ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

GHEORGHE CONSTANTIN, VIOREL RADU

Random-proximal spaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **56** (1974), n.5, p. 703–706. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1974_8_56_5_703_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Calcolo delle probabilità. — Random-proximal spaces. Nota di Gheorghe Constantin e Viorel Radu, presentata (*) dal Socio G. Sansone.

RIASSUNTO. — Nella Nota sono introdotti gli spazi Random-Prossimali (RP) e si dimostra che ogni spazio metrico probabilistico e ogni spazio aleatorio è uno RP-spazio. Sono studiate certe topologie sugli RP-spazi e la loro metrizzabilità.

The aim of this Note is to introduce the so-called here random-proximal space. It is proved that every probabilistic metric space [8] and every random space [7], [9], [10] is a RP-space. Two topologies on a RP-space are studied and a theorem of metrisability of a RP-space is proved.

1. Let S be an arbitrary set. If α is a relation on the family $\mathscr{P}(S)$ of all subsets of S then we write $A\alpha B$ for $(A\,,\,B)\in\alpha$ and $A\bar{\alpha}B$ for $(A\,,\,B)\notin\alpha$. \varnothing will be the empty set.

DEFINITION 1.1. [2, 6] A semi-proximity on S is a relation α on $\mathscr{P}(S)$ such that:

- $(P_1) \quad \varnothing \bar{\alpha}S;$
- (P_2) $A\alpha B$ iff $B\alpha A$;
- (P_3) $A\alpha(B\cup C)$ iff $A\alpha B$ or $A\alpha C$;
- (P_4) $A \cap B \neq \emptyset \Rightarrow A \alpha B$.

A proximity is a semi-proximity for which:

 (P_5) If $A\bar{\alpha}B$ then there exists a subset E of S such that

 $A\bar{\alpha}E$ and $B\bar{\alpha}CE$

where CE is the complementary (in S) of E.

If α satisfies

 (P_6) $\{p\} \alpha \{q\} \Rightarrow p = q$ for all p, q in S then it is called separated.

If G is a topological group (see [1]) then $\mathcal N$ will denote the neighborhood system at o (the neutral element of G) and \overline{X} will be the closure of the subset X of G. Note that G is separated if and only if the set $\{o\}$ is closed and G is metrisable if and only if $\mathcal N$ has a countable base.

Let F be a mapping of S×S into G such that:

$$(RP_1)$$
 $\mathscr{F}(p,q) = 0$ iff $p = q$;

$$(RP_2)$$
 $\mathscr{F}(p,q) = \mathscr{F}(q,p)$ for every p,q in S.

If A and B are subsets of S then we write

$$\mathscr{F}(A, B) = \{\mathscr{F}(p, q), \text{ where } p \text{ is in } A \text{ and } q \text{ in } B\}.$$

(*) Nella seduta del 28 maggio 1974.

DEFINITION 1.2. A random-proximal space (RP-space) is a quadruple $(S, \alpha, \mathcal{F}, G)$ such that

$$(RP_3)$$
 $A\alpha B$ iff $o \in \overline{\mathscr{F}(A,B)}$

where α is a semi-proximity on S.

In [7, 9, 10] are introduced the so called random spaces and it is proved that every Menger space (see [8]) is a random space. In what follows the relation between these spaces and the RP-spaces is studied.

Concerning the probabilistic metric spaces and the RP-spaces we have:

THEOREM I.I. Every probabilistic metric space is a RP-space.

Proof. Let G be the family of all measurable functions (random variables) on a probability space (Ω, \mathcal{K}, P) with the convergence in repartition (see [7]). We can consider that the distribution functions considered in [8] correspond to elements of such a G (see also [9, 10]). Now define

$$\mathscr{F}(p,q) = \xi_{pq} \in G$$

which correspond to F_{pq} .

