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Equazioni differenziali non lineari. — Bowundedness and stability
Jfor a nonlinear third order differential equation. Nota di K. E. Swick,
presentata @ dal Socio G. SANSONE.

R1ASSUNTO. — Data lequazione *'+ aZ +g(x) & + 4 (x) = p (¢, x, %, %) 'Autore,
trova per le funzioni ¢, %, 4 condizioni sufficienti per la uniforme limitatezza e convergenza
a zero delle soluzioni.

I risultati dipendono essenzialmente su disuguaglianze relative a (1 /x)f gw)du, A(x)x.

0

1. INTRODUCTION

In this paper we investigate the behavior of solutions of the differential
equation

(1.1) Xtak+gx)x+r(x)=p,x,%,%),
under the basic assumptions:

(1.2) The functions ¢ and /% are continuous and real valued on the reals,
@ is a positive constant and p is continuous and real valued for
t>o and all real numbers x, ¥ and z;

(1.3) There are constants 4 > o0 and B > o such that —Cif;)— >4 for |x| > B
where G (x) = ’ g () du;
0
(1.4) There are nonnegative functions e; (£) and ¢, () such that

12, x,y,2)| < e (d) +en () (®+ 52+ for >0 and all X,y
and 2.

We will call the solutions of Eq. (1.1) uniform ultimately bounded, if
there is K > o such that for every solution x () = x (¢; %y, 2,) (#y =0) of
Eq. (1.1) there is T> o such that x? @O+ +#@ <K for £>¢ +T.

If (1.2)(1.4) are satisfied where ¢, (/) = 0 7> 0 and ¢,(#) < B, for some
By > o, then it was shown in [7] that if 4(x)sgnx>7 and %'(x) <c for
[x] > B where 0 <c<ab and 7> ¢/2a, then the solutions of Eq. (I.1)
are uniform ultimately bounded. Previously, boundedness and asymptotic
behavior of solutions of this equation had been investigated by Ezeilo [1]-[3].

(*) Nella seduta del 20 aprile 1974.
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Haas [4], Lalli [5], Miller [6], Swick [8], and Voricgk [10]. Recently
Tejumola [9] investigated boundedness of solutions of the equation

E+f(x, 2,08 +gx,8) +2@)=7p0,r,%,i),

although he required much more severe restrictions on g (x, &) than was
required in the preceding investigations of Eq. (1.1).

All of these results have contained the restriction that % (x) be bounded
by a linear function. In fact, in each instance this restriction has taken
aa x> >o0 |x|>B and either (x) <c¢ |x|>B or %'(x) < ¢ where
c<ab. It Wlll be shown here that for a certam large collection of equations,
uniform ultimate boundedness and convergence to zero of the solutions of
Eq. (1.1) can be obtained when % (x) is much larger than the bounds indicated
in the previous results.

To accomplish this goal, we will look for a Liapunov function of the

the form

form V = [ aG (2) — /o (2) doe + q,(x,v,2) where g, is a quadratic form

0
in x,y and z. The only restriction on % for positive definiteness of this
h{x) = aG(x) .
x

function will be that With the proper choice of g,» nega-

tive definiteness of V will depend on an inequality 1nvolv1ng % and G.
Define the function Q (x, ) by

Q(x, oc)——a[ (x? ZM]__[_”:Z__FEE__“M]‘Z,

x 2 x x

THEOREM 1. Let (1.2)—(1.4) be satisfied for B >o. If there are positive

2 (a2 4+ b)
constants By and o« > D@28 such that
(1.5) inf Q(x,%)>o0.
[<| >B
(1.6) et ()< Byt >=o.

then there is >0 such that if 0<ey(t)<cec t>>o0, then every solution
x (120, 2) (== 0) exists for t >ty and the solutions of Eq.(1.1) are uniform
ultimately bounded. ‘

We note that in order that (1.5) be satisfied, % (x) must satisfy

}l(x) =c|x| > B for some ¢ > o.

