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Analisi funzionale. —- Asymptotic behavior of semigroups of 
nonlinear contractions in Hilbert spaces. Nota di S im e o n  R e i c h , 

presentata (#) dal Socio G. S a n s o n e .

R iassunto. —• Sia S (/, x) un semigruppo di contrazioni non lineari definite in un sotto­
insieme D di uno spazio di Hillert. Si dimostra che S (t ,x)jt  per /->  oo tende ad un limite 
per ogni x e D. Questo limite è indipendente da x  ed è in relazione con i generatori di S.

i .  In t r o d u c t io n

Let D be a non-empty subset of a real Hilbert space H. A mapping 
T : D -> H is said to be a (nonlinear) contraction if | T x  — Ty  | <  | x  — y  \ 
for all x  and y  in D. A semigroup (of nonlinear contractions) on D is a 
function S : [o , 00) x D -> D satisfying the following conditions:

(1.1) S (ti +  t2 , x) =  S (t\ , S (t2 , x)) for t\ , t2 >  o and x  eD ;

(1.2) I S (/ , x) — S ( t i y ) \ < : \ x — y \  for t\>  o and x , y e D ;

(1.3) S (o , x) =  x  for x  G D;

(1.4) lim S ( t , x) =  S (to , x) for t , to >  o and x  eT>.
t-*t0

The purpose of this note is to study a certain aspect of the behavior of S ( t , x) 
when t  00.

We shall denote the closure of D by cl(D). Its convex hull will be denoted 
by cq(D) and its convex closure by clco(D). We also define

Il D II =  inf { I x  I : i e D }  and D ° =  {;r e D : | # | =  | | D | | } .

The identity operator (on D) will be denoted by I.
If  A is a subset of H X H and ^ e H ,  we define A x  =  { y  e H : [x , y] e A} 

and let D (A) =  {x  e H : A x  =|= 0 }. The range of A is defined by 
R (A) =  U {A x  : # c D (A)}. Such a set A is said to be monotone if 
( y 1 — y% , Xi — x 2) > 0  for all x { e D (A) and y { e A x { , i ~  1 , 2 .

A monotone set is rnaximal monotone if it does not admit a proper mono­
tone extension. If A is monotone one can define, for each r  >  o, a single­
valued function Jr : R (I +  rA) -> D (A) by Jr — (I +  rA)~x. We also define 
the Yosida approximation of A , Ar : R (I + rA )  H , by A^ =  (I — J r)/r.

(*) Nella seduta del 29 giugno 1974.
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Suppose that

(1.5) R (I +  rA) DD (A) for all r  >  o.

Then there exists a semigroup S on cl (D (A)) such that for each # e D (A) 
and t  >  o

(1.6) S ( t , x) =  lim J * = lim (i + - A V
\ n 1

X

( !-7)

[5, p. 271]. We shall say that S is generated by -—A via the exponential for- 
mula (1.6).

Let A be monotone and consider the initial value problem

\ ^ u 3 0 a,e* on (° > 00)

(o) =  X

where x  € D (A). Suppose that z; : [o , 00) — H is (Bochner) integrable on every
t

interval of the form [o , T] , T < o o . Let u (t) =  u (o) +  I v (s) di*. Then
JQ

u : [o , 00) -> H is absolutely continuous (on [o , T]), differentiable a.e. on 
[o , 00), a n d - j j  — v a.e. on [o , 00). Such a function u is called a solution of 
the IVP (1.7) if u (t) € D (A) a.e. on (o , 00) and u(t)  satisfies (1.7). Since an 
absolutely continuous function which is differentiable a.e. is an indefinite 
integral of its derivative, we could have assumed that u is absolutely conti­
nuous and differentiable a.e. Since H is reflexive, it is sufficient, in fact, to 
assume that u is absolutely continuous on every interval of the form [o ,T].

The IVP has at most one solution. This solution is Lipschitzian on [o , 00). 
If u  , v are two solutions of the IVP, then | u it) — v (t)\ < \ u  (o) — v (o) |
for all t  e [o , 00). It follows that if the IVP has a solution for each x  e D (A),
then a semigroup can be defined on cl (D (A)). This is said to be the semigroup 
generated by ,—A via the initial value problem (1.7). If A satifies (1.5), then 
it must coincide with the semigroup generated by the EF (1.6) [3, p. 371].
On the other hand, if A is closed (xn e D (A) , y n e A x n , x n - ^ x  and y n y
imply that [x ,y ]  e A), then the EF semigroup is also the IVP semigroup 
[8, p. 252].

