x_r - x_r| =$ $= r | A_r x_r | \rightarrow 0$, so that $J_r^A x_r \rightarrow x$. If the convergence of $\{A_r x_r\}$ is established, then we have $x \in D(A)$ and $a = \lim_{x \to a} A_r x_r \in Ax$. Consequently, y = x + a + b where $a \in Ax$ and $b = \lim b_r \in Bx$. In fact, the convergence r→0 of $\{A, x_r\}$ can be established by invoking [6, Lemma 2.4] or by the following argument: Let G be a maximal monotone extension of A in cl(D(A)). Then G is demi-closed and Gu is closed and convex for each $u \in D(G)$.

Let a subsequence of $\{A_r x_r = G_r x_r\}$ converge weakly to $w \in Gx$. Then $y - x - w \in Bx$. Thus $Gx \cap (y - x - Bx)$ is not empty. Let z be the unique element of least norm in this closed and convex subset of H. Since $y = b_r + x_r + G_r x_r = b + x + z$ for some $b \in Bx$, we have $(b_r - b + x_r - x + G_r x_r - z, x_r - x) = 0$ and $(G_r x_r - z, x_r - x) \leq 0$. Writing $x_r = rG_r x_r + J_r^G x_r$, we obtain $(G_r x_r - z, G_r x_r) \leq 0$. Let w be any subsequential weak limit of $\{G_r x_r\}$. Then $|w| \leq \lim \inf |G_s x_s| \leq \lim \sup |G_s x_s| \leq |z|$. It

follows that w = z, $\{G_r x_r\}$ converges weakly to z, $|G_r x_r| \rightarrow |z|$, and finally that $\{A_r x_r\}$ converges strongly to z.

The last two Propositions can be combined to yield [4, Theorem 1] because the condition imposed there on A implies the convexity of cl(D(A)) [3, p. 382].

THEOREM 3.4. Let a monotone and closed A satisfy (1.5). If cl(D(A)) is convex and S is the semigroup generated by — A on cl(D(A)), then for each $x \in cl(D(A)) \lim_{t \to \infty} S(t, x)/t = -v$, where v is the element of least norm in cl(R(A)).

Proof. Combine Propositions 3.2, 3.3 and 2.8 (or 2.5).

The asymptotic behavior of nonlinear contraction semigroups in Banach spaces is considered in [11].

References

- HAIM BRÉZIS (1973) Opérateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces de Hilbert. North-Holland Publishing Company, Amsterdam.
- [2] H. BRÉZIS and A. PAZY (1970) Semigroups of nonlinear contractions on convex sets,
 « J. Functional Analysis », 6, 237-281.
- [3] H. BRÉZIS and A. PAZY (1970) Accretive sets and differential equations in Banach spaces, «Israel J. Math.», 8, 367–385.
- [4] ADRIAN CORDUNEANU (1972) A note on the minimum property of cl (R (A)) for a monotone mapping in a real Hilbert space, «Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. », 53, 56-59.
- [5] M.G. CRANDALL and T.M. LIGGETT (1971) Generation of semigroups of nonlinear transformations on general Banach spaces, «Amer. J. Math.», 93, 265–298.
- [6] MICHEAL G. CRANDALL and AMNON PAZY (1969) Semigroups of nonlinear contractions and dissipative sets, « J. Functional Analysis », 3, 376-418.
- [7] YUKIO KOMURA (1969) Differentiability of nonlinear semigroups, « J. Math. Soc. Japan », 21, 375–402.
- [8] ISAO MIYADERA (1971) Some remarks on semigroups of nonlinear operators, «Tôhoku Math. J. », 23, 245–258.
- [9] A. PAZY (1971) Asymptotic behavior of contractions in Hilbert space, «Israel J. Math. », 9, 235–240.
- [10] SIMEON REICH (1972) Remarks on fixed points, «Atti Accad. Naz. Lincei, Rend. Cl. Sc. Fis. Mat. Natur.», 52, 599-697.
- [11] SIMEON REICH Asymptotic behavior of semigroups of nonlinear contractions in Banach spaces, in preparation.
- [12] R. T. ROCKAFELLAR (1970) On the virtual convexity of the domain and range of a nonlinear maximal monotone operator, «Math. Ann.», 185, 81–90.
- [13] P. A. VALENTINE (1945) A Lipschitz condition preserving extension for a vector function, «Amer. J. Math.», 67, 83-93.