Rendiconti

K. E. Swick
 Boundedness and stability for a nonlinear third order differential equation

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 56 (1974), n.6, p. 859-865.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1974_8_56_6_859_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Equazioni differenziali non lineari. - Boundedness and stability for a nonlinear third order differential equation. Nota di K. E. Swick, presentata ${ }^{(*)}$ dal Socio G. Sansone.

[^0]
I. INTRODUCTION

In this paper we investigate the behavior of solutions of the differential equation

$$
\begin{equation*}
\ddot{x}+a \ddot{x}+g(x) \dot{x}+h(x)=p(t, x, \dot{x}, \ddot{x}) \tag{I.I}
\end{equation*}
$$

under the basic assumptions:
(I.2) The functions g and h are continuous and real valued on the reals, a is a positive constant and p is continuous and real valued for $t \geq 0$ and all real numbers x, y and z;
(I.3) There are constants $b>0$ and $\mathrm{B} \geq \mathrm{o}$ such that $\frac{\mathrm{G}(x)}{x} \geq b$ for $|x|>\mathrm{B}$ where $\mathrm{G}(x)=\int_{0}^{x} g(u) \mathrm{d} u$;
(1.4) There are nonnegative functions $e_{1}(t)$ and $e_{2}(t)$ such that $|p(t, x, y, z)| \leq e_{1}(t)+e_{2}(t)\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$ for $t \geq 0$ and all x, y and z.

We will call the solutions of Eq. (I.I) uniform ultimately bounded, if there is $\mathrm{K}>0$ such that for every solution $x(t)=x\left(t ; x_{0}, t_{0}\right)\left(t_{0} \geq 0\right)$ of Eq. (I.I) there is $\mathrm{T}>0$ such that $x^{2}(t)+\dot{x}^{2}(t)+\ddot{x}^{2}(t) \leq \mathrm{K}$ for $t \geq t_{0}+\mathrm{T}$.

If (I.2)-(I.4) are satisfied where $e_{2}(t)=0 t \geq 0$ and $e_{1}(t) \leq \mathrm{B}_{0}$ for some $\mathrm{B}_{0} \geq 0$, then it was shown in [7] that if $h(x) \operatorname{sgn} x \geq \eta$ and $h^{\prime}(x) \leq c$ for $|x|>\mathrm{B}$ where $\mathrm{o}<c<a b$ and $\eta>c / 2 a$, then the solutions of Eq. (I.I) are uniform ultimately bounded. Previously, boundedness and asymptotic hehavior of solutions of this equation had been investigated by Ezeilo [I]-[3].
(*) Nella seduta del 20 aprile 1974.

Haas [4], Lalli [5], Müller [6], Swick [8], and Vorácěk [ıo]. Recently Tejumola [9] investigated boundedness of solutions of the equation

$$
\ddot{x}+f(x, \dot{x}, \ddot{x}) \ddot{x}+g(x, \dot{x})+h(x)=p(t, x, \dot{x}, \ddot{x}),
$$

although he required much more severe restrictions on $g(x, \dot{x})$ than was required in the preceding investigations of Eq. (I.I).

All of these results have contained the restriction that $h(x)$ be bounded by a linear function. In fact, in each instance this restriction has taken the form $\frac{h^{\prime}(x)}{x}>0|x|>\mathrm{B}$ and either $\frac{h(x)}{x} \leq c|x|>\mathrm{B}$ or $h^{\prime}(x) \leq c$ where $c<a b$. It will be shown here that for a certain large collection of equations, uniform ultimate boundedness and convergence to zero of the solutions of Eq. (I.I) can be obtained when $h(x)$ is much larger than the bounds indicated in the previous results.

To accomplish this goal, we will look for a Liapunov function of the form $\mathrm{V}=\int_{0}^{x} a \mathrm{G}(u)-h(u) \mathrm{d} u+q_{0}(x, y, z)$ where q_{0} is a quadratic form in x, y and z. The only restriction on h for positive definiteness of this function will be that $\frac{h(x)}{x} \leq \frac{a \mathrm{G}(x)}{x}$. With the proper choice of q_{0}, negative definiteness of $\dot{\mathrm{V}}$ will depend on an inequality involving h and G.

