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A lgebra. — • Some new results on certain fin ite s t r u c t u r e s N o t a  

di P i e r  V i t t o r i o -C e c c h e r i n i 0"0, p r e s e n t a t a 0 ** (***)5 dal Socio B. S e g r e .

RIASSUNTO. —• Ogni anello qui considerato viene assunto finito, commutativo ed 
unitario. Sotto opportune ipotesi ulteriori per l’anello, viene calcolato il numero delle fun
zioni polinomiali e quello delle funzioni polinomiali biunivoche; nel caso generale, vengono 
fornite alcune stime per i numeri anzidetti. Ciò conduce, fra l’altro, a teoremi di esistenza 
per «reti» K1>N  ̂ (nel senso geometrico introdotto da B. Segre [io]) e per gruppi transitivi 

nonché a teoremi di esistenza per gli i-disegni e per le configurazioni associati a 
quelli. Vengono infine determinati i binomi «minimi» del tipo X ^;—- che svaniscono
sull’anello. Ulteriori precisazioni sul contenuto del lavoro trovansi nell’Introduzione.

i .  I n t r o d u c t io n

Every ring A under consideration will be finite, commutative with unit. We study: 
the set Map (An,A )  (A n— n-th cartesian power of the set A), 
the set Pol (An, A) of all /e M a p  (An, A) induced by an F (X) e A [Xi ,• • •, X«],
the set Trs (A*, A) =  Map (Aw, A) — Pol (An, A),
the set Per (A) of all permutations on A, 
the set PPer (A) =  Pol (A , A) n  Per (A),
the set TPer (A) =  Per (A) — PPer (A) .

Let, us write

(A) =  I Map (A”, A) I , tt(w) (A) =  | Pol (.An, A) j , t (w) (A) =  | Trs (A", A) | ,

Pp (A) =  I PPer (A) | , pT (A) =  | TPer (A) | .

It is well known [5] that if A is a finite field, then iẑ n) (A) =  \L̂n) (A) and that tc(1) (A) =
=  (A) iff A is a finite field [2], [7], [8]; moreover, if A =  Zm, the values 7r(1) (A) , pp (A)
are well known too [4], [3].

We prove that iz(n) (A) =  p,(%) (A) iff A is a finite field and that the functions 7r(w) 
and pp are multiplicative. This leads to calculating the values of tĉ  (A), of (A)
and of pp (A) for certain rings A; in the general case, some estimations of those numbers 
are given.

We also prove that Pol (A , A) and Trs (A , A) act as 1-transitive sets of maps A A 
with indices tc(1) (A)/| A | and t (1) (A )/|A  | resp.; moreover PPer (A) acts as a i-transitive 
group of permutations on A with index pp (A)/| A | ; TPer (A) acts as a 1-transitive set 
of permutations on A with index pT (A )/|A ,l. In this way we obtain several existence 
theorems for transitive groups Gx  ̂ N and for nets Kx k N (in the geometrical meaning 
introduced by B. Segre), thus partially answering a problem raised by B. Segre; other exist
ence theorems for certain tactical configurations can be deduced.

Finally “ minimal ” binomials of the type X.k — XÄ which vanish over the ring A 
are determined.

(*) Work included in the activities of Section 4 of the G.N.S.A.G.A. of the C.N.R.
(**) Partially supported by a grant of the Royal Society (London) in connection with 

the Accademia Nazionale dei Lincei (Rome),
(***) Nella seduta del 29 giugno 1974.
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2. I n t r o d u c t o r y  r e s u l t s

2.1. Let A be any finite commutative ring with unit 1, D the subset of A including o 
and all the zero divisors of A (if there are any); let U =  A ■— D and Rad A =  ]/o be the 
set of nilpotent elements of A. Then:

(a) U is the group of units of A (i.e. D is the set of the non-invertible elements of A). 
(fi) A is a field iff D =  {o}.
(c) The following relations hold:

D-A =  D , U .U -*  =  U , — D =  D , — U =  U .

(fi) Each ideal I (=|=A) of A is contained in D.
(e) An ideal I of A is prime iff it is maximal.
(/) A is a noetherian and artinian ring.
(g) The following conditions are equivalent:

{gfi A is a primary ring (with prime ideal D),
(g2) A is a local ring (with maximal ideal D),
(g3) D is an ideal of A,
(g4) D =  Rad A,
(g5) Every idempotent of A is either o or 1.

(h) If A satisfies one of the conditions (g), then | A | and | D | are both powers of 
the characteristic fi of the residual field A/D.

(i) I A I is of the form fih iff char A is of the form fik {fi prime).
(J) A is the direct sum of local (i.e. primary) rings and this decomposition is 

unique, with the number of summands equal to the number of prime ideals of A, each of 
these being an isolated prime ideal of (o). Moreover if

(j\) A =  Ai © A2 © • • • ©A* (A* local ring)

is such a decomposition, then

C/2) Rad A =  D (Ai) © D (Aa) © • • • © D (A,)

where D (A,-) is the maximal ideal of A*, and

Us) U (A) =  U (Ai) ® U (A2) 0  • • • ® U (A ,) .

