ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

GHEORGHE CONSTANTIN

On a generalization of Riesz operators, II

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **56** (1974), n.5, p. 684–687. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1974_8_56_5_684_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Analisi funzionale. — On a generalization of Riesz operators, II. Nota di Gheorghe Constantin, presentata ^(*) dal Socio G. Sansone.

RIASSUNTO. — L'Autore dà nuove proprietà spettrali e di struttura per la classe \mathscr{R} di operatori definiti nella Nota I.

I. A class of operators on Hilbert spaces which generalizes the class of operators with compact imaginary part is given in [2] by following

DEFINITION. A bounded linear operator T on a Hilbert space H is said to be $\tilde{\mathcal{R}}$ class if every point $\lambda \in \sigma(T)$, Im $\lambda \neq 0$ is a Riesz point of $\sigma(T)$.

The aim of this Note is to give new properties about this class of operators.

2. Let $T \in \tilde{\mathscr{R}}$ and let $M \subset H$ be a closed subspace which is invariant under T. We denote by T_M the operator induced by T in the quotient space H/M defined by

$$\Gamma_{\mathrm{M}}(x + \mathrm{M}) = \mathrm{T}_{\mathrm{M}} x + \mathrm{M}.$$

We shall need the following lemma [6]: Let $T \in \mathscr{L}(X)$ have a connected resolvent set. If M is a closed subspace of X invariant under T then M is invariant under R(z; T) for all $z \in \rho(T)$.

We have.

PROPOSITION 2.1. I) $\rho(T)\subseteq\rho(T\big|_M)$ and $R\left(z\,;\,T\right)\big|_M=R\left(z\,;\,T\big|_M\right)$ for all $z\in\rho(T)$

2)
$$\rho(T) \subseteq \rho(T_M)$$
 and $R(z;T)_M = R(z;T_M)$ for all $z \in \rho(T)$.

Proof. I) Let $\lambda \in \rho(T)$; then $R(\lambda; T) \in \mathscr{L}(H)$ and $R(\lambda; T)|_{M} \in \mathscr{L}(M)$ by the above lemma since $\rho(T)$ is a connected set. Also we have

 $\left\{\left(T - \lambda I\right)_{M}\right\} \, R\left(\lambda \; ; \; T\right) \big|_{M} = \left\{\left(T - \lambda I\right) \, R\left(\lambda \; ; \; T\right)\right\} \big|_{M} = \left.I\right|_{M}$

and a similar result if the order of multiplication is reversed. Hence $\lambda \in \rho(T)|_{M}$ and $R(\lambda;T)|_{M} = R(\lambda;T|_{M})$.

The proof of part 2) is exactly analogous.

THEOREM 2.1. If $T \in \tilde{\mathscr{R}}(H)$ then

- I) $T|_{M} \in \tilde{\mathscr{R}}(M);$
- 2) $T_{M} \in \tilde{\mathscr{R}}(H/M)$.

Proof. Let $\lambda \in \sigma(H/M)$, Im $\lambda \neq 0$; then by Proposition 2.1 we have that $\lambda \in \sigma(T)$, Im $\lambda \neq 0$ and

$$P(\lambda;T) = \int_{\sigma(\lambda)} R(\lambda;T) d\lambda$$

(*) Nella seduta del 20 aprile 1974.

$$\mathbf{M} = \mathbf{R} \{ \mathbf{P}(\lambda; \mathbf{T}) \big|_{\mathbf{M}} \} \oplus \mathbf{N} \{ \mathbf{P}(\lambda; \mathbf{T}) \big|_{\mathbf{M}} \}$$

where $R\{P(\lambda;T)\}$ is a finite dimensional subspace and thus $R\{P(\lambda;T)|_M\}$ is with this property. From the fact that $\sigma(T|_M) \subseteq \sigma(T)$ for $T \in \widetilde{\mathscr{R}}(H)$, we conclude that $(T - \lambda I)|_{R\{P(\lambda;T)|_M\}}$ is nilpotent and $(T - \lambda I)|_{N\{P(\lambda;T)|_M\}}$ is a homeomorphism. Since $P(\lambda;T)|_M \neq o$ (if $P(\lambda;T)|_M = o$ then $\lambda \in \rho(T|_M)$) it follows that λ is a Riesz point for $\sigma(T|_M)$ and thus $T|_M \in \widetilde{\mathscr{R}}(M)$.

The proof of part 2) is exactly analogous.

