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Fisica teorica. — A  relation between the absolute temperature 
and the arbitrariness in the labelling o f the microscopic states of a 
thermodynamic system. Nota di F r a n c e s c o  P e g o r a r o , presen ta ta(,) 
dal Corrisp. L. R a d ic a t i  d i  B r o z o l o .

R iassunto. ■— Si considera un gruppo di trasformazioni che, agendo sulle grandezze 
che identificano gli stati microscopici di un sistema termodinamico, ne lasciano immutati 
i numeri di occupazione. Le restrizioni sulla scelta di un principio variazionale da cui deri
vare le condizioni di equilibrio che si ottengono imponendone la covarianza, individuano, 
se unite ad alcune generali considerazioni termodinamiche, univocamente il principio.

I n tr o d u c tio n

It is well known that the necessary and sufficient condition for the thermo
dynamic equilibrium of a given set of systems can be related to the constrained 
minima or maxima of a suitable thermodynamic potential [see for example [1], 
p. 81 and foil.].

The extremal points of this potential correspond to the equality of a set 
of thermodynamic variables of the systems in equilibrium.

This characterization of the equilibrium is valid also for systems which 
can exchange other quantities besides energy, such as linear momentum, 
angular momentum etc. i.e. for systems whose states must be labelled by a 
set of conserved quantities larger than the energy alone.

For each conserved quantity we can define a thermodynamic variable 
which characterizes the equilibrium (the temperature, the pressure, the average 
velocity, etc.).

The correspondence between the conserved quantity and the equilibrium 
variable (energy <—> temperature, volume <-» pressure, momentum <-> average 
velocity. . .) can be derived with simple thermodynamic arguments from the 
transformation properties of the conserved quantity. Namely we want to 
show that from the knowledge of those transformations (acting on the conserved 
quantities which label the states of the thetmodynamic system) which leave 
the occupation numbers invariant, we can derive, using only the independent 
probabilities theorem, a unique variational principle (up to an equivalence) 
which characterizes the equilibrium.

The relation between the conserved quantity and the equilibrium variable 
follows simply from the requirement of invariance of the equilibrium condition 
under those transformations.

Temperature, in particular, has a very simple group theoretical meaning. (*)

(*) Nella seduta del 28 maggio 1974.
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In section one we restrict ourselves to purely energetic thermodynamics 
(i.e. to systems whose states can be completely labelled by the energy values) 
and we study the energy transformations G which leave the occupation 
numbers unchanged.

In section two the independent thermodynamic G-invariant functions 
are constructed, in section three it is proved that only one G-invariant varia
tional principle can be written (the extremality of the total entropy).

Thus the equilibrium variables are uniquely fixed.
In section four more general systems are examined with special regard 

to the thermodynamics of momentum exchanging systems.
In section five a relativistic theory is briefly discussed.

I. T h e  G ib b s  e n s e m b l e : in v a r ia n c e  p r o p e r t ie s  of t h e  eq u a tio n s

RELATING THE PARTITION FUNCTION TO THE THERMODYNAMIC QUANTITIES

Let us consider a Gibbs ensemble of N identical macroscopic systems 
[1, 2] whose states are labelled by the eigenvalues zk of the energy (for the 
moment we assume that the energy is the only constant of the motion the 
probability distribution depends on).

As is well known it is possible to define a partition function Z (ek , p) 
such that the equilibrium occupation number ak of the kth state is

(■-.): ‘!‘ =  — v  a r r InZ : z  =

where p is a parameter proportional to the inverse of the absolute tempe
rature since it is the integrating factor of the heat supply SQ.

From eq. (1.1) it follows that the mean energy U is

0 .9  u  =  - ^ l „ z .

The labelling of the states by the values of the energy is affected by an 
indétermination on the choice of the zero values [3] and of the scale of the 
energy.

Let G be the group acting on the energy values e through the law 

C1 -3) (a , 6 ) e G (a , b) • s =' ea (s -f- b) .

The subgroup (a , o) changes the energy unit, the subgroup (o , b) translates 
the zero level.

Eq. (i.r) is G-invariant if we define

(1.4) 0  , b) Z =  Z 0« (e, +  b) , e-* pl) =  r** Z ; (a , b) jjl =  'e~* [x.

(1) Mathematically G is the two dimensional Lie group of the automorphisms of R 
into R.
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From equations (1.2) and (1.4) the correct G-transformation law of U follows;

(1.5) ( a , ó ) U  =  e“ (U +  b) .

According to the first equation (1.4) Z does not depend on the energy 
scale and it is transformed like an irreducible, non unitary representation 
of the energy translations.

This representation is labelled by the parameter p i.e. by the absolute 
temperature which can thus be interpreted as the quantity relating the indé
termination on the zero level of the energy to the multiplicative indétermination 
on Z.

According to the second equation (1.4) the absolute temperature is trans
formed by the changes of unit like an energy.