Here U (A)—Ü14 group of units of A—is cyclic iff each U (A*) is cyclic and

I U (Ai) I , I U (A2) I , • • *, I U (As) I
are coprirne in pairs.

j(i4) ? (A) = n ? (a,-)2—1

(multiplicativity of the Euler generalized function  defined by 9 (A) =  | U (A) | ).
(k) With respect to {jfi, R adA  =  {o} iff A i , A2 ,• • •, A s are fields. In particular

{kfi A /Rad A =  © A,*/D (A,*)
2=1

is a direct sum of fields.
(/) If A is a subring of a finite ring B, then D (A) =  D (B) n  A , U (A) =  U (B) n  A, 

Rad A =  A n R q d  B, and U (A) is subgroup of U (B).
i h1 h9 h,

{m) For each N =  fi1 fi2 • • -fifi and for each j* such that k <  s<  h\ +  +  • • • +  hk ,
there exists a ring A with N elements and having local summands according to {jfi.

(n) If A is local, then char A <  char (A/D)* j D ].
(o) If A is local, then char A — jfi iff | D | == fi {fi prime).
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Proof. Each statement is quite trivial, and the proofs are left to the reader. We 
note only that (j) may be deduced from elementary properties of artinian rings (cf. [11], 
p. 205) of from elementary properties of noetherian rings (cf. [11], p. 213).

Let A  [X] and A  [ X i , X2 , • • - , X J  be the rings of polynomials over A  
in the indeterminates X and X i , X2 , • • •, X n resp.

If S , S' are any sets, let Map (S , S') denote the set of all functions 
S -> S'. We shall be interested in the cases when S' — A and S =  A n =  
=  A x A x  • • • x A ( n  >  1) or S is any overring of A. It is clear that 
Map (A , A) and, more generally, Map (An, A) become rings in the natural 
way and that each polynomial F(X) e A  [Xi , X2 , • • •, X J  induces a func
tion / e M a p ( A w, A) defined by / ( c )  =  F (c )(c e A " ). In this way we get 
a ring morphism

a : A  [ X i , X 2 , - . . ,  X J  ->Map (A f  A) (oc(F(X)) =  / )  

the kernel of which will be denoted by

I (A”) =  {F (X) e A  [Xj., X 2 , • • •, X J  | c e A" i=> F (c) =  o} ; 

in the following we write

Pol (A n, A) for Im a,

and say that /e M a p (A ”, A) is a polynomial or a “ trascendental” function  according as 

/ e  Pol (A*, A) or / e  Trs (An} A) =  Map (A”, A) — Pol (Aw, A) .

By the first homomorphism theorem (applied to a) we get:

2.2. The ring A [X i, X2,* • X«] is divided into equivalence classes by

F ( X ) ~ G ( X )  iff f  =  g.

Further Pol (An, A) is a subring of Map (An, A) and

Pol (An, A) -  A [X i, X2 , • ■ •, X J /I  (A*) .

In particular I Pol (A”, A) | is a divisor of | Map (A**, A) |, so that | Pol (An, A) | is also a 
divisor of I Trs (An, A) | .

We shall also be interested in the sets:

Per (A) =  { /e M a p  (A , A) |/  is a bijection} ,

PPer (A) =  Pol (A , A) n  Per (A) , TPer (A) =  Trs (A , A) n  Per (A).

2.3. PPer (A) is a subgroup of Per (A), with respect to composition of functions. 
In particular | PPer (A) | is a divisor of | Per (A) | =  ] A | !, so that | PPer (A) | is also 
a divisor of | TPer (A) |.

Proof. It is enough to show that if f , g e  PPer (A) then f o g  € PPer (A). If 
F (X)Ì, G (X) e A [X] induce f , g  then F (G (X)) induces f o g .

Let us note that:

2.4. The ring Pol (A n, A) is never a field. However Pol (.An, A) is a direct sum of 
fields if, and only if, A is a direct sum of fields.
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Proof. Pol (A / A) is never a field because 2.2 holds and I (An) is never a maximal 
ideal: for instance

I (An) c { F (X) e A [X i, X2 , - - ,  X„] I F(o) =  o}c A [X i, X2 ,• • •, X„] .

For the second part, it is enough, using 2.1 (k), to show that

Rad A =  {0} iff Rad (Pol (A*, A)) =  {o } .

Because A C-»- Pol (A n, A) =  B, say, by 2.1 (/) it is enough to proof that Rad A =  {o}i=> 
t=>Rad B =  {o}. Now, if f  e Rad B then f k =  o for some integer k >  1; i.e. f  (c)k =  o 
for every c e  A n, so that / ( c )  g Rad A for each c e A n. Because Rad A =  {o},  it follows 
that / ( c )  = 0  for each c e A ”, i.e. f  — o. Thus Rad B =  {o}.

We note also that, because A P o l  (A / A) and in virtue of 2.1 (/), the following.

2.5. If U (P o l(A n, A)) is cyclic, then U (A) is cyclic. (The converse is not true: 
take n =  1 , A == GF (q) , q =j= 2).

2.6. If A  =  © is any decomposition of A  as a direct sum of rings, 

then:

(©> A  [ X i , X2 , • • •, X„] ~  © A,- [ X i , X2 , • • •, X„]
1=1

(b) Pol (A", A) ~  © Pol (A” , A,-),
J.—1

(c) PPer (A) ~  ® PPer (A,-) .
i = l

Proof, (a) Trivial, (è) By 2.2 it follows that

Pol (AK, A) ~  A  [Xi , Xa , • • •, X J /I  (A”) ~

( .0  A ;-[X i, Xa , • • •, X B]) /  I (A”) ~

-  © A ,[X ! , X2 ,• • -, X J /I (A ”) ~  © Pol (A?, A,) .
i = l i =  1

(c) By (b) Pol (A , A) ~  © Pol (A,-, A,-); define the isomorphism
i=i

ß : .© Pol (A,-, A,) -> Pol (A , A) by d t , f )  =  2 , f i p r i>
î==1 \*-l / t  =  l

where e Pol (A,-, A,-) and fir  ̂ is the projection of A  onto A,-.
Then £/,• p r { is a permutation on A  iff each f i  is a permutation on A 2-. 