Define the function $\mathrm{Q}(x, \alpha)$ by

$$
\mathrm{Q}(x, \alpha)=a\left[a \frac{\mathrm{G}(x)}{x}-2 \frac{h(x)}{x}\right]-\left[\frac{a^{2}}{2}+\frac{\mathrm{G}(x)}{x}-\alpha \frac{h(x)}{x}\right]^{2} .
$$

Theorem i. Let (I.2)-(I.4) be satisfied for $\mathrm{B} \geq \mathrm{o}$. If there are positive constants B_{0} and $\alpha>\frac{2\left(a^{2}+b\right)}{a\left(a^{2}+2 b\right)}$ such that

$$
\begin{align*}
& \inf _{|x|>\mathrm{B}} \mathrm{Q}(x, \alpha)>0 . \tag{1.5}\\
& e_{1}(t) \leq \mathrm{B}_{0} t \geq \mathrm{o} . \tag{..6}
\end{align*}
$$

then there is $\varepsilon>0$ such that if $\mathrm{o} \leq e_{2}(t) \leq \varepsilon t \geq 0$, then every solution $x\left(t: x_{0}, t_{0}\right)\left(t_{0} \geq 0\right)$ exists for $t \geq t_{0}$ and the solutions of Eq. (I.I) are uniform ultimately bounded.

We note that in order that (I.5) be satisfied, $h(x)$ must satisfy $\frac{h(x)}{x} \geq c|x|>\mathrm{B}$ for some $c>0$.

Theorem 2. Let (I.2)-(I.4) be satisfied where $\mathrm{B}=\mathrm{o}$. If there is an $\alpha>\frac{2\left(a^{2}+b\right)}{a\left(a^{2}+2 b\right)}$ such that

$$
\begin{align*}
& \inf _{x \neq 0} Q(x, \alpha)>0 . \tag{1.7}\\
& \int_{0}^{\infty} e_{1}(t)+e_{2}(t) \mathrm{d} t<\infty . \tag{I.8}
\end{align*}
$$

then there is $\varepsilon>0$ such that if $0 \leq e_{2}(t) \leq \varepsilon t \geq 0$, then every solution $x(t)=x\left(t ; x_{0}, t_{0}\right) t_{0} \geq 0$ satisfies

$$
x(t) \rightarrow 0 \quad, \quad \dot{x}(t) \rightarrow 0 \quad, \quad \ddot{x}(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

Since the objective here is to allow $h(x)$ to be as large as possible, one would not expect these inequalities to reduce to the Routh-Hurwitz conditions $a b>c>0$ for the linear equation $\ddot{x}+a \ddot{x}+b \dot{x}+c x=0$. It can be easily shown however, that in this case if $a b>2 c$, then the hypotheses of Theorems I and 2 are satisfied.

It is clear that in some sense $h(x)$ must remain "close" to $\frac{1}{\alpha} G(x)$ in order that the inequality in (I.5) or (1.7) be satisfied. In order to investigate some of the implications of this inequality, we set $f(x)=\frac{a}{d} G(x)-h(x)$ and look for an inequality for $f(x)$ which will satisfy (I.5) or (1.7). The following result gives one such answer.

Theorem 3. If there exist constants $\mathrm{\varepsilon}>\mathrm{o}, \mathrm{B} \geq \mathrm{o}$ and $d>2$ such that

$$
\begin{equation*}
\frac{\mathrm{G}(x)}{x}>\frac{a^{2}(d-\mathrm{I})+\varepsilon d(d-2)}{d(d-2)} \quad|x|>\mathrm{B} \tag{I.9}
\end{equation*}
$$

(I.IO) $\frac{-a^{2}}{d^{2}}\left\{\left[d(d-2) \frac{\mathrm{G}(x)}{x}-a^{2}(d-\mathrm{I})-\varepsilon\right]^{1 / 2}+\frac{a}{2}(d-2)\right\} \leq \frac{f(x)}{x} \leq$

$$
\leq \frac{a^{2}}{d^{2}}\left\{\left[d(d-2) \frac{\mathrm{G}(x)}{x}-a^{2}(d-\mathrm{I})-\varepsilon\right]^{1 / 2}-\frac{a}{2}(d-2)\right\} \quad|x|>\mathrm{B}
$$

then $\inf _{|x|>\mathrm{B}} \mathrm{Q}\left(x, \frac{d}{a}\right)>0$ and $\alpha=\frac{d}{a}>\frac{2\left(a^{2}+b\right)}{a\left(a^{2}+2 b\right)}$.
We now consider the equation

$$
\begin{equation*}
\ddot{x}+a \ddot{x}+g(x) \dot{x}+\frac{a}{d} G(x)-f(x)=p(t, x, \dot{x}, \ddot{x}) \tag{I.II}
\end{equation*}
$$

which can be obtained from Eq. (I.I) by setting $f(x)=\frac{a}{d} G(x)-h(x)$. The following is a direct result of Theorems I and 3 .