From the well-known relation between the entropy S and Z

(1 *6) S =  ln Z — p -Â— ln Zn Sp

(we have set the Boltzmann constant equal to one) it follows that the entropy 
is G-invariant.

2. G-invariant functions of Z

From a brief investigation it follows that the G-invariant functions of Z 
can be written as functions of

i) the occupation numbers ak (see eq. (1.1)) and their derivatives with 
respect to p and — •

The average thermodynamic quantities we can construct in this way 
are p,pY <2> ahd its derivatives (p is the pressure and V the specific volume)

ü) the entropy ln Z — p ln Z and its derivatives with respect to 
p . In particular

is the specific heat.

(2) The volume V is a translation-invariant function of the energy levels u  and of y., 
From the well-known thermodynamic relation

3F
av fA*= const

where F is the free energy we have ypV ■:v 2
k

dzk
av

ainz
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3. The G-in v a ria n t v a r ia tio n a l p rinc ip le

Let us consider several different Gibbs ensembles which can exchange 
energy in the form of heat and mechanical work. We generalize the action 
of the group G through the law

(3 - O 0 ,  h ) )  e(o =  (sw +  hi))

where i labels the ensembles and is a generic energy level of the ith system. 
The energy unit is the same for all ensembles since the equation ^  dU,- =  o

i
must retain its meaning, while the zero levels can be chosen arbitrarily for 
each ensemble.

The G-invariant variational principle must depend on a G-invariant 
function of the conserved quantities i.e. on one of the invariant quantities 
of section two.

It must be additive i.e. if two or more of the ensembles are in thermal 
equilibrium then it must be possible to write the same function for a new 
set of ensembles where those in equilibrium are collected together to form a 
unique ensemble (this follows from probability theory and independentness 
assumption).

Finally it must be a monotone function of the conserved quantities inde
pendently of the nature of the ensembles. Thus the function/  can depend only 
on the total entropy and the only choice for the variational principle is

(3-2) $f , £(,>&) =  S  +  S  ~fv~ SV,- =  oi ** i v %

where /  is an arbitrary function of the total entropy of the ensembles. The 
variation is taken with respect to and to the thermodynamic variables V,- 
which are functions of the energy values z^k .

Eq. (3.2) must be supplemented by the conservation conditions (which 
are G-covariant)

(3-3) S S U ,. =  o ; 2 « V , =  o .
i i

Using well known formulae [i] we get

- # ( ? * $ * . +  ? * [ $ + a ] *v<) +
3 U . ^  3 U . \  ^

+  X ( S j j 1 *!*,■+ 2  jv r* V , + p 2 S V , .
\ % t i t  I

(34)
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where % and p are Lagrange multipliers and S is the total entropy. Thus 

(3-5) V/(S) , c l/ (S) =  o<==>V«',; (x,- =  and /,• =  /,■•

The equilibrium condition can be thus written in the following way.
i) all the Z{ belong to equivalent representations of the energy trans

lations
ii) their translation invariant derivatives 3 in Z,*/3 V,- must be the 

same so that the equilibrium conditions are explicitly G-covariant.

4. O th e r  in te g ra ls  of motion. Systems exchanging l in e a r  momentum

Let us consider a Gibbs ensemble of systems whose states are labelled 
by the energy e and by the supplementary integrals of motion ÿi, •••>$'»• 

Introducing a Lagrange multiplier for each conserved quantity the occu
pation numbers are given by

(4-0 a{ur-
Mi}

z

where a =  1 , n and i { j } are the labels of the states. 
Eq. (4.1) can be written as (see eq. (1.1))

(4 -2)

where

N 31nZ I 31nZß\
V  9e£ l ß V

^ = ^ . J ng~ ^ a,a{Jh

In general the Hamiltonian will depend upon the ^’s. It may be more 
transparent to separate the energy values e,- into an intrisic part y),- (indepen
dent of the ^’s) and a function of the ^’s. Obviously the transformation of 
the ^’s which do not change the values of the occupation numbers depend 
upon the form of these functions.

Let us consider an ensemble of systems whose states are labelled by the 
energy and the linear momentum and with a Hamiltonian which can be split 
into an intrinsic and a kinetic part i.e.

(4-3) s =  75 + [P i
2 m

where m is the mass of the system.
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We can thus rewrite eq. (4.1) in the form

(44)
5 V

\± V.2y\ . — - — \P\j+ k-p.i 2 m J j

- ^ 7 3 . \p\2j+ k-p, 2 2m J j

fJt* mk\* I X (2»2-tifi.------- p . --------- + -—!---
g  i  2 m  \  j  [l J 2  {JS.

The mean energy is given by

(4-5) U =

the mean momentum by

(4-6)

SinZ  
d [X

^ ainZ mkJr = ------- = --------=  m v
aT ^

i.e. the Lagrange multiplier X can be interpreted as the mean velocity v 
multiplied by the absolute temperature.