2. A s y m p t o t ic  b e h a v io r

At the beginning we shall study the behavior of a given semigroup without 
metioning possible generators. Let N denote the set of all non-negative inte­
gers, and let {cn : n £ N } be a sequence of real numbers which satisfy

(2.1)

(2.2)

o <  cn <  I
00

for all n e N; 

diverges.

In the sequel we shall denote 2  ci by an-
*=o

58. — RENDICONTI 1974, Voi. LVI, fase. 6.
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Lemma 2.1. Let D be a subset of a Hilbert space H and  / ^ T : D - > H  be 
a contraction. Suppose that there exists a sequence, {x n : n e N } C D  such that

(2.3) ■ (1 ^n) %n d- cn Tx n , n e N.

Then {xn+i/an : n e N} converges.

Proof. Extend T to a contraction Q : H -* H [13, p. 92]. Since (2.3) 
holds when T is replaced by Q, lim xn+1/an =  — v where v is the element

« - » 0 0

of minumum norm in cl (R ( I — Q)) [10, p. 695].

C o r o l l a r y  2.2. Let D be a subset of a Hilbert space H. 7/ T : D - > D  
is a contraction and x 0 e D, then lim T” x f n  exists (and is independent o f xf).

n—> 00

Proof. Lemma 2.1 can be used with cn— 1 for all n. (See also [9, p. 238]).

T h e o r e m  2.3. Let S be a semigroup on a subset D of a Hilbert space H. 
Then lim S ( t , x)\t exists fo r  each x  e D (and is independent o f x).

/  ~>oo

Proof. Denote the mapping which assigns to each y e  D the point 
S (1 , y) e D by T. Fix a point x  e D . By Corollary 2.2, lim S (n , x)\n =

=  l i mTn x\n  =  — v  exists. Let s be positive. There is an N such that
n—>■ 00

I T* x\n  +  v  I <  s for all n  >  N. Let M satisfy | T* x\n  | <  M (n >  N),
I S ( t , x) I <  M (0 <  t <  1), and let t0 be greater than max {M/s , N +  1 }• 
If  t >  t0 , [t] =  n , and t  — [t] =  p , then

I S (/ , x)jt +  v I <  I S (/ , x)\t — S (n , x)/n  | +

+  I S (n , x)\n  +  v  I <  I S (n , S (p , x))\(n  +  p ) — S (n , x)/n  | +

+  s <  I S (p , x) -<7- x  \\t +  p  i S (n , x) I/(nt) +  s <  2 M \t +  M /t +  s <  4s f

as required.
In order to identify the limit obtained in Theorem 2.3, we shall need a 

few auxiliary propositions.

L emma 2.4. Let u be the solution ( if  it exists) of the I VP (1.7). Then 

(2.4) I u (t) — u  (0) I <  t II K x  ||.
t

Proof. We have u( t )  — u (0) =  j  ~  (s) d^. Therefore
0

t
\ u ( f ) - u ( o ) \ <  j  —  (s) d s < ,t  II A x  II by [3, p. 369]. 

a

A closed subset B C H  is said to have the minimum property [9, p. 237] 
if it contains a point the norm of which equals || eleo (B) ||.
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PROPOSITION 2 .5 . Let A  be a monotone set in a Hilbert space H .  
Suppose that — A generates a semigroup S on cl (D (A)) through the initial value 
problem (1.7). I f  cl (R (A)) has the m inimum property, then fo r  each x  e cl (D (A)) 
lim S ( t , x)/t =  —-v where v is the element of least norm in cl (R (A)).

t —>- 00

Proof. Let x  e D (A) , | v \ =  and e >  o. There is [jp , z  ] e A such 
that I z  — v \  <  s. We have | S ( t , #) — x  j <  | S (/ , r̂) — S , jp) | +  
+  I S ( Py )  — y  I +  I <  2 \ x — y  I +  t II Ay || <  2 | jp | + t  \ z  \ <
<  2 I x  ~ y  I +  t (d +  s). If follows that limsup | S ( t , x) ■— x \ \ t  <Ld. On

t t  —>  0 0

the other hand, (x — S ( t , x))jt =  — J  — —  (j) di* e eleo (R (A)). Therefore
0

I S ( t yx) — x \ l t> d .  Thus lim i x  — S( t , x )  \ jt==d and (x -— S ([t}x))lt t_>OQ~> v.
t  — 0 0

The result follows.
The method of proof of this Proposition can be used to establish a result 

of Crandall mentioned (without proof) in [1, p. 166].

Lemma 2.6. Let S be generated by — A through the exponential form ula  
(1.6). Then

(2 .5 )  | S ( * , # ) — x \ <t \ \ A j ) c \ \

fo r  each j  t D  (A).