THEOREM 4. Let (I.2)-(I.4) be satisfied for $\mathrm{B} \geq \mathrm{o}$. If $d>2$ and there is $\mathrm{B}_{0}>\mathrm{o}$ such that

$$
\begin{align*}
& e_{1}(t) \leq \mathrm{B}_{0} \quad t \geq 0 \tag{I.I2}\\
& \liminf _{|x| \rightarrow \infty} \frac{a^{4}(d-2)}{2 d^{3}} \frac{\mathrm{G}(x)}{x}-\frac{f^{2}(x)}{x^{2}}=+\infty \tag{I.I3}
\end{align*}
$$

then there is $\varepsilon>0$ such that if $0 \leq e_{2}(t) \leq \varepsilon, t \geq 0$, then every solution $x\left(t ; x_{0}, t_{0}\right)$ exists for $t \geq t_{0}$, and the solutions of $E q$. (I.II) are uniform ultimately bounded.

2. Proof of Theorem i.

Eq. (I.I) is equivalent to the system of equations

$$
\begin{align*}
& \ddot{x}=y \\
& \dot{y}=z-a y-\mathrm{G}(x) \tag{2.I}\\
& \dot{z}=-h(x)+p(t, x, \dot{x}, \ddot{x}) .
\end{align*}
$$

Define the function $\mathrm{V}=\mathrm{V}(x, y, z)$ as

$$
\mathrm{V}=2 \int_{0}^{x}[a \mathrm{G}(u)-h(u)] \mathrm{d} u+\frac{a^{3}}{2} x^{2}+a y^{2}+\alpha z^{2}+a^{2} x y-2 a x z-2 y z
$$

where $\alpha>0$.
Since $\inf _{|x|>\mathrm{B}} \mathrm{Q}(x, \alpha)>0$, it follows from an examination of $\mathrm{Q}(x, \alpha)$ that $\frac{a \mathrm{G}(x)}{x} \geq \frac{2 h(x)}{x}$ for $|x|>\mathrm{B}$, and thus from (I.3) and the continuity of $g(x)$ and $h(x)$ that there are positive constants B_{1} and B_{2} such that

$$
\begin{equation*}
2 \int_{0}^{x}[a \mathrm{G}(u)-h(u)] \mathrm{d} u \geq a \int_{0}^{x} \mathrm{G}(u) \mathrm{d} u-\mathrm{B}_{1} \geq \frac{a b}{2} x^{2}-\mathrm{B}_{2} . \tag{2.2}
\end{equation*}
$$

As a result of (2.2) we have

$$
\begin{equation*}
\mathrm{V} \geq \frac{a^{3}+a b}{2} x^{2}+a y^{2}+\alpha z^{2}+a^{2} x y-2 a x z-2 y z-\mathrm{B}_{2} . \tag{2.3}
\end{equation*}
$$

The right hand side of (2.3) can be written as $\mathrm{XCX}^{\mathrm{T}}-\mathrm{B}_{2}$ where $\mathrm{X}=(x, y, z)$ and

$$
\mathrm{C}=\left(\begin{array}{ccc}
\frac{a^{3}+a b}{2} & \frac{a^{2}}{2} & -a \\
\frac{a^{2}}{2} & a & -\mathrm{I} \\
-a & -\mathrm{I} & \alpha
\end{array}\right) .
$$

The eigenvalues of C will all be positive if the determinants of the principal minors are all positive. The first two are obviously positive and since $4 \operatorname{det} \mathrm{C}=a^{2}\left(a^{2}+2 b\right) \alpha-2 a\left(a^{2}+b\right)$, it follows that $\operatorname{det} \mathrm{C}>0$ if $\alpha>\frac{2\left(a^{2}+b\right)}{a\left(a^{2}+2 b\right)}$. Since it is assumed that α satisfies this inequality, it follows that there is $B_{3}>0$ such that

$$
\begin{equation*}
\mathrm{V} \geq \mathrm{B}_{3}\left(x^{2}+y^{2}+z^{2}\right)-\mathrm{B}_{2} \quad \text { for all } x, y \quad \text { and } \quad z . \tag{2.4}
\end{equation*}
$$