THEOREM 2. Let (1.2)(1.4) be satisfied where B = o. If there is an

o 2(a®+0)
o> BT such that

(1.7) fin‘fQ(x,oc)>o.
20

oo

(1.8) [el @) + ey () dt < oo,

‘0
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then theve is ©>0 such that if 0<ey(f)<e t>o0, then every solution
x () =x(t;2x,1t) 2 =0 satisfies

x#—-o0 , £@)—>o0 , F@—o0 as t—> oo,

Since the objective here is to allow /% (x) to be as large as possible, one
would not expect these inequalities to reduce to the Routh-Hurwitz conditions
ab > ¢ > o for the linear equation ¥ + a¥ 4 6% + cx = o. It can be easily
shown however, that in this case if @b > 2 ¢, then the hypotheses of Theo-
rems I and 2 are satisfied.

It is clear that in some sense % (x¥) must remain “ close” to % G (x) in
order that the inequality in (1.5) or (1.7) be satisfied. In order to investigate
some of the implications of this inequality, we set f(x) = % G@)—7A@
and look for an inequality for f(x) which will satisfy (1.5) or (1.7). The

following result gives one such answer.

THEOREM 3. If there exist constants ¢ >0,B >0 and d > 2 such that

G(x) @ (d—1)+ed(d—2)
(1.9) x = 2(d—2)

|x|> B,

(o) e S —e@— ="t fu—a) <SP <

a
< e@—2D @@~ —2w@—2) x>5.

2 (a2 + b)

. 4
Z‘}l@n inf Q (x,—a)>0 and o = m'

|«|>B
We now consider the equation

d
— >
a

(1.11) 52’—]—aa’c’—(—g(x)a‘c—I—%G(x)——f(x)=p(z‘,x,a’c,£)

which can be obtained from Eq. (1.1) by setting f(x) = ~Z,~ G(x)—72(x). The
following is a direct result of Theorems 1 and 3.

THEOREM 4. Let (1.2)~(1.4) be satisfied for B >o0. If d > 2 and there is
By > o suck that

(r.12) e (1) < By t>o.
.. A (d— G 2y
(1.13) lﬁ;n;?of “ (st 2) ,ix)'_ fx(z’f) = - oo,

then there is ©> o0 such that if o< ey(f)<e, t>o0, then every solution
x(t;%0,4y) exists for t>1t,, and the soluz‘zom‘ of Eq. (1.11) are wuniform
ultimately bounded.
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2. PROOF OF THEOREM 1.

Eq. (1.1) is equivalent to the system of equations
¥=y
(2.1) y=s—ay—G ()
E=—h(x)+p(t,x,x,%).
Define the function V=V (x,y,2) as

X

V=2 f[aG(%)—h(u)] dae —{——?9@ +ay? o0 +a2xy—2axz—2y2
0
where o > o.
Since inf Q(x, ®) > o, it follows from an examination of Q(x, «) that

l=[>B
an(x) > Z/Zx(x) for |x| > B, and thus from (1.3) and the continuity of g (x)

and /% (x) that there are positive constants B; and Bz such that

x

(2.2) zf[aG(u)—/z(u)]duzdfG(u)du-Blzﬁj—xz—Bz.
0 0

As a result of (2.2) we have
3
(2.3) Vzij_zﬂxz—f—ayz—l-uz?~l—a2xy—zaxz—2yz~—Bz.
The right hand side of (2.3) can be written as XCX"— Bp where X = (x, v, 2)

and
a® + ab a®

—a —1I oL

The eigenvalues of C will all be positive if the determinants of the
principal minors are all positive. The first two are obviously positive and
since 4 det C = @2 (@ +28)a—2a(a® + &), it follows that det C>o if
o> —2—(612——-_!—6—)\ Since it is assumed that « satisfies this inequality, it follows
a(a?+4 206)

that there is Bs > o such that
(2.4) V>Bs(a2+42+22)—By foral x,y and 2
Along a solution (x (), ¥ (¢) , 2 (¢)) of Eq. (2.1) we have

_V(2‘1)= a [Q%ﬁ_z iﬁﬂ] x2+dzy2+232-—'2dy2-—-

,__2[_“_’_4_2@__“@]%—{-2[az-}-y—“z]}’(t,x,y,z)-

2 x
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If we set

G¢ Y 2 G hiz)
?1(x>_a ") 2% and qz(x,oc)zaT{-__xﬁ_“ ,:)

then

—V(2'1)=XDXT—{—2[ax +y—az]p where vX:(x,;y,z)

xn o 7
D= o a? —a |-
—q¢, —a 2

It follows from (1.4) and (1.6) that

and

_V(Z.I)Z XDXT—, Bylax +y—oz| —
—2e @) ax +y—ax| (xz + 42 +32)1/22
= XDXT_z.Bolax +y—oaz|— By, (£) (42 4 32 4 22)

where By = max (24,2 a, 2).