R. Frische has proved that the relation α on $\mathscr{P}(S)$ defined via $A\alpha B$ iff for every positive real numbers ε and λ there exists elements ρ

in A and q in B such that $F_{pq}(\varepsilon) > 1 - \lambda$ is a semi-proximity on S.

It is obvious that (RP₁) and (RP₂) are satisfied. It remains to prove (RP₃).

If $o \in \overline{\mathscr{F}(A,B)}$ then there exists a sequence $\xi_{p_nq_n}$ in $G(p_n \in A, q_n \in B)$ such that $\xi_{p_nq_n}$ converges to o. This implies that for every $\varepsilon > o$ and $\lambda > o$ there exists a positive integer n_0 such that if $n \ge n_0$ then $F_{p_nq_n}(\varepsilon) > I - \lambda$ that is $A\alpha B$.

Conversely, if $A\alpha B$ and n is a positive integer then there exists p_n in A and q_n in B such that

$$F_{p_nq_n}\left(\frac{1}{n}\right) > 1 - \frac{1}{n}$$

Now if x and λ are positive real numbers then there exists a positive integer n_0 such that $\frac{1}{n_0} < x$ and $1 - \frac{1}{n_0} > 1 - \lambda$. If n is a positive integer greater than or equal to n_0 then

$$F_{p_nq_n}(x) \ge F_{p_nq_n}\left(\frac{1}{n}\right) > 1 - \frac{1}{n} > 1 - \lambda$$

which implies that $\xi_{p_nq_n}\to 0$ that is $0\in \overline{\mathscr{F}(A,B)}$ and the theorem is proved.

THEOREM 1.2. Every random space is an RP-space.

Proof. In [10] it is proved that the family $\mathscr{U} = \{U_N\}_{U \in \mathscr{N}}$ where $U_N = \{(p,q) \in S \times S, \mathscr{F}(p,q) \in N\}$ is a uniformity on S. Let α be the semi-proximity on S induced by $\mathscr{U}[2\ 6]$ that is

$$A\alpha B$$
 iff $U_N(A) \cap B \neq \emptyset$ for every N in \mathscr{N} .

We will prove that (RP₃) is satisfied.

If $A \alpha B$ then $U_N(A) \cap B = \emptyset$ implies that there exists p in A and q in B such that $(p,q) \in U_N$ or $\mathscr{F}(p,q) \in N$. Thus for every N in \mathscr{N} , $\mathscr{F}(A,B) \cap N = \emptyset$ which implies $o \in \mathscr{F}(A,B)$.

Conversely if $o \in \overline{\mathscr{F}(A,B)}$ then for every N in \mathscr{N} , $\mathscr{F}(A,B) \cap N = \varnothing$ that is there exists p in A and q in B such that $\mathscr{F}(p,q) \in N$ which implies that $(p,q) \in U_N$ and thus $U_N(A) \cap B = \varnothing$ that is $A \alpha B$. Since the first two conditions in the definition of a random space are exactly (RP_1) and (RP_2) then the theorem is proved.

2. Let σ be the topology on S induced by the closure operator $A \to \{ p \in S , \{ p \} \alpha A \}$.

It is known that if α is a proximity then σ is uniformisable (see [2, 6]). It is easy to see that if G is separated then α is separated $(\{p\} \alpha \{q\} \iff \emptyset \in \overline{\mathscr{F}(p,q)} \iff \mathscr{F}(p,q) = 0 \iff p = q)$.

THEOREM 2.1. σ is coarser than the topology $\check{\sigma}$ induced by the mappings

$$f_q: S \to G$$
 , $f_q(p) = \mathscr{F}(p,q)$

Proof. By [I] $\check{\sigma}$ is the coarsest topology on S such that all f_q are continuous. Also $\check{\sigma}$ is uniformisable and it is given by the coarsest uniformity on S for which all f_q are uniformly continuous.