Along a solution $(x(t), y(t), z(t))$ of Eq. (2.1) we have

$$
\begin{aligned}
& -\dot{\mathrm{V}}_{(2.1)}=a\left[a \frac{\mathrm{G}(x)}{x}-2 \frac{h(x)}{x}\right] x^{2}+a^{2} y^{2}+2 z^{2}-2 a y z- \\
& -2\left[\frac{a^{2}}{2}+\frac{\mathrm{G}(x)}{x}-\alpha \frac{h(x)}{x}\right] x z+2[a z+y-\alpha z] p(t, x, y, z) .
\end{aligned}
$$

If we set

$$
q_{1}(x)=a \frac{\mathrm{G}(x)}{x}-2 \frac{h(x)}{x} \quad \text { and } \quad q_{2}(x, \alpha)=\frac{a^{2}}{2}+\frac{\mathrm{G}(x)}{x}-\alpha \frac{h(x)}{x}
$$

then

$$
-\dot{\mathrm{V}}_{(2.1)}=\mathrm{XDX}^{\mathrm{T}}+2[a x+y-\alpha z] p \quad \text { where } \quad \mathrm{X}=(x, y, z)
$$

and

$$
\mathrm{D}=\left(\begin{array}{ccc}
a q_{1} & 0 & -q_{2} \\
0 & a^{2} & -a \\
-q_{2} & -a & 2
\end{array}\right)
$$

It follows from (I.4) and (I.6) that

$$
\begin{gathered}
-\dot{\mathrm{V}}_{(2.1)} \geq \mathrm{XDX}^{\mathrm{T}}-2 \mathrm{~B}_{0}|a x+y-\alpha z|- \\
-2 e_{2}(t)|a x+y-\alpha x|\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2} \geq \\
\geq \mathrm{XDX}^{\mathrm{T}}-2 \mathrm{~B}_{0}|a x+y-\alpha z|-\mathrm{B}_{4} e_{2}(t)\left(x^{2}+y^{2}+z^{2}\right)
\end{gathered}
$$

where $\mathrm{B}_{4}=\max (2 a, 2 \alpha, 2)$.
Since $\operatorname{det} \mathrm{D}=a^{2}\left(a q_{1}-q_{2}^{2}\right)=a^{2} \mathrm{Q}(x, \alpha)$, the eigenvalues of D will be bounded below by a positive constant B_{5} if there are positive constants B_{6} and B_{7} such that $q_{1}(x) \geq \mathrm{B}_{6}$ and $\mathrm{Q}(x, \alpha) \geq \mathrm{B}_{7}$. It follows from (I.5) that each of these inequalities is satisfied for $|x|>\mathrm{B}$, and thus that there is $\mathrm{B}_{5}>0$ such that

$$
-\dot{\mathrm{V}}_{(2.1)} \geq \mathrm{B}_{5}\left(x^{2}+y^{2}+z^{2}\right)-2 \mathrm{~B}_{0}|a x+y-\alpha z|-\mathrm{B}_{4} e_{2}(t)\left(x^{2}+y^{2}+z^{2}\right)
$$

If $\mathrm{o} \leq e_{2}(t) \leq \varepsilon<\frac{\mathrm{B}_{5}}{\mathrm{~B}_{4}}$, then there is $\mathrm{B}_{8}>0$ such that

$$
\begin{equation*}
-\dot{\mathrm{V}}_{(2.1)} \geq \mathrm{I} \quad \text { for } \quad x^{2}+y^{2}+z^{2} \geq \mathrm{B}_{8} \tag{2.5}
\end{equation*}
$$

Theorem I follows from (2.4) and (2.5), see e.g. [II, p. II and p. 38].

3. Proof of theorem 2

Define $\mathrm{E}(t)$ by $\mathrm{E}(t)=\int_{0}^{t} e_{1}(s) \mathrm{d} s$, then it follows from (1.4) and (I.8) that $\mathrm{E}(t)$ is monotonic increasing and that there is a positive constant E_{0} such that $\mathrm{o} \leq \mathrm{E}(t) \leq \mathrm{E}_{0} t \geq \mathrm{o}$. Let V be the function defined in the proof of Theorem 1 and define $\mathrm{W}=\mathrm{W}(t, x, y, z)$ by

$$
\mathrm{W}=[\mathrm{V}(x, y, z)+k] \exp (-2 \mathrm{E}(t))
$$

where k is a positive constant to be determined later in the proof.