Proof. We have

I J *inX'— x \ < n  \ J tjn X — x \  <  u (//») || Ax\\ =  1 1| A x  II .

Lemma 2.7. Let S be generated by — A through the EF  (1.6). Then  
(x — S ( t , x)jt  belongs to eleo (R (A)).

Proof. We have

(x 1 Jif/M x)jt =  —— (J£jn X J x)l(tjn)
n *=0

and A ry e A ] ry.  The result follows.

PROPOSITION 2.8. Let A  be a monotone set in a Hilbert space H. Su p ­
pose that — A generates a semigroup S on cl (D (A)) through the exponential 
form ula  (1.6). I f  cl (R (A)) has the m inim um  property, then fo r  each x  € cl (D (A)) 
lim S ( t , x)\t =  — v where v is the element of least norm in  d (R (A )) .

t  —>  OO

Proof . We can mimic the proof of Proposition 2.5 with the aid of Lem­
mas 2.6 a n d . 2.7.

P r o p o s i t io n  2.9 [7, p. 385]* Let S be a semigroup on a subset D of a H il­
bert space H. Then there exists a semigroup on eleo (D) which extends S.
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Proposition 2 .1 0  [2, p. 257; 6, p. 417;  7> P- 39^]- Let S  be a semigroup 
defined on a closed and convex subset C of a Hilbert space H. Then there exists 
a unique m axim al monotone A C H x H  with cl (D (A)) =  C such that — A 
generates S through both the initial value problem (1 .7 )  and the exponential 
form ula  (1 .6 ) .

THEOREM 2.1 i . Let S be a semigroup on a subset D of a Hilbert space PL 
Let A be the unique m axim al monotone subset of PI X H with cl (D (A)) == cleo (D) 
such that — A generates the extension of S. Then lim S ( t }x ) / t = — v

_ t-> 00
fo r  each x  € D where v is the element of least norm in cl (R (A)).

Proof. We can combine Proposition 2.10 with either Propostion 2.5 or 
Proposition 2.8 because cl (R (A)) is convex [12, p. 89].

COROLLARY 2 .1 2 .  Let S be a semigroup on a closed and convex subset C 
of a Hilbert space H. Let A be the unique m axim al monotone set with 
cl (D (A)) =  C such that ■— A generates S. Then the element of least norm in 
cl (R (A)) is the element of least norm in cl (R (I ■— S (1 , •))).

Proof. Combine [9, Corollary 3] with Theorem 2.11.

3. The minimum property

We turn now to the converse problem namely, given a monotone A such 
that — A generates a semigroup S, how can lim S ( t , x)jt be related to A?

t —00
By Propositions 2.5 and 2.8 it suffices to show that cl (R (A)) has the mini­
mum property. It is obvious, for example, that if 0 e cl (R (A)), then cl (R (A)) 
has theM P. Simple examples show, however, that cl (R (A)) does not always 
possess the MP. The following result is a generalization of [9, Theorem 3].

Proposition 3*1. Let A be monotone. Suppose that there exists a sequence 
{x n : n e N } G t> (A) such that

(3-0 x„+1 =  x„ —  cny„ , ne iH,

where y„ e Ax„ and satisfies (2.1) and  (2.2). I f  { y n : » e N }  con-
verges, then cl (R (A)) has the m inimum property.

n n

Proof. Let v  =  lim y n and a„ =  2  c ,. Since x 0 — xn+x =  2  ci Vi >
»->00 i = 0  * =  o

O 0 — x„+i)la„ -> V and x„+1 /a„ — v. If  u  e D (A) and w  6 Am, then
(w  — y„+; i , u  — xn+x) >  o. After divding by a„ and letting n tend to infinity 
we obtain (w  — v , v) >  o. Thus (s — v , v) >  o for all 2 e cleo (R (A)) and 
\ v I =  11 cleo (R (A)) [| .

P r o p o s i t io n  3.2. Let a monotone and closed A  satisfy (1.5). I f  there 
exists a m axim al monotone extension B of A with D (B) C cl (D (A)), then 
cl (R (A)) has the m inim um  property.
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Proof. Let z e D  (B). For each r  >  o there are r , e D  (A) and y r e Aay 
such that z =  xr +  ryr . Since x r =  J* z  and y r =  Br z, lim x r =  z  and

lim y r =  B° z  where B° z — (BE)®. Thus z  e D (A) and B® z  e As.  Thus
r-> 00

D (B) =  D (A) and B° =  A®. Now let v be the element of least norm 
in cl (R (B)), and let vn - > v , v n e Bay . Then M  <  | A® ay | =  [ B° ay | <  
<  I v„ I . It follows that A® ay -> v.