Now let A in σ and (p_n) a net in his complementary **C**A. Suppose that p_n converges to a point p in the topology $\check{\sigma}$. Then $\mathscr{F}(p_n,p)$ converges to $\mathscr{F}(p,p) = 0$ in G that is $0 \in \overline{\mathscr{F}(p,\mathbf{C}A)}$ and thus $\{p\} \alpha$ **C**A which implies p is in **C**A. Therefore (p_n) cannot converge to a point of A that is A is in $\check{\sigma}$. i.e. $\sigma \subset \check{\sigma}$.

Remark. If G is separated then $\check{\sigma}$ is separated.

Proof. If $p \neq q$ then $\mathscr{F}(p,q) \neq 0$. Let N_0 and N_{pq} be two neighborhoods of o and $\mathscr{F}(p,q)$ in G. By the continuity of $f_p: r \to \mathscr{F}(r,p)$ et r = p and r = q we obtain two disjoint neighborhoods of p and q.

Let $(S, \alpha, \mathcal{F}, G)$ be an RP-space and suppose that G is metrisable. Let N_1, N_2, \cdots a countable base for \mathcal{N} .

THEOREM 2.2. If $\check{\sigma}$ is compact then it is metrisable.

Proof. Since $f_q: p \to \mathscr{F}(p,q)$ is continuous at q then there exists for every positive integer k an open neighborhood $V_k(q)$ such that $V_k(q) \subset f_q^{-1}(N_k)$. Now let q_k a convergent sequence in the topology $\check{\sigma}, q_k \to q$. If $p \in \bigcap_{k=1}^{\infty} f_{q_k}^{-1}(N_k)$ then for every $k, f_q(p) \in N_k$ that is $\mathscr{F}(q_k, p)$ converges to σ in σ . But $\mathscr{F}(q_k, p)$ converges to $\mathscr{F}(q, p)$ that is $\mathscr{F}(q, p) = \sigma$ and thus q = p. Since $\bigcap_{k=1}^{\infty} V_k(q_k) \subset \bigcap_{k=1}^{\infty} f_{q_k}^{-1}(N_k)$ then the intersection $\bigcap_{k=1}^{\infty} V_k(q_k)$ contains at most a point. Then by σ is metrisable.

COROLLARY. If $\check{\sigma}$ is compact and σ is separated then it is compact and metrisable.

Proof. Since $\sigma \subset \check{\sigma}$ then by considering the identity map $i:(S,\check{\sigma}) \to (S,\sigma)$ then we obtain that i is a homeomorphism.

Acknowledgement. We are indebted to Prof. R. Fritsche for his valuable comments and suggestions.

REFERENCES

- [1] N. BOURBAKI (1960) Topologie générale, Herman, Paris.
- [2] E. CECH (1966) Topological Spaces, « Publ. Hause Czech. Ac. Sci. », Prague.
- [3] V. ISTRATESCU Introducere in Teoria Spațiilor Probabiliste și Aplicații (va ăparea).
- [4] C. Kuratowski (1966) Topology, Academic Press.
- [5] E. R. LORCH and HING TONG (1973) Compactness, Metrisability and Baire isomorphism, «Acta Sci. Math. », 35, 1-6.
- [6] S. A. NAIMPALLY and B. D. WARRAK (1970) Proximity Spaces, Cambridge, Univ. Press.
- [7] O. ONICESCU (1964) Nombres et Systèmes Aléatoires, Ed. de l'Acad. R. P. R., Bucarest et Ed. Eyrolles, Paris.
- [8] B. SCHWEITZER and A. SKLAR (1960) Statistical Metric Spaces, « Pacific J. Math. », 10 (1), 313-334.
- [9] G. SIMBOAN and R. THEODORESCU (1961) Structuri Uniforme Aleatoare, «Com. Acad. R. P. R. », 11 (11), 1311-1313.
- [10] G. SIMBOAN and R. THEODORESCU (1962) Statisticeskie Prostranstva, « Rev. Math. Pure et Appl. », 7 (4), 699-703 (russian).