Since det D = a2 (ag; —¢2) = a2 Q (x, «), the eigenvalues of D will be
bounded below by a positive constant By if there are positive constants Bg

and B; such that ¢, (¥) > Bg and Q (x, «) > B,. It follows from (1.5) that
each of these inequalities is satisfied for |x| > B, and thus that there is
Bs > o such that

—V(g,l) =B; (2% +2 +22)—2By|ax +y—az| — Byey () (22 + 42 1 22).
Ifo<ep@<e< g—z, then there is Bg > 0 such that

(2.5) —Ven>1 for % 4 y2 4 22 > By,

Theorem 1 follows from (2.4) and (2.5), see e.g. [11, p. 11 and p. 38].

3. PROOF OF THEOREM 2

¢

Define E (¢) by E () = Jﬁel (s) ds, then it follows from (1.4) and (1.8)

0
that E (#) is monotonic increasing and that there is a positive constant E,

such that 0 < E () < Ey¢>0. Let V be the function defined in the proof
of Theorem 1 and define W= W (¢,x, 5,3 by

=[V@#,y,9 + £ exp(—2E (@)

where £ is a positive constant to be determined later in the proof.
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Proceeding as in the proof of Theorem 1, but using (1.7) and (1.8), we
can find a positive constant B; such that

(3I> Bl(xz_]_yz_l—gz)SV(x:y:z)

2 (a2 + b)

for all x, y andzifoc>m.

It follows that

(3.2) Byexp (—2 Ey) (12 + 2 + 59 + dexp (—2 Ep) <
SW(E,x,y,9<V(x,y,9) +4

for £>o0 and all x,y and 2.

Again proceeding as in the proof of Theorem 1, it follows from (1.7)
and (1.8) that there is B, > 0 such that along any solution (x (?), ¥ (3), 2 (¢))
of (2.1)

——\'7(2.1)2 By (22 492 +22) — By e5(¢) (a2 + y2 +&%)—z2ea @) |ax+y — az|

where By =max (2a,2a,2). If ogeg(t)§s<%2— and B, = B, —¢Bjy
3
we have

V(2.1)£—B4(x2+3’2 +2%) + 26 () |ax + y — az]

for #>o0 and all x, y and 2.
Along a soluton (x (2), ¥ (¢) , 2 (¢)) of Eq. (2.1) we have

Wen = —2¢,(2) [V + & exp (—E (%) 4+ Vey exp (— E (&) <
<exp(—E@){—By (a2 +32+52) —26 @[V + & —|ax + y — az|]}.

It follows from (3.1) that if we set £ = 612—+]§.)‘2—+L, then
' 1
(3:3) W < — By exp (— Eg) (22 + 32 + %)

for £>>0 and all x, y and .

We note that as a result of (3.2) and (3.3), all solutions of Eq. (2.1) are
bounded, and Theorem 2 follows from Yoshizawa [11, p. 61] noting that
G =o0,%4()=0 and if (x(), y (), z(®)) is a solution of Eq. (2.1), then
there is K > 1 such that 22 (¢) + 2 (¢) + 22 () < K for >0 and along this
solutionh we have

1pC 2@,y @, s @) di< f () + e )@@ L) +20)di<
0 0

(o]

<K (el(z‘)—l—ez(t)dt<oo.
0
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4. PROOF OF THEOREM 3

If we let /2 (x) = 2 G (x) —f (), then

Qe m=afa Sl 2900 |, s0]

2
—[—ﬂi—l— G@x ng(x) + o fix)] ,

2 x

,d > 2, we have

and setting o« = g

Qx,0)= o [£E4=20 +2.@p]__[gi+“ﬂ&1r

2 ax

2 2@+

PR ey o To satisfy (1.5) or (1.7) there must be § > o

where o = % >
such that

o[ 2 S0 [2 4 e

2 ax

for [x| > B. This inequality can be rewritten as

L @—a Y e[ LU

24°
4

Setting ¢ = il

—~ and simplifying we obtain the inequality expressed

in (1.10).
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