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Analisi funzionale. — On a generalization of R iesz operators, II. 
N ota di G h eo rg h e  C o n s t a n t in , presentata (*> dal Socio G . S a n s o n e .

RIASSUNTO. — L’Autore dà nuove proprietà spettrali e di struttura per la classe Zà, di 
operatori definiti nella Nota I.

1. A class of operators on Hilbert spaces which generalizes the class 
of operators with compact imaginary part is given in [2] by following

DEFINITION. A  bounded linear operator T on a Hilbert space H is said 
to be Ik class i f  every point X e :a(T), ImX=)=o is a Riesz point of cr(T).

The aim of this Note is to give new properties about this class of operators.

2. Let T e  J  and let M C H be a closed subspace which is invariant 
under T. We denote by T M the operator induced by T in the quotient space 
H/M  defined by

T m(* +  M) =  T m * + M .

We shall need the following lemma [6]: Let T e j£?(X) have a connected 
resolvent set. If M is a closed subspace of X invariant under T then M is 
invariant under R (z  ; T) for all z e p(T).

We have.

Proposition 2.1. 1) p (T )C p (T |M) and  R ( s ;T ) |M =  R (> ;T |m) fo r  all
* e P(T)

2) p(T) C p(TM) and  R (s ; T)M =  Rfe ; T M) fo r  all z  c p(T).

Proof. 1) Let A 6p(T); then R(A ; T) e J5P(H) and R (A ;T )|M e jS?(M) 
by the above lemma since p (T) is a connected set. Also we have

{(T -  XI)M} R (X ; T)|m =  {(T -  XI) R (X ; T)}|M =  l |M .

and a similar result if the order of multiplication is reversed. Hence Xe p(T)|M 
and R(X;T)Jm =  R (X ;T |m).

The proof of part 2) is exactly analogous.

T h eo rem  2.1. I f  T e i  (H) then
1 )  T\Me ä ( M) ;
2) T Me i( H /M ) .

Proof. Let X £ a (H/M), Im X o; then by Proposition 2.1 we have that 
X e cr(T), Im X =4= o and

P (X ; T) =  f  R (X ; T) dX
o(X)

(*) Nella seduta del 20 aprile 1974.
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where y (X) is a closed contour contained in the resolvent set and g ( T ) n  
H y(X) =  {X}. Since P(X ; T) (M) Ç M we have that P(X ; T)|M e jSP(M) and 
M can be written

M =  R{P(X ; T)|m) © N {P (A ; T)|M}

where R{ P (X ; T)} is a finite dimensional subspace and thus R { P (X ;T ) |M} 
is with this property. From the fact that g(T|m) C g (T) for T e J (H ) ,  we 
conclude that (T •— XI)|r{p(x;t)|m} is nilpotent and (T -— XI)|N| P(x;t)|m}' is a 
homeomorphism. Since P(X ; T)|M-=j= o (if P(X ; T)|M =  o then X e p(T|M)) it 
follows that X is a Riesz point for g (T|m) and thus T |M e ^ (M ).

The proof of part 2) is exactly analogous.
For every Xc g (T), I m X ^ o  we have

H =  N (X ; T) © F (X ; T)

the decomposition from the definition of Riesz point, and for the points 
Xecy(T), Im X =  o, if we denote by

Ja — { x  * (T — XI)* x  =  o for some integer k >  1}

then we have

P r o p o s it io n  2.2. I f  T .e i ( H ) ,  X0 e c^(T) with Im X0 =  o then ]7 0 C 
C F ([x ; T) fo r  every y e g(T), Im [i /=  o where [j1 is not in a circle y which 
contains a spectral set g with X0 6  <7.

The following theorem is a generalization of some results which are given
in [5], [1], [6].

T heorem  2.2. Let T e JâP(H) and /(X) be an analytic function in a region 
which contains c(T).. I f  X0 c <j(T), Im  /(X 0) =(= 0 and  / ( T )  e É( H)  then X0 
zs a pole fo r  R(X ; T). ; I f  P(Xo ; T) is the projection associated with the spec­
tral set { Xo} then R{P(X o;T)} is finite dimensional and the eigens pace 
corresponding to the eigenvalue Xo i s  also finite dimensional.