So ß induces a group isomorphism (with respect to composition of functions)

ß' : 0  PPer (A,.) -> PPer (A)
i=l

and (c) follows.



844 Lincei -  Rend. Se. fis. mat. e nat. -  Vol. LVI -  giugno 1974

We can reformulate 2.6 as in the following 2.7 (of which a direct'proof is possible 
without using 2.2).

px — I TPer (A) | , — [Map (Aw, A )w  : Pol (A**, A )(+)] ( =  the number of
cosets of P o l(A w, A) in Map (An, A) considered as additive groups).

From the preceding discussion it follows that:

t̂ fV) =  t O) +  V(B) =  N N , 7t(a) (vw ---- 1) =  TW , 7T(b) J (i(w) , TC(fl) | T(n) ,
P =  Pp +  Pt =  N ! , Pp I p , Pp I pT . For simplicity write t (1) =  t  , 7t(1) =  n , 
V(D — v > {-*■(!) =  P- and tt(w)(A) etc. wherever confusion about the ring 
could' arise. 2.6, (b), (c) immediately give the following important result:

2.8. The functions and pP are multiplicative. More precisely, 

if A  =  0  A { is any decomposition of A as direct sum of rings then

ä.9. The values of tû }(A) and of pP(A) can be easily calculated in 
the following cases:

s
2.7. Let A =  © A,- be any decomposition of A as a direct sum of rings. Then 

define a function

ß : ©  Map (A* , A,-) -»M ap (A", A)

where f t e Map (A”', A,) and P n : A H-+ A" is defined by

Pri =  ®  p r . , i.e. for a  =  (« j , «2 , • • •, a )  e A", Pr. a =  ( / r . ay ,p r .a 2 ,- - - ,  p r. a j . Then:

(i) ß is a ring monomorphism,

(impossible unless n =  i)

n 00 (A ) =  n  « W  (A,-) . Pp (A) =  n  Pr (Ay).
2=1

S

(a) A  is a field; (b) A  — © G F(^);
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Therefore also t(w) (A) and px (A) can be calculated by

(a ) =  EH«) (A ) ~  (A) =  N NB—  7tw  (A) ,
Pt (a ) =  p(A) —  Pp(A) =  N ! -  pP(A) .

More precisely, in the respective cases

(a) "(,,) (A) =  l*(„) =  nN” > PP (A) =  P =  N !,

w  V ) ( A) =  n / '  , Pp(A) =  n ? , !
1=1 t i = l

(Cj) N prime. This is case (a) with  ̂ =  1 , ç1 =  N;
(c2) N =  f i1 , p  prime. Then

TC [Zpt) =  p t  , Pp (Zpi) =  P ! ( /  -  IŸ P P

h
(̂ 3) N =  p h,p  prime , h >  2. Let 7] (A) =  2  P (/), where ß (j)  is the smallest

/=3
integer t such that p i  \tl . Then

* (z / ; ) =  w  , Pp (z^*) =  /  ( /  - 1Ÿ P * {h) ;

fc4) N any integer, say N =  n  p rJ , p .  distinct primes. Then
j = 1 J

« (zN) = n Pp+^-ß , pp (Zj,) = n y ! (y - 1)*jpfrì**j
t t

(d) Tr (A) =  n  « (z ) . Pp (A) =  n  Pp (zN .),
y=1 j-=i

\e) w (A) =  n  * (GF (?,.)) n  -  (ZNy) , Pp (A) =  J J  PP (GF {g.)) I I  PP (Z„y)

where -  in ( d) , (e) -  the explicit values are given by (a), (c4).

Proof. The case (a) follows from the next 4.4; (b) follows from (a)
and 2.8; (̂ 2) and (*3) were proved by [3] (cf. also [4]); (c4) follows
from (V2), (%), 2.8; (d) follows from (*r4), 2.8; (e) follows from (ò), (c4), 2.8.

3. « F i n i t e  r in g s  a n d  t r a n s it iv e  s e t s  o f  f u n c t io n s

If S is any set with N elements, the following standard notation will 
be used:

f°r anY subset of Map (S , S), which is /-transitive with 
index k\

for any subset of Per (S), which is /-transitive with index k\ 
for any subgroup of Per (S) (with respect to composition of 
functions), which is /-transitive with index k.
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3.1. If A  is a ring with N elements, then:

(a) Pol (A , A) =  H i>N>7t/N ; (b) Trs (A , A) =  H 1;NjT/N ;

(V) PPer (A) =  G i>NjPp/N ; (d) TPer (A) =  K1)NjPt/n .

Proof. (a) For any a , b , c e A ,  let P* =  { / e  Pol (A , A) ] /(« )  =  b}.
Putting 4 : / ->/ + ^ —'b  defines a bijection (the inverse map is obvious) 
+ : Pt P“ which gives | Pf | =  | P? | . Thus | Pj | =  n/N, because each
of the N elements of A  is the image of a under some element of Pol (A , A).

if) Proceed in a similar way as for (a), or instead by observing that, 
putting

Tf =  { / e Trs (A , A) \ f  (a) =  b}  ,
we have

I T || =  I { /  e Map (A , A) | f ( d )  =  b}  — PÎ | = N n- 1 —  tt/N =  (Nn —  tt)/N =  t/N .