Proceeding as in the proof of Theorem I, but using (I.7) and (I.8), we can find a positive constant B_{1} such that

$$
\begin{equation*}
\mathrm{B}_{1}\left(x^{2}+y^{2}+z^{2}\right) \leq \mathrm{V}(x, y, z) \tag{3.1}
\end{equation*}
$$

for all x, y and z if $\alpha>\frac{2\left(a^{2}+b\right)}{a\left(a^{2}+2 b\right)}$. It follows that

$$
\begin{gather*}
\mathrm{B}_{1} \exp \left(-2 \mathrm{E}_{0}\right)\left(x^{2}+y^{2}+z^{2}\right)+k \exp \left(-2 \mathrm{E}_{0}\right) \leq \tag{3.2}\\
\leq \mathrm{W}(t, x, y, z) \leq \mathrm{V}(x, y, z)+k
\end{gather*}
$$

for $t \geq 0$ and all x, y and z.
Again proceeding as in the proof of Theorem I , it follows from (r.7) and (I.8) that there is $\mathrm{B}_{2}>0$ such that along any solution $(x(t), y(y), z(t))$ of (2.I)

$$
-\dot{\mathrm{V}}_{(2.1)} \geq \mathrm{B}_{2}\left(x^{2}+y^{2}+z^{2}\right)-\mathrm{B}_{3} e_{2}(t)\left(x^{2}+y^{2}+z^{2}\right)-2 e_{1}(t)|a x+y-\alpha z|
$$

where $\mathrm{B}_{3}=\max (2 a, 2 \alpha, 2)$. If $\mathrm{o} \leq e_{2}(t) \leq \varepsilon<\frac{\mathrm{B}_{2}}{\mathrm{~B}_{3}}$ and $\mathrm{B}_{4}=\mathrm{B}_{2}-\varepsilon \mathrm{B}_{3}$ we have

$$
\dot{\mathrm{V}}_{(2.1)} \leq-\mathrm{B}_{4}\left(x^{2}+y^{2}+z^{2}\right)+2 e_{1}(t)|a x+y-\alpha z|
$$

for $t \geq 0$ and all x, y and z.
Along a soluton $(x(t), y(t), z(t))$ of Eq. (2.I) we have

$$
\begin{gathered}
\dot{\mathrm{W}}_{(2.1)}=-2 e_{1}(t)[\mathrm{V}+k] \exp (-\mathrm{E}(t))+\dot{\mathrm{V}}_{(2.1)} \exp (-\mathrm{E}(t)) \leq \\
\leq \exp (-\mathrm{E}(t))\left\{-\mathrm{B}_{4}\left(x^{2}+y^{2}+z^{2}\right)-2 e_{1}(t)[\mathrm{V}+k-|a x+y-\alpha z|]\right\} .
\end{gathered}
$$

It follows from (3.1) that if we set $k=\frac{a^{2}+\alpha^{2}+\mathrm{I}}{\mathrm{B}_{1}}$, then

$$
\begin{equation*}
\dot{\mathrm{W}}_{(2.1)} \leq-\mathrm{B}_{4} \exp \left(-\mathrm{E}_{0}\right)\left(x^{2}+y^{2}+z^{2}\right) \tag{3.3}
\end{equation*}
$$

for $t \geq 0$ and all x, y and z.
We note that as a result of (3.2) and (3.3), all solutions of Eq. (2.1) are bounded, and Theorem 2 follows from Yoshizawa [iI, p. 6I] noting that $\mathrm{G}(\mathrm{o})=\mathrm{o}, h(\mathrm{o})=\mathrm{o}$ and $\mathrm{if}(x(t), y(t), z(t))$ is a solution of Eq. (2.1), then there is $\mathrm{K} \geq \mathrm{I}$ such that $x^{2}(t)+y^{2}(t)+z^{2}(t) \leq \mathrm{K}$ for $t \geq 0$ and along this solution we have

$$
\begin{gathered}
\int_{0}^{\infty}|p(t, x(t), y(t), z(t))| \mathrm{d} t \leq \int_{0}^{\infty} e_{1}(t)+e_{2}(t)\left(x^{2}(t)+y^{2}(t)+z^{2}(t)\right) \mathrm{d} t \leq \\
\leq \mathrm{K} \int_{0}^{\infty} e_{1}(t)+e_{2}(t) \mathrm{d} t<\infty
\end{gathered}
$$