For every $\lambda \in \sigma(T)$, $\operatorname{Im} \lambda \neq o$ we have

$$\mathbf{H} = \mathbf{N}(\lambda ; \mathbf{T}) \oplus \mathbf{F}(\lambda ; \mathbf{T})$$

the decomposition from the definition of Riesz point, and for the points $\lambda \in \sigma_{\phi}(T)$, Im $\lambda = 0$, if we denote by

$$J_{\lambda} = \{ x : (T - \lambda I)^k x = 0 \text{ for some integer } k \ge I \}$$

then we have

PROPOSITION 2.2. If $T \in \tilde{\mathscr{A}}(H)$, $\lambda_0 \in \sigma_p(T)$ with $\operatorname{Im} \lambda_0 = o$ then $\overline{J_{\lambda_0}} \subseteq \subseteq F(\mu; T)$ for every $\mu \in \sigma(T)$, $\operatorname{Im} \mu \neq o$ where μ is not in a circle γ which contains a spectral set σ with $\lambda_0 \in \sigma$.

The following theorem is a generalization of some results which are given in [5], [1], [6].

THEOREM 2.2. Let $T \in \mathscr{L}(H)$ and $f(\lambda)$ be an analytic function in a region which contains $\sigma(T)$. If $\lambda_0 \in \sigma(T)$, Im $f(\lambda_0) \neq 0$ and $f(T) \in \tilde{\mathscr{R}}(H)$ then λ_0 is a pole for $R(\lambda; T)$. If $P(\lambda_0; T)$ is the projection associated with the spectral set $\{\lambda_0\}$ then $R\{P(\lambda_0; T)\}$ is finite dimensional and the eigenspace corresponding to the eigenvalue λ_0 is also finite dimensional.

Proof. Let A = f(T) and $\mu = f(\lambda_0)$ Then it is known that $f(\lambda_0) \in \epsilon \sigma(f(T))$ and since $f(T) \in \tilde{\mathscr{R}}(H)$ it follows that μ is an isolated point of $\sigma(f(T))$. It is also known (see [5, p. 304]) that $\sigma = \{\lambda : \lambda \in \sigma(T), f(\lambda) = f(\lambda_0)\}$ is a spectral set for T and $P_{\sigma} = P(\mu; A)$ where P_{σ} is the spectral projection associated with σ and T, and $P(\mu; A)$ that associated with μ and f(T). If A_0 is the restriction of A to $R\{P_{\sigma}\}$, then $\sigma(A_0) = \{\mu\}$ and therefore $\sigma \in \rho(A_0)$. From Theorem 2.1 we conclude that $A_0 \in \tilde{\mathscr{R}}$ and since $\sigma(A_0) = \{\mu\}, \mu \neq \sigma$, it follows that A_0 is an invertible Riesz operator which implies that $R\{P_{\sigma}\}$ is finite dimensional. If T_1 is the restriction of T to $R\{P_{\sigma}\}$ then $\sigma(T_1) = \sigma$ and since $R\{P_{\sigma}\}$ is finite dimensional, σ is a finite set. From the fact that $\lambda_0 \in \sigma$ it follows that λ_0 is an isolated point in $\sigma(T)$. Also, if $P(\lambda_0; T)$ is the projection associated with $\{\lambda_0\}$ and T and $P(\sigma_0; T)$ that associated with $\sigma - \lambda_0$ and T, then:

$$P_{\sigma} = P(\sigma_0; T) + P(\lambda_0; T)$$

where $P(\sigma_0; T) P(\lambda_0; T) = 0$. Hence $R \{ P(\lambda_0; T) \} \subseteq R \{ P_{\sigma} \}$ so that $R \{ P(\lambda_0; T) \}$ is finite dimensional. When T is restricted to $R \{ P(\lambda_0; T) \}$, its resolvent must therefore have a pole at λ_0 . But in this case it is known that this implies that λ_0 is a pole of $R(\lambda; T)$ on H.

On the other hand the eigenspace corresponding to the eigenvalue λ_0 , N {T - λ_0 I} \subseteq R { P(λ_0 ; T)} and therefore dim N {T - λ_0 I} < ∞ and the theorem is proved.

Remark. If for every $\lambda \in \sigma(T)$, $\operatorname{Im} \lambda \neq o$ we have $\operatorname{Im}(\lambda_0) \neq o$ and $f(T) \in \tilde{\mathscr{A}}$ then $T \in \tilde{\mathscr{A}}$.