00 PPer (A) is a subgroup of Per (A), by 2.3 (with respect to 
composition of functions). Let a , b , c be any elements of A  and let 
$i =  { / £  PPer (A) \ f (a )  =  'b}. The bijection : Pt P“ considered in (a) 
induces a bijection <J/ : §1 -> 3 “ ; each of the N elements of A  is the image 
of a under some element of PPer (A), so that | | =  pP/N.

id)  Let a , b be any elements of A, and put %ah =  { / e  TPer (A) | 
=  Then ! %ab \ =  | { /  6 Per (A ) \ f ( a )  =  b]  —  r t | =  (N —  1) ! —

—  pP/N  =  (N ! —  pP)/N  =  pT/N.
From 3.1 and from 2.9 (with n — 1), it follows that:

3.2. (a) For any integer N =  Ç iÇ f  • • qs (whatever the decomposition
of N into primary integers, whether standard or not) there exist:

K )  Hi . N , ^ " T - - - r = Pol( .© GFCró, .©GF&)Ì;' i — 1 

I s

i —1

K ) H1>N>ir* 4 p ..  Trs^© G Ffe) , ©> GFfe)J; 

(«3) GljNi(?i_i)!(?2_i)!...(^_1), =  PPer^© GF(^,-)j;

(a4) K1;N,(n-i)!-(?1-i)!(?2-i)!...(^-i)i =  TPer^ © GF(^-)j;

(b) For any prime p , there exist:

(^1) =  • Pol (Z^2, Z / )  ;

i(^a) ^  T rs  (Z/  > Z/ )  ;

(^3) ^ 1, p2 , p i (p—i)^p̂ ~2 PPer (Zp2) ;

(^4) ^ i ,p 2,(p2-i)i-pi(p~i)£pp~2 ~  TPer (Zp2) ;
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(c) For any prime p  and for any integer n >  2, there exist: 

Oh) ^ i tpntp^P+Mn)—n ~  y ^*pn) >

(C2)  Ì ^ 1^ n ^ n ^ p n- i _ ^ z p + r ì { n ) - n :==: T r S  ( Z ^ w , Z ^ w)  ]

(cs) ^ i Jpn}p\(p~i)PpP+’n(n)-n==: PPer (Z „̂) ;

(r4) ^i,pn,(pn-i)i -pi (p-i)ppp+?)(n)-n — TPer (Z^M) ;

(öQ For any N — p r̂  p r*- • *7^, p .  distinct primes, there exist: 

W  H 1)N> n  ^+7](r,.)-r,. =  Pol (ZN , ZN) ;
*==1

(d2) H 1jN nN_1_ j j  ^,+7i(r,)-r,. =  Trs (ZN , ZN) ;
« = 1 *

^  g i ,n , n ^ 1i(ÿr i),i- / - + ,( '>)- ' ‘ =  P P e r  ;
*=1 2

^  K 1 ,N , (N -1 ) I  -  n  M i - v W + W - ' i =  T P e r  ^  •
2 = 1 * .

N. B. (fi) holds also if the p . ’ s are not distinct: replace Z M by @ Z ri .
■ ^ 2=1 Pi

3.3. (i) If any K/fN,* exists, then a KlfN_/+llA exists;

(ii) Moreover: K^Nĵ  =  K1jNĵ (n_ 1)(N_2)---(n- /+ 1) > 
(iii) As (i), (ii) but replacing K by G.

Proof‘ Cf. B. Segre [10], p. 79.

3.4. The following groups GlfNf* exist:

(a) G1)N>1 for all integers N >  1;

(ß) G ,̂N,(N_i)i and (c) Gi,n,(n-i)i/2 for all integers N >  3;

(ß) Gi,ç,ç- i  and (è) for all primary integers q\

( / )  £*1,11,720 î (g) G1}12,7920-

Proof ’ (a) Take G1jN)1 as the group of right multiplications of a group
of order N. (J?) Apply 3.3 (i), (ii) to the symmetric group GN_ 1>N>1. 
(c) Apply 3.3 (i), (ii) to the alternating group Gn_2>n>1. (d) Apply 3.3 (i), 
(ii) to a G ^ ,!  (which exists, cf. B. Segre [10], p. 151 and p. 79). 
(e) Apply 3.3 (i), (ii) to a G3^+1j1 (which exists, cf. B. Segre [10], p. 151). 
( / )  Apply 3*3 (i), (ii) to the Mathieu group G4,n>1. (g) Apply 3.3 (i), (ii) to 
the Mathieu group G5,12>1.

From 3.1, 3.3, 2.8 it is possible to assert the existence of several other 
H l n ,̂  j K1>nu > Gi ,n,æ> e.g. by considering rings of the type

A =  © GF (£v) © © ZN 
*-1 / - I  J
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Other existence theorems arise from the following:

3.5. Let be S , S' any sets with |S |  =  N and | S '| =  N' elements, 
H 'C M a p (S ', S'), H Ç Map (S , S), K C P e r (S ) , K 'Ç P er(S '), H " = H x H ' ,  
K" =  K x  K'. Then:

(d) H "C  Map ( S x S', S x S '); (b) K"C Per (S xS ');
(c) K , K' are groups iff K" is a group;
(d) H =  Hi,n,ä , H '=  H" =

(e) K — K i5n,̂  > K' =  Ki,n',æ' f=> K ".=  K ^nn',^';
( /)  K" group, K " =  KÏfNN'(*"i=> K =  GifN,* and K ' = G i ffj't*' for 

suitable k , k' such that kk! =  kn.