Although the next result is known [2, p. 244], we present a different, 
direct proof which does not use Brézis’ variational inequality. (We do 
employ variants of some known ideas).

PROPOSITION 3.3. Let a monotone and closed A satisfy (1.5). I f  cl (D (A)) 
is convex, then there exists a m axim al monotone extension E of A with 
D (E) =  D (A).

Proof. Denote cl (D (A)) by C and let E =  A - |-B  where B =  3lc (the 
subdifferential of the indicator function of C) and D (E) =  D (A). B is maximal 
monotone. If r  >  o , o <  t <  2/r and y  e H ,  then the equation y  e x  +  
+  /Bar +  tA r x, which is equivalent to x  =  J? (y  — tA r ar), has a solution 
in C by Banach s fixed point theorem. If follows that B -f- A r is maximal 
monotone. Let y  e H and let ay e D (B) satisfy y  e ay +  Bay +  A r x r for each 
positive r. Fix « e D  (A) and w e B u. Since y  —  xr —  A r xr e Bay, we have 
(yw A r n ■ y  —j— xr fi- A r x r ■ ■ A.r x r , tt ay) ly o and (yw -j- A r n •— y  —[- u — 
—■ (u —-ay) , u  —• x r) >  o. Thus I u  — x r f  < \ u  — x r \ \ w  f  A r u — y  +  u \ 
and consequehtly {xr} is bounded. We also have (y  — ay — A rx r , x r —  s ) > o  
for every z e C. Taking s  =  J;v ay we obtain (y  ■— ay— A r ay , rAr xr) >  o 
and \ A r x r f ‘< \ A r xr \ \ y  — ay|. It follows that {A^a;^} is bounded too. 
Denote y — x r —  A rxr e B x ,  by br . We have x r — x s + b r ~  b , + A r xr —
— A sx s= o .  Since B is monotone, it follows that [ay — ay |2<  — (Ay ay •—
— A f x s , x r — x s). W e  also have a;r — ay =  rAr x r — sAs x s +  J^ a y — a:̂  .
Since A r ay e Ajf" ay and A sx s e A ] f x s , we obtain \ xr — x s |2<  — (Ar xr —
'— A, ay , rAr ay — sAs x s). Thus {x,.} converges to x  6 C. | xr — xr \ =  
=  r \ A r xr \->o,  so that J r Xr ~+x. If the convergence of {A,ay} is esta­
blished, then we have . x  e D (A) and a =  lim A r x r t  Ax.  Consequently,

r~> 0
y  — x  -f- a +  i  where a e A x  and b =  lim br e B#. In fact, the convergence

?—> 0
of { A r xr} can be established by invoking [6, Lemma 2.4] or by the follo­
wing argument: Let G be a maximal monotone extension of A in cl (D (A)). 
Then G is detni-closed and Gu is closed and convex for each u e D (G).

Let a subsequence of { A r x r =  Gr xr} converge weakly to w eGx.  Then 
y  — x  — w  e Thus G x n  (y  ■—■ x  — Bx) is not empty. Let z  be the unique 
element of least norm in this closed and convex subset of H. Since y  =  br +  

xr -\- Gr xr =̂  b A  x  -j- z  for some b e Bx,  we have (br — b +  ■— x  +
+  Gr xr — z , x r — x) =  o and (Gr — z , xr — x) <  o. W riting xr =  rGr 1f  
+  Jr we obtain (Gr xr — z , Gr x r) <  o. Let w  be any subsequential weak 
limit of (G r xr). Then | w  | <  lim inf \ Gs xs \ <  lim sup \ Gs x s \ < \ z \ .  It
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follows that w  =  z, {Gr xr} converges weakly to z, \Gr xr \-> \ z  \, and finally 
that { A r xr} converges strongly to z.

The last two Propositions can be combined to yield [4, Theorem 1 ] 
because the condition imposed there on A implies the convexity of cl (D (A))
[3. p- 382].

THEOREM 3.4. Let a monotone and closed A satisfy (1.5). I f  cl (D (A)) 
is convex and  S is the semigroup generated by — A on cl (D (A)), then fo r  each 
X  e cl (D (A)) lim S ( t , x)\t =  — v, where v is the element o f least norm in 
cl (R (A)). *-*°°

Proof\ Combine Propositions 3.2, 3.3 and 2.8 (or 2.5).
The asymptotic behavior of nonlinear contraction semigroups in Banach 

spaces is considered in [ n ] .
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