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Analisi funzionale. — On a gencralization of Riesz operators, 11.
Nota di GHEORGHE CONSTANTIN, presentata @ dal Socio G. SANSONE.

RIASSUNTO. — L’Autore da nuove proprieta spettrali e di struttura per la classe £ di
operatori definiti nella Nota I.

1. A class of operators on Hilbert spaces which generalizes the class
of operators with compact imaginary part is given in [2] by following

DEFINITION. A bounded linear operator T on-a Hilbert space H is said
to be R class if every point \ € 6(T), Im A==0 is a Riesz point of o(T).

The aim of this Note is to give new properties about this class of operators.

2. Let T€% and let MCH be a closed subspace which is invariant

under T. We denote by Ty, the operator induced by T in the quotient space
H/M defined by

Ty (x +M) = Ty - M.

We shall need the following lemma [6]: Let T € £ (X) have a connected
resolvent set. If M is a closed subspace of X invariant under T then M is
invariant under R(z; T) for all z€p(T).

We have.

PROPOSITION 2.1. 1) p(T) C o(Tly) and R(z; )|y = R(z; Thy) for all
z€p(T)
2) p(T)Cp(Ty) and R(z; T)y = R(z; Ty for all z€o(T).
Proof. 1) Let A€ p(T); then R(A;T)e L(H) and R(; )|y € Z(M)
by the above lemma since p(T) is a connected set. Also we have
{(T =MDy} RO Dy = {T— 2D RO Dy = Iy
and a similar result if the order of multiplication is reversed. Hence %€ p(T)|y
and R(:; Tly = R(h; Thy.
The proof of part 2) is exactly analogous.
THEOREM 2.1. If T € % (H) then
1) T|y € 2(M);
2) Ty € 2(H/M).
Proof. Let A€ c(H/M), Im A ==o0; then by Proposition 2.1 we have that
reo(T), Im A==0 and
POo;T)= | R(\;T)dxr
o (A)

(*) Nella seduta del 20 aprile 1974.



GHEORGHE CONSTANTIN, On a gencralization of Riesz operators 683

where y(2) is a closed contour contained in the resolvent set and o(T) N
Ny = {»}. Since P(x;T)(M)C M we have that P(%; T)l\I € Z(M) and
M can be written

M = R{PO\; )y} ® N{P(O; D)y}

where R{P(%; T)} is a finite dimensional subspace and thus R{P(»; T}
is with this property. From the fact that c(T\M) Co(T) for T e€Z%(H), we
conclude that (T——7\I>1R{p()\ ;) is nilpotent and (T"‘“‘)\I)lN{p()\ T} 18 2
homeomorphism. Since P(A; T)|y, =0 (Gf P(r; T)'M = o then A€ p(T}y)) it
follows that 2 is a Riesz point for ¢(Tly) and thus Ty € Z(M).

The proof of part 2) is exactly analogous.

For every A€o (T), ImA==0 we have

H=NQO;T)®F;T)

the decomposition from the definition of Riesz point, and for the points
Ae€o,(T), Imr=o0, if we denote by

={x:(T—2)'x=o0 for some integer %> 1}
then we have

PROPOSITION 2.2. If Te€Z(H), A €0,(T) with Imhy= o0 then Jy, C
CE@;T) for every pw€o(T), Imu==0 where u is not in a circle v which
contains a spectral set o with A€ c.

The following theorem i is a generalization of some results Wthh are given

in [5], [1], [6].

THEOREM 2.2. Let T € £ (H) and f(X) be an analytic function in a region
which contains o(T). If Nye€c(T), Im f(h)=Fo and f(T)€RH) then A
s a pole for R(\;T).- If P(ho;T) is the projection associated with the spec-
tral set {h} then R{P(o;T)} is finite dimensional and the ecigenspace
corvesponding to the eigenvalue h is also finite dimensional..