Proof, (a) ( / , / ' )  € H X H' maps (a , a') e S X S' to ( /  (a) , / '  (a')) e S X S'. 
(Ò) I f / e H  , / '  e H' are both bijective then ( / , / ' )  eH "  is also. (*:), (d), (e) 
are trivial. ( /)  By (c), K and K' are groups; both are trivially transitive, 
so that (cf. e.g. B. Segre [9], 16 .1 .7 ) they must have some transitivity 
characters: K =  > K' =  G ^ n ^ o . It follows (cf. 3.3, (iii)) that
K =  G1jN>£ and K ' =  G i)N>̂ , with k =  k° (N ■— i ) - - - ( N — / +  1) and 
k' =  k'° (N' —  1) (N' —  2). •. (N'— t ’ +  i). By (e) it follows that kk' =  k".

By 2.8, 3.2, 3.4, 3.5 several numerical examples of H 1>Nj£ , K1>N>̂  , Gi,n,£ 
can be deduced. In particular we obtain several existence theorems for 
Ki,n,£> thus partially answering a problem raised by B. Segre [10], pp. 88-89. 
It is well known (cf. e.g. B. Segre [10], p. 283) that each K1jN̂  gives rise 
to a design 1 —  (N2, NÆ, N , k) i.e. to a configuration

(N2n ,N ^ ) ;

this is defined as a set C of N 2 elements provided with a set S of N/f subsets 
of C such that each subset in S contains N elements of C, and each element 
of C belongs to k subsets in S. It follows that each existence theorem for 
a K i,;^  may be converted to an existence theorem for a configuration with 
the above parameters.

4. E s t im a t io n s  f o r  t h e  n u m b e r  o f  p o l y n o m ia l  f u n c t io n s

OVER FINITE RINGS

According to 2.2, it is clear that the polynomial functions of Pol (Aw, A) can all be 
obtained from (A) polynomials of A [X i, X2 , X«] (one in each equivalence class 
mod o9; the following 4.1 asserts that it is enough to consider the polynomials of the 
“ reduced type ” , i.e. the set

Gin) =  {G (X) € A  [ X i , X2 ,* • -, X J  I G (X) .= 0 

or G (X) is of degree <  N — 1 in Xy for V/} .

4 .1. For each F (X) 6 A  [ X i , X2 , • • •, X J  there exists a G (X) € G(m) 
such that F (X) ^  G (X) mod a.
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Proof. Let A — {ax , a2 , • • •, a^ }. For every h, with 1 < h <  n , (X^ — a f  (X^— a2)- ■
• (XÄ —■ a f)  ^  o, and so, expanding,

X ^ _  E* (X*) ~  o , say ,

where (X^) e G(w). It follows that

' Eh (x a> and then x a +J ~  X-' E , (X )
y N

( j =  1 , 2 , . . . ) .

Applying these equivalences to each factor of every monomial of F (X), one reduces F (X) 
to an equivalent G (X) e .

As noted | G(n) \ =  NN*= [x(b) =  | Map (A”, A) | .

4.2. The following conditions are equivalent:

(A) Pol (A!\ A) =  Map (A*, A) , i.e. 7cw =  ^  ;
(^») Distinct polynomials of are inequivalent mod a .
(O  The only polynomial of which vanishes on each element 

of A ” is o, i.e. G(ä) n  I (An) =  { o } .

Proof. Consider the following commutative diagram 

~ T
J ( n ) -M. Pol (A", A)

\c c
\

\

■ Map (AB, A)

\
A [ X 1 , X 2,, . . . , X n] l l ( A n)

where 8 is the isomorphism mentioned in 2.2, a , y are epimorphisms by 4.1, 
and ß is the inclusion map.

a is mono (i.e. (6n) holds) «=> ker a =  Gw n I (A K) =  {0} (i.e. (cn) holds). 
Moreover a is mono (i.e. (bn) holds) <̂ => y is mono <==» yoß is mono <==> ß 
is surjective (i.e. holds) provided that | G(n) | =  | Map (A", A) | as noted 
above.

4.3. If some of the conditions (al) , (bl) , (cl) are satisfied for a given 
fixed integer i >  i, then each of the « )  , (bn) , (cn) is satisfied for every 
integer n >  1.

Proof. Without loss of generality, we can assume i  <  n. Let us 
consider the following commutative diagram.

c -

A [ X i , X 2 ,

- * G \n )

-, X,.]/I (AO A [ X 1 , X 2 , . . . , X B]/I(A")
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where the a,-, a„ are the epimorphisms like a in 4.2, s is the inclusion map, 
and 7] is the natural monomorphism, well defined and mono because 
A [ X i , X 2 , . . . , X /] C A [ X i , X 2 , . . . ,  X J  and

I (A*) =  I (An) n  A  [ X i , X2 , • • •, X J  .

a,- is mono (i.e. (£,•) holds) «=» is mono (i.e. (bf) holds), and this proves the 
theorem by 4.2 (where n can take any integer value > 1 ) .

4.4. If A  is a finite field with N elements, the conditions (an) , (òn) , (cn) 
hold for every n >  1. In particular

( O  Pol (AK, A) =  Map (A”, A), i.e. =  (*(., =  N »“,

and (æjl) Pol (A , A) =  Map (A , A), i.e. tu =  jjl =  N N,

which implies

PPer (A) =  Per (A), i.e. pP =  p =  N ! .

Proof. By 4.3 it is enough to show that (c )̂ holds. If G (X) e G(i) 
is non-zero (i.e. of degree <  N —  1), then G (X ) cannot vanish over A, for 
otherwise it would have a number of roots, N, greater than its degree.