4. Proof of Theorem 3

If we let $h(x)=\frac{a}{d} G(x)-f(x)$, then

$$
\begin{gathered}
\mathrm{Q}(x, \alpha)=a\left[a \frac{\mathrm{G}(x)}{x}-\frac{2 a \mathrm{G}(x)}{\mathrm{d} x}+2 \frac{f(x)}{x}\right]- \\
-\left[\frac{a^{2}}{2}+\frac{\mathrm{G}(x)}{x}-\frac{\alpha a \mathrm{G}(x)}{\mathrm{d} x}+\alpha \frac{f(x)}{x}\right]^{2},
\end{gathered}
$$

and setting $\alpha=\frac{d}{a}, d>2$, we have

$$
\mathrm{Q}(x, \alpha)=a\left[\frac{a(d-2) \mathrm{G}(x)}{\mathrm{d} x}+2 \frac{f(x)}{x}\right]-\left[\frac{a^{2}}{2}+\frac{\mathrm{d} f(x)}{a x}\right]^{2}
$$

where $\alpha=\frac{d}{a}>\frac{2}{a}>\frac{2\left(a^{2}+b\right)}{a\left(a^{2}+2 b\right)}$. To satisfy (I.5) or (I.7) there must be $\delta>0$ such that

$$
a\left[\frac{a(d-2) \mathrm{G}(x)}{\mathrm{d} x}+2 \frac{f(x)}{x}\right]-\left[\frac{a^{2}}{2}+\frac{\mathrm{d} f(x)}{a x}\right]^{2}-\delta \geq 0
$$

for $|x|>B$. This inequality can be rewritten as

$$
\frac{a^{4}}{d^{4}}\left[d(d-2) \frac{\mathrm{G}(x)}{x}-a^{2}(d-\mathrm{I})-\frac{\delta d^{4}}{a^{4}}\right] \geq\left[\frac{f(x)}{x}+\frac{a^{3}(d-2)}{2 d^{2}}\right]^{2}
$$

Setting $\varepsilon=\frac{\delta d^{4}}{a^{4}}$ and simplifying we obtain the inequality expressed in (1.10).

References

[I] J. O.C. Ezeilo (1966) - A stability result for a certain third order differential equation, «Ann. Math. Pura Appl.», $7^{2,}$, i-1o.
[2] J. O. C. Ezeilo (1968) - On the boundedness of solutions of the equation $\ddot{x}=a \dddot{x}+f(x) \dot{x}+$ $+g(x)=p(t)$, "Ann. Math. Pura Appl.», 8o, 28I-330.
[3] J. O.C. EzeIlo (1962) - A stability result for the solutions of certain third order differential equations, "J. London Math. Soc.», 37, 405-409.
[4] Violet Hass (1965) - A stability result for a third order nonlinear differential equation, «J. London Math. Soc.», 40, 3I-33.
[5] B. S. Lalli (1967) - On stability of solutions of certain differential equations of the third order, «Canad. Math. Bull.», то, 681-688.
[6] Müller Von Wolfdietrich (1969) - Über Stabilität und Beschränktheit der Lösungen gzzoisser Differentialgleichungen dritter Ordunng, "Math. Nachr.», 4I (4-6), 335-359.
[7] K. E. SwIck (1970) - A boundedness result for the solutions of certain third order differential equations, "Ann. Math. Pura Appl.», 86, 169-180.
[8] K. E. Swick (1970) - Asymptotic behavior of the solutions of certain third order differential equations, «SIAM J. Appl. Math », 19, 96-102.
[9] H. O. Tejumola (1972) - A note on the boundedness and the stability of solutions of certain third order differential equations, "Ann. Math. Pura Appl », 92, 64-75.
[10] J. Vorácĕk (1965) - Einige Bemerkungen über nightineare Differentialgleichung dritter Ordnung, «Abh. Deutsch. Akad. Wiss. Berlin Ki. Math. Phys. Tech. Jg.», I, 372-378.
[11] T. Yoshizawa (1966) - Stability Theory by Liapunov's Second Method, Mathematical Society of Japan, Tokyo, Japan.

[^0]: Riassunto. - Data l'equazione $\dddot{x}+a \ddot{x}+g(x) \dot{x}+h(x)=p(t, x, \dot{x}, \ddot{x})$ l'Autore, trova per le funzioni g, h, p condizioni sufficienti per la uniforme limitatezza e convergenza a zero delle soluzioni.

 I risultati dipendono essenzialmente su disuguaglianze relative a $(\mathrm{I} / x) \int_{0}^{x} g(u) \mathrm{d} u, h(x) x$.