We recall that an operator T is said to be strongly (weakly) asymptotically convergent if the sequence $\{T^n\}$ converges strongly (weakly) in the space $\mathscr{L}(H)$.

If follows that if an operator T is strongly asymptotically convergent and $T \in \tilde{\mathscr{R}}$ then $\sigma(T) \subseteq \{\lambda : |\lambda| < I\} \cup \{-I, I\}$ and $-I \notin \sigma_p(T)$.

Indeed, it is easy to see that if $\{T^n\}$ converges then $||T^n|| \le M < \infty$ for $n = 1, 2, \cdots$ and therefore

$$r_{\mathrm{T}} = \sup_{\lambda \in \sigma(\mathrm{T})} |\lambda| = \lim_{n \to \infty} ||\mathrm{T}^{n}||^{1/n} \leq \mathrm{I}.$$

Since $T \in \tilde{\mathscr{R}}$ we conclude that every point $\lambda \in \sigma(T)$, $\operatorname{Im} \lambda \neq o$ is an eigenvalue for T and on the other hand $\{\lambda : |\lambda| \ge I, \lambda \neq I\} \cap \sigma_{p}(T) = \emptyset$ because in the contrary case $\{T^{*}\}$ is not strongly convergent.

PROPOSITION 2.3. Let T be a contraction operator on H and $T \in \tilde{\mathcal{R}}$. Then T is strongly asymptotically convergent if and only if

$$\sigma_p(\mathbf{T}) \cap \{ \lambda : |\lambda| = \mathbf{I} \} \subseteq \{ \mathbf{I} \}.$$

Proof. From the fact that $T \in \tilde{\mathscr{R}}$, it follows that $\{\lambda \in \sigma(T), \operatorname{Im} \lambda \neq 0\}$ is at most a countable set and therefore $\sigma(T) \cap \{\lambda : |\alpha| = 1\}$ is countable and the assertion follows from Proposition 2 [3].

In [4] J. T. Schwartz introduced the almost normal operators (i.e., $T^{*}T-TT^{*} = \text{compact}$) which generalize the class of operators with compact imaginary part. Utilizing a result from [4] we give

PROPOSITION 2.4. If T is a spectral operator almost normal and $T \in \tilde{\mathcal{R}}$ then T = S + N where $S \in \tilde{\mathcal{R}}$ is scalar and N nilpotent.

Proof. It is known that an operator S is scalar type if and only if $S = RAR^{-1}$ where A is a normal operator and R is invertible on H. If $\omega(A)$ is the Weyl spectrum of A and $\pi_{00}(A)$ the set of isolated eigenvalues of finite multiplicity, then

(I)
$$\omega(\mathbf{A}) = \sigma(\mathbf{A}) - \pi_{00}(\mathbf{A})$$

since for normal operators the Weyl theorem holds. It follows that the Weyl theorem holds for S from the similarity of S with A. Also we have

 $\omega(S) = \omega(T)$ and $\omega(T) \supset \sigma(T) - \pi_{of}(T)$

where $\pi_{of}(T)$ is the set of eigenvalues of finite multiplicity. Hence we conclude that $\omega(T)$ is a subset of the real line and also $\omega(S)$. Then

$$\{\lambda \in \sigma(S), \operatorname{Im} \lambda \neq o\} \subseteq \pi_{00}(S)$$

and since $\pi_{00}(S) = \pi_{00}(A)$ and A is normal we obtain that every $\lambda \in \pi_{00}(S)$ is a Riesz point of $\sigma(S)$ and therefore $S \in \tilde{\mathscr{R}}$.

References

[I] S. R. CARADUS (1966) - Operators of Riesz type, « Pacific J. Math. », 18, 61-71.

[2] GH. CONSTANTIN, On a generalization of Riesz operators, I (to appear).

- [3] F. GILFEATHER (1970) On structure and asymptotic behavior of polynomially compact operators, « Proc. Amer. Math. Soc. », 25, 127–134.
- [4] J.T. SCHWARTZ (1962) Subdiagonalization of operators in Hilbert space with compact imaginary part, «Comm. Pure and App. Math.», 15, 159–172.
- [5] A. E. TAYLOR (1958) Introduction to functional analysis, New York, Wiley and Sons.
 [6] T. T. WEST (1966) The decomposition of Riesz operators, « Proc. London math. Soc. », (3), 16, 737-752.