N. B. Another proof that (an) holds for finite fields can be found in [5].

4.5. If A  is not a field, than none of the conditions (a„) , , (cn)
(n >  1) is satisfied. Moreover PPer (A) C Per (A).

Proof. By 4.3 it is enough to prove that (a )̂ does not hold, i.e. that 
Pol (A , A) CMap (A , A). Actually, the ring A  contains zero divisors (cf.
2.1, =>(£)), and let be d e  C, d  =f= o. Let f  e Map (A , A) be such that /  (o) =  o 
and f  (d)  eU ; we assert that / €  Pol (A , A). Otherwise let F(X) e A [X ] be 
a polynomial in d u cin g /; F (o) =  o implies that F(X) is of the type F(X) =  
=  X F i(X ), with F i(X )e A [X ] , and then f ( d ) =  F(d) =  d  -F i(^ ) e D * A = D  
(cf. 2.1, (c))y which contradicts the hypothesis f  (d) e U . Our assumption 
<lf ( o )  =  o, f ( d )  e U  ” may be taken also for f e  Per (A), so that PPer (A) C 
C Per (A).

N. B. Another proof that (ai) does not hold for finite rings with zero divisors can 
be found in [2].

Summarizing 4.4 and 4.5 we get that:

4.6. The conditions (an) , (6n) , (c„) are satisfied (for every n >  1) if, 
and only if, the ring A  is a finite field. Moreover PPer (A) =  Per (A) 
iff A  is a field, i.e. pp =  p =  N ! iff A  is a field.

Our purpose now is to give some lower bounds for t ^ ,  in the general case, i.e. some 
upper bounds for 7 We begin with the case n =  1; the case n >  1 will be discussed in 
4.12, 4.13.



Pier Vittorio Ceccherini, Some new results on certain finite structures 851

4.7. T >  A(1) =  N n — Ss_1IST̂4“1, i.e. tu <  S8“1 N %+1. Moreover 

pT >  ea) =  N ! —  (8 —  1)! u \  N, i.e. pP <  (8 —  1)! u\ N .

Proof. Consider the subset F(o) of Map (A , A) defined by 

F (o) =  { / e M a p  (A , A) | / ( o )  =  o and / (  D ) $ D } .

In the proof of 4.5, it was shown that F (o) Ç Trs ( A , A). Clearly 
F (°) =  { /  6 Map (A , A) I /  (o) =  o } — { /  e Map (A , A) | /  (o) =  o and 

/  (D — {o}) C D}, so that | F(o) | =  | Map (A — {0}, A) | — | Map (D —  {0}, D) |
I Map ( U , A) I =  N n_1 —  t ~ x N*. Consider now the subset F (i) of Map (A , A) 
defined by

F ( 0  — { / +  ^}/eF(0),*eA—{0} *

First of all we have F( i )  C Trs (A , A), because if /  +  c e Pol (A , A) for 
some /  e F (o) and c e  A  —■ {o}, then /  e Pol (A , A) as c e  Pol (A , A), which 
contradicts f e  F (o) Ç Trs (A , A). Further F (o)D F (1) =  0 ,  because each 
f  +  c e F (1) is different from each ^ e F ( o )  at least in their action on zero. 
Finally, it is easy to check that | F (1) | =  | F (o) X (A —  {o}) | =  | F (o) | •
• I A  —  {0} I == I F (o) J (N —  I), i.e. that if ( / ,  c) , ( / ' ,  c') e F (o) X (A —  {o}), 
then ( / ,  c) =(= ( / ' ,  c') implies f  +  c +  cr. In conclusion we have 
F (o) U F (1) Ç Trs (A , A) and | F (o) U F ( i ) |  =  | F ( o ) |  +  [ F (1) | =  
=  I F(o) I +  I F (o) I (N —  I) =  I F(o) I N =  N n —  S8- 1^ 1 =  X(1), so that
T >  X(1k

For the second part, put P(o) =  { /  e Per (A) |/ (o )  — o and /  (D — {0} $  D}, 
P ( 0  =  { /  +  c }y6P(o),,6A{o}- Then P (°) C TPer (A) (cf. proof o f 4.5), 
P (1) C TPer (A) , P (o) D P (1) =  0 ,  and | P (1) | =  | P (o) | (N —  1) as
above. Moreover | P (o) | =  | Per (A —  {o}) ] — | Per (D —  {o}) | • | Per(U) | =
— (N —- 1) ! —  (S —  1) ! u ! , so that | P (o) U P (i)  | =  | P (o) | N =
=  N ! —  (8 —  1) ! u ! N =  cr(1), and pT >  a(1).

Remark. Equality m ay occur in 4.7, because, for example, if A  is a 
field, then 8 = 1 ,  ^ =  N —  1, X(1) =  o, and o-(1) =  o ; moreover r  =  o 
and pT =  o, according to 4.4.

Let h denote a positive integer, and consider the following

C o n d itio n  (Cf). There exist elements d e  D, ux , % ,• • •, uh e U  such 
that d  4~ > d  -j- ^2 » * * * » d  -j- G D .

From (Cf) it follows that d  =|= o and d  +  4= d  +  uj for i =j=y. We wish to find the
maximum h > 1 for which (Cf) holds.

Remark. (C f  does not hold for any field A, nor, for example for A =  Z4 or A = Z g ;  
however Z6 satisfies (C f (with d  =  3 , ^  =  ï  , u2 =  5); Zi0 satisfies (C4) (with d  =  5, 
u\ ~  I , ^2 =  3 , Uz =  7, ^4 — 9 ). More generally:

4.8. If n — p* (p  prime), Xn does not satisfy (Cf). If n =  2 * (2 k 1) 
(t >  0 ,  satisfies (Cf) with h == y(n)  (9 Euler function) and d  any fixed 
divisor (=4=± 1) of 2k  +  I.