Thus the intrinsic mean energy is

(4-7) U ;, a i n Z  X a i n Z
2  [X - > ̂ axd[L

Eq. (4*4) is covariant under the action of the group G, defined in section 
one, if

(4.8) Pj —> e<l Pj ea m and X -> e a X (=$ P -> ea P) .

The only transformations on pj we can add to those of G without changing 
the occupation numbers are the Galileo transformations

(4-9) p j  -> p j  +  m w  A -> X -T

------- >•
/ T T T T f 777 j IV | . 777X t -\ t -» . \U ->U 4-----— f- — • w , P -> P +  mwj .

We call G' the semidirect product of energy and the Galileo transfor
mations.

It is easily seen that the “ entropy ”

(4.10) e -, *7 a In z ̂  a In zb =  ln Z —  ix —r----------X • -------^  ajx -►ax
is G'-invariant.

Since from equation (4.6) it follows

(4-h )
m I X

Z =  «T "i r Z ( n l O
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then

(4-12) S =  ^ i ^  +  l n Z ( fi>e;0 +  ^ U - ^ = I n Z ( (4, e , . ) + j iU illtt

i.e. S is the correct entropy.
Let us consider a set of ensembles (just as in sec. 3);. the generalization 

of the group G is obtained by letting the zero energy levels vary independently 
while, on the contrary, the Galileo transformations must obviously be the 
same for all the ensembles. Following the same argument we used in section 
three, we find that the equilibrium variational principle must be written in 
terms of a function of the total entropy.

The conservation equations are

(4-13) 2 d U ,. =  o 2  dV, =  o 2 d P , .=  o .
1 i *

Let / b e  a function of the total entropy S, then (summation is assumed 
over dummy spatial indices a , ß — 1 ,2 ,3 ;

(4
8U =  SV=8P=0

sv . 3 /
8U=SV=SP=0- 3X_ 8U=SV=SP=0

SR, I =

V
d? Ç  -9(a! +  R I I 13 R-CCt

■ K- ( p « ) « v + a  [ | ~  -I a ]  w ) 4 -

+ - f

(p ) X and T are Lagrange multipliers) implies

A  =  44

P i
->

= 4

=  >y

i.e. two ensembles are in equilibrium if they have the same temperature, 
pressure and mean velocity.

These results were a priori obvious. It may be however interesting to 
see how all these conditions can be derived from a unique G-invariant varia
tional principle (e.g. exactly the same procedure applied to charged systems, 
whose energy is a quadratic homogeneous function of the total charge, would 
imply that two systems are in equilibrium if they have the same potential).

52. — RENDICONTI 1974, Vo!. LVI, fase. 5.
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5. Relativistic equilibrium

The formulae of the previous section are more transparent if we consider 
a covariant Gibbs ensemble: a zero or a first order expansion in the average 
velocity gives the results of section three or four respectively.

The occupation numbers of a relativistic ensemble [1] are

(5.1)
N{xa dlnZ

where Z is the relativistic partition function

( 5-2)
i

o * *

p? is the four momentum of the ith state and p.a is a Lagrange multiplier which 
behaves as a time-like four vector. Thus it follows

(5-3) P* = 9InZ
^ce

where Pa is the mean four momentum, M is its length and | [jl | =  y is the 
length of the four vector (Jia. The physical interpretation of [jia follows easily: 
fji“ is the inverse absolute temperature four vector, namely | jjl | is the inverse 
of the absolute (scalar) temperature while fjia/| fi. | is the mean four velocity 
of the ensemble. Eq. (5.1) is invariant under the Lorentz group and the group G 
whose transformations are now

(5.4)

where n? is an arbitrary four vector and

(5.5) M eaM ; | | -> e~a | p, j .

When considering a set of ensembles the action of G can be generalized 
by considering independent momentum translations on each ensemble.

Following the usual argument we prove that the variational principle 
must involve a function of

(5.6)

(sec. eq. 4.10) where i labels the ensembles.
The equilibrium conditions are

V j  i.e. same temperature and mean velocity

pi =  pj i.e. same pressure in the rest frame.

s = 2 lnZ.—  $
9 ln Z,-
9^
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Thus we can say that two relativistic ensembles are in equilibrium iff:
i) the partition functions belong to equivalent representations of the 

four momentum translations;
ii) their invariant derivatives 3 ln Z f-/aV,- are the same (3 In ZJdVi is 

computed in the rest frame).
It must be emphasized that the momentum translations do not correspond 

to a microscopic or macroscopic invariance of the system. It is easy to see 
that the second part of eq. (5.3) is not valid (since the rest frame of the system 
is changed and therefore the classic limit is perturbed) and that we can get 
negative “ masses ”.

The G-invariance expresses only the homogeneity of the summation 
procedure in phase space used to compute the partition function i.e., as we 
pointed out in sec. 1, the ambiguity in the labelling of the microscopic states.

If the partition function is assumed as the starting point for the construc
tion of all the thermodynamic quantities, then obviously the equilibrium con
ditions must be expressed through the G-invariant quantities we can derive 
from it.
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