Proof. Let A =f(T) and g =f(h) Then it is known that f(\o)€
€ o(f(T)) and since f(T) € % (H) it follows that y is an isolated point of & (#(T)).
It is also known. (see [3, p. 304]) that 6 = {r: A€o (T), F(A) = F(ho)} is a spec-
tral set for T and P, = P (u ; A) where P, is the spectral projection associated
with ¢ and T, and P (i ; A) that associated with w and f(T). If Ag is the restric-
tion of A to R{P,}, then c(Ag) = { .} and therefore o€ p(Ag).” From
Theorem 2.1 we conclude that Ag€ % and since o(A¢) = {p},n==o0, it
follows that Ao is an invertible Riesz operator which implies that R{P,}
is finite dimensional. If Tj is the restriction of T to R{P,} then ¢(Ty) = ¢
and since R{P,} is finite dimensional, ¢ is a finite set. From the fact that
2o € o it follows that ¢ is an isolated point in o(T). Also, if P(3; T) is the
projection associated with {7\0} and T and P (co ; T) that assoc1ated with
6 — 2o and T, then: '

Py = P(%JT) + P(o; T)
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where P (0y; T)P (A ; T)=o0. Hence R{P(n;T)} CR{P,} so that
R{P(n;T)} is finite dimensional. When T is restricted to R {P(n; T)},
its resolvent must therefore have a pole at Ao. But in this case it is known that
this implies that A9 is a pole of R(A;T) on H.

On the other hand the eigenspace corresponding to the eigenvalue
2, N{T—2 I} CR{P(M;T)} and therefore dim N{T —2 I} < oo and
the theorem is proved.

Remark. 1f for every €6 (T), ImA==0 we have Im (ho)==0 and
f(T)eZ% then T € 4.

We recall that an operator T is said to be strongly (weakly) asymptotically
convergent if the sequence { T"} converges strongly (weakly) in the space
Z(H).

If follows that if an operator T is strongly asymptotically convergent and
TeZ then o(T)C{r:|A| <1}u{—1, 1} and —1 €c,(7T).

Indeed, it is easy to see that if {T"} converges then || T"||< M < oo
for w=1,2,.--- and therefore

rp= sup |A|= lim | T"|"" < 1.
Aeo(T) n—>00
Since T € % we conclude that every point A € 6(T), ImA==0 is an eigenvalue
for T and on the other hand {A:|A|>1,A=F1}N0,(T) = & because
in the contrary case {T"} is not strongly convergent.

'PROPOSITION 2.3. Let T be a contraction operator on H and T € #. Then
T is strongly asymptotically convergent if and only if

o, (D) n{r:|a|=1}C{1}.

Progf. From the fact that T €4, it follows that {A € 6(T), Im A ==0}
is at most a countable set and therefore ¢(T)N {A:|a|= 1} is countable
and the assertion follows from Proposition 2 [3].

In [4] J. T. Schwartz introduced the almost normal operators (i.e.,
T* T-TT" = compact) which generalize the class of operators with compact
imaginary part. Utilizing a result from [4] we give

PROPOSITION 2.4. If T is a spectral operator almost normal and T € R
then T =S + N where S € # is scalar and N nilpotent.

Proof It is known that an operator S is scalar type if and only if S =RAR-!
where A is a normal operator and R is invertible on H. If w(A) is the Weyl
spectrum of A and Tpo(A) the set of isolated eigenvalues of finite multipli-
city, then :

® | o (A) = o (A) — mo(A)
since for normal operators the Weyl theorem holds. It follows that the Weyl
theorem holds for S from the similarity of S with A. Also we have

@) =o() and o(T)De(T)— m(T)



GHEORGHE CONSTANTIN, On a generalization of Riesz operators 687

where 7o¢(T) is the set of eigenvalues of finite multiplicity. Hence we con-
clude that « (T) is a subset of the real line and also @ (S). Then

{r€a(S), Imh=k0} Crg(S)

and since g (S) = my(A) and A is normal we obtain that every A € 7oy (S) is
a Riesz point of ¢(S) and therefore S € £.
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