57. — RENDICONTI 1974, Voi. LVI, fase. 6.
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Proof. In TLn, with n =  p* (p  prime), we have that d e D iff d  =  o mod p, 
and that ^ e U  iff u  ^  o mod p y so that d e  D, ü e U  implies d +  ü e U. 
In TLn, with n =  2 t (2 k +  1) (t >  1), we have that 27 6 U  implies u =$= o mod 2,
so that for each fixed d e D such that d \  (2 k +  1) and for each of the 9(22)
elements ü e U , we have that d +  ü e D.

4.9. I U  I <  I D I, then A  satisfies (Ci).

Proof. For each u e U , the map au : D -> A  defined by au : d  ->u-\~ d
is injective; therefore | U  | <  | D | implies g^(D) $  U , i.e. there exists d e  D
such that 22 +  d  e D.

4.10. If A  satisfies (C*), then t > X (2)=  X(1)+A N “ 8s~2=  N n — 8S~2N (8N —Æ), 
i.e. 7c <  §8~2N M(8N — h).

Proof. Let F (o) and F (i)  be the subsets of Trs (A , A) as in 4.7, and 
let d  C: D, uL, u2 , u/t € U  satisfy (CA). For each uy put

F° ( d , u j  =  { /  e F (o) I /  (d) =  uj ; d ' e D —  {o , d  } t=>f (d') e D — d '}  

and define

F ( d , u j  — { /  +  x  \ f  e F ° (d , uj)} where x  — IdA .

Because F (o) C Trs (A , A) we have /  +  *  e Trs (A , A) for all /  6 F (o),
so that F (d , u j  C Trs (A , A). Clearly

F (ß ,  u j  =  { / e M a p  (A , A) | / ( o )  =  o , f ( d )  =  d  +  uy ;

< / ' eD —  {o  , d )  t=^f(d') e D }  .

Therefore | F ( d , u j  | =  | D d~ | | Au | =  8S~2 N". Now

F ( d , uf) O F (o) =  0 and F ( d , uf) O F (i)  =  0

because

f  e F ( d a uf) \=>f (D) G D , f e  F(o) *=>/(D) $  D

and

f e  F (d y uf)\=>f(o) =  o , / €  F( i )*=>/ (o)=j=o.

Finally

H=/i=> F (2/, uf) n  F ( d , uf) — 0 , because 2 =f=y i=> 22,- =j= 29

and f  e F ( d  yuf)t=>f(d) =  U; +  d  , f  e F (d  y uf) \=>f (d) == uy + d .
h

Therefore, for the set F ( d ) =  \ j  F ( d , uf), we obtain | F (d) | =  h | F ( d , uf) | =

=  N “, F (d) C Trs ( A , A), F(rf)n(F(o)uF(i)) =  0 ,  so that t > | F ( o ) u
U F( i )  I +  I F (d) \ =  X(1) +  M 8-2 N”, as required.
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4 .11. Suppose that D =[= {0} and that there exist h >: 1 elements of U  
pairwise incongruent mod D. Then

T >  X® =  {hjih +  i)] N n, i.e. 71; <  (h +  i ) “ 1 N n.

Proof ’ Let u± , , • • •, uh £ U  be elements such that u{ ^  Uj mod D
(i.e. Ui —  Uj 6 U) for i  =(=/. Since D =j= {o}, we can fix an element d £  D, d  =f= o. 
If F (o) is the set introduced in the proof of 4.7, pick an element

f i .  e F (o) such that f i .  (o) =  o, f u. (d) — u{ ( i < i < h ) .

If i  =j= jy then Ui —  Uj £ U , so that

f t .  —  f t j  G F (o) which implies f du. ^  f dUj mod Pol (A , A) .

Thus there are at least h fi- 1 classes in the factorial additive group 
Map (A , A)/Pol (A , A).

Let us now discuss the case n >  1.

4.12. T(n) >  (NwN—  8(S“1)% -^n(u+ly^j^n~1m Further if (CA) holds for A, then

t (w) >  (N"n —  8*(S~2) (8N —  h)n)\N""1, 

and, if A  satisfies the condition mentioned in 4.11, then

t w i> N"N (I — i\(h +  O ^/N ""1.
(Note that, for n — 1, 4.12 yields 4.7, 4.10 and 4.11).

Proof. Let { A  , / 2 , • • •, f M} C Map (A , A) be such that (i) f j(o )  =  o 
for I <  j  <  fly (ii) f j  £ Trs (A , A) for at least one j .  Define the subset M of 
M ap(A , A) X • • • X M ap(A, A) (n times) by M =  { { f x , f 2, • • • ,/„) | { f 1 , / 2 , • • • , / J  
satisfies (i), (ii)} and consider the map 9 :M ->M ap (Aw, A) defined by

n
9 : (/1  > A  > * * • » fn) -*■ /  =  It is easy to check that 9 acts as an

*=1
injection from ;M to Trs (A*, A). For the set M' =  9 (M) +  (A —  {o}) we 
have that M 'C Trs (Aw, A) , | M' | =  | M | (N —  1), and M' n  9(M ) =  0 ,  
so that 9 (M) u  M' C Trs (Aw, A) and

t (, ) > |  9 (M) u , M' |  =  IM-I+I-M'I  =  I M I - N .