Proof\ Let A = / ( T )  and [ L ~ f ( f 0) Then it is known that /(Xo) c 
e g (/(T )) and since/ (T) € ̂  (H) it follows that pt. is an isolated point of a (/(T )) . 
It is also known (see [5, p. 304]) that g =  {X: X <E g(T),/(X ) =  /(X 0)} is a spec­
tral set for T and Pa =  P ([i. ; A) where P0 is the spectral projection associated 
with g and and P (p, ; A) that associated with [x and/ ( T). If Ao is the restric­
tion of A to R { P 0}, then cr(Ao) — { [x } and therefore o e p(Ao). From 
Theorem 2.1 we conclude that A 0 £ 0t and since a (A0) =  { jjl} , [a =}̂  o, it 
follows that Ao is an invertible Riesz operator which implies that R { P 0} 
is finite dimensional. If Ti is the restriction of T to R { P 0} then g(Ti) =  g 
and since R { P0} is finite dimensional, g is a finite set. From the fact that 
Xo e  g  it ' follojws that Xo is an isolated point in g(T). Also, if P(X0 ; T) is the 
projection associated with { Xo } and T and P ( g 0 ; T) that associated with 
g  — Xo and T, then:

P0 =  P ( go ; T ) + P ( X 0 ;T)
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where P (<r0 ; T) P (X0 ; T) =  o. Hence R { P (X0 ; T) } Ç R  { P0 } so that 
R { P(Xo ; T)} is finite dimensional. When T is restricted to R{P(Xo;T)},  
its resolvent must therefore have a pole at Xo. But in this case it is known that 
this implies that Xo is a pole of R(X ; T) on H.

On the other hand the eigenspace corresponding to the eigenvalue 
Xo , N {T •— Xo I } C R{ P (Xo ; T)} and therefore dim N {T — Xo I } <  00 and 
the theorem is proved.

Remark. If for ver y X e a (T) , Im X 4 = o we have Im (Xo) 4 =0 and 
f  (T) e 3k then T e f .

We recall that an operator T is said to be strongly (weakly) asymptotically 
convergent if the sequence { T”} converges strongly (weakly) in the space 
^ (H ).

If follows that if an operator T is strongly asymptotically convergent and 
T e l  then <r(T) C { X : | X | < i } u { — 1 , 1 }  and — 1 g o^(T).

Indeed, it is easy to see that if {T"} converges then ||T'! || <  M <  00 
for n — I , 2 , • • • and therefore

rT =  sup I X I =  lim [|T"||1/” <  1.
A eo(T ) «-^00

Since T e l w e  conclude that every point X e a (T ), Im X =4 o is an eigenvalue 
for T and on the other hand { X: | X|  >  1 , X 4 = 1} O ffÿ (T) =  0 because 
in the contrary case { T” } is not strongly convergent.

Proposition 2.3. Let T be a contraction operator on H and T e i .  Then 
T is strongly asymptotically convergent i f  and only i f

^ ( T ) n { X : | X | =  x } C { i } .

Proof. From the fact that T e f ,  it follows that { X e o(T), Im X 4 =o} 
is at most a countable set and therefore c(T) n  { X : | a | == 1} is countable 
and the assertion follows from Proposition 2 [3].

In [4] J. T. Schwartz introduced the almost normal operators (i.e., 
T T—TT* =  compact) which generalize the class of operators with compact 
imaginary part. Utilizing a result from [4] we give

Proposition 2.4. I f  T is a spectral operator almost normal and T e Æ 
then T =  S--f* N where S e M is scalar and N nilpotent.

Proof. It is known that an operator S is scalar type if and only if S =  RAR-1 
where A  is a normal operator and R is invertible on H. If to (A) is the Weyl 
spectrum of A  and 7t0o(A) the set of isolated eigenvalues of finite multipli­
city, then

(0  û»(A) =  c(A) — 7t00(A)

since for normal operators the Weyl theorem holds. It follows that the Weyl 
theorem holds for S from the similarity of S with A. Also we have

®(S) =  ®(T) and to(T) D <r(T) — 7cof(T)
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where 7rof(T) is the set of eigenvalues of finite multiplicity. Hence we con­
clude that co(T) is a subset of the real line and also co(S). Then

{ X e <t(S) , Im X =j= o } C 7u00(S)

and since 7uO0(S) =  7r00(A) and A is normal we obtain that every X e 7r00(S) is 
a Riesz point of g (S) and therefore S e f .
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