For computing | M | consider the negation of (ii), i.e. the following condi
tion (iii) f t  Pol (A  , A) for all j .  Clearly M =  { ( /x , / 2 , • • • ,/*) | { A  , f 2 r "  , / J  
satisfies (i)} —  { ( / i  , fz  , • • •,/„) | { / i  ,A  , • • • ,/„} satisfies ( i ) , (iii)} =  Mi — M2, 
say, so that j M | =  j Mi | —  | M2 | , and using (a) of 3.1 for calculating | M2 | , 
we obtain

I M I =  N (N- 1)b —  (n/N)" =  N’’(N~1) —  ((Nn —  t)/N )b

so that
2> I M I N = . [NmN —  (N n —  t)”]/N ’’- 1 ;

replacing t by the expression occurring in either 4.7, or 4.10, or 4.12 
(according to the hypothesis of the theorem) leads to the required formulae.
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4.13. ^ n ) > n l  N * - \
Proof. Let P be the set defined as M2 in 4.12. The map : P->M ap (Aw, A) 

defined by  ̂ : (A  ,A  , * • •,/») - > /  =  ^ A i ^  acts as an injection from P to 
Pol (A*, A). Further the set P ' = i | / ( P )  +  ( A —  {o}) satisfies the following 
conditions

<KP) u  P ' C Pol (A", A) , p 'rn K P ) =  0 ,  | P ' |  =  | P | ( N — I)

so that 7c(w) >  I ip (P) I +  I P 71 =  J P I • N =  (tc/N)* N, where we have used 
(a) of 3.1 for calculating | P |.

5. M inimal binomials in I (A)

5.1. In the ideal I (A) of A [X ] there exist binomials of the type X e —  X*. 
Each such pair (E , e) will be called a “ couple of exponents for A

Proof. Let a =  (al) =  (a± , %) be any fixed ordered N-tuple
containing all the N elements of A. Put ak =  (a))] the set {ak}k=1,2,... 
contains at most N N elements, so that there are integers, E and e, with 
I <  e <  E <  N n, such that aE =  ae, i.e. such that X e —  X* ^  o.

Consider the set C (A) =  {(E  , e) e N x N  | (E , e) is a couple of expo
nents for A } with the partial ordering

(E , e) <  (E', e') iff either E <  E' or E =  E' & e <  e’.

We shall denote the minimal couple of exponents f o r  A  by (E*, e*) =  min C (A).
s

5.2. Let A  =  © A,- the standard decomposition of A  as in 2.1, (y),

and let us denote: D,- the maximal ideal of the local ring A,-, U t- =  A, —  D,-, 
i i the unit of U,- and o{ the zero of A,-. Let

\  =  min { t  € N I a e U i \=> af =  I,-} (note that X,- <  | U,-1 )
p,* =  min { r  e N | d  e D,- t=>dr =  o, } (note that p,. <  | D,-1 )
p =  m ax{p0 , Pl • -, p,} , X =  [Xo.Xi.  —  .X,] .

Then X =  min { t  e N | a € U  i=> a? =  I }, and E* =  \  +  p, e* =  p.

Proof. There exists an element d  e D such that d , d 2, • • •, d 9~l are 
non-zero (and distinct) elements, and d 9 =  d 9+1 =  • • • =  o. It follows that 
e* >  p. For each « e U , we have aK =  i , so that aA+i =  ak for each « e U .  
It follows that e* =  p and E* =  X +  p.

Corollary 5.3. Let A = Z m, with m = 2 °  p r̂  ■ ■ / ; e Z  and 2 , p 1 , p z , - - - , ps
distinct primes (so that Z„, =  Z ^ S Z ^ © -  • • © Z Then, using the notation 
of  5.2, we have 1 *
Xo =  X0 (2ro) =  I if r 0 =  o , I ; X0 (2r>) =  2 if r 0 =  2 ; X0 (2r*) =  2’»-2 i f  r0>3; 

X,- =  9  (jff) =  {Pi —  1) p rf X fo r  I < i < s  ; ç>£ =  r£ f o r  o < i  < s  ;
X =  X (m) =  [X0 (2r«) , <p Q^1) , •••»? O ?)] 0«^ p =  p (m) =  max (r 0 , • • •, rs) . 
Az conclusion E* =  X (*») +  p (w) , e* =  p (m).
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Proof. Define X0 (i)  =  i; X0 (2) =  1 because U(Z2) =  {1}; Xo (4) =  2 
because U  (Z4) == {1 , 3}. If r0 >  3 we have the well-known isomorphism  
u  (Z ,0) ~  Z<+) © Z j^-a , so that each element of U  (Z h a s  a period which 

is a divisor of 2r°~2 and the element (1 , 1) § U  (Z ,„) has precisely period 

2 r"~2. X,-=  9 (/>?) C1 <  i  <  s) because the groups U  (Z >7) are cyclic with
* i

9 ( / / )  elements. p,- =  r£ (o <  i  <  j) because D (Z »■,•) =  ( / ;) and p h =  oI

in Z »7 iff h > r . .  B y 5.2, the corollary now follows immediately.

It is easy to prove that

5.4. If ( E , « ) e C  (A) and E <  N, then 7t <  N E, i.e. t >  N n — N E. 
More generally, tc(ä) <  N E , i.e. t (b) >  N n”— N E”.

Applying 5.2 and 5.4 leads to other bounds for rr(w) and for which can be compared 
with those obtained in 4.7-4.13.

Note that if A is a field, then I (A) — (XN — X). I11 [6], l ( Zm) was determined. The 
problem of determining I (An) in the general case will be studied in a future paper by the 
author.
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