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Equazioni differenziali ordinarie. — Some new criteria fo r  the 
existence of periodic solutions of a certain second order differential 
equation. Nota di James O. C. E z e ilo , presentata (*> dal Socio 
G. Sansone.

RIASSUNTO. — Si considera l’equazione (1) x + f ( x )  x g  (x) = q (/), dove f{x),  
g (x) ,q (t) sono funzioni continue dei loro argomenti, f  (x) >  a >  o , q (t -f co) =  q if) per

co

tutti i t  e ds — o per qualche co.
co

Sia H =  I 9 e C1 [o , co] : 9 (t +  <*>) =  9 (t) qualunque sia t  e J 9 (j*) d  ̂ =  oj . Si dimo-
co o

stra che se g  è tale che j g  (9 (s)) ds = 0 per ogni 9 e H, esiste allora almeno una soluzione ^
0 co

di (1) di periodo co e J  ̂  (s) ds =  o ,
0

i .  I n t r o d u c t io n

We shall examine here the existence of periodic solutions of the second 
order differential equation

(I.ï) X  + f ( x ) x  + g (x )  =  q(t)

in which f  , g  ,q  are continuous functions depending only on the arguments 
shown, and g  (t) is co-periodic in that is q (t +  co) =  q (/), for all t .

The problem has already been very exhaustively investigated in the 
two main cases:

(I) When (1.1) is parameter dependent and f  , g  are sufficiently smooth, 
using the well known analytical techniques of Poincare, Krylov, Bogoliubov 
and others,

(II) When (1.1) is of the dissipative type, that is, having all its solutions 
ultimately bounded by a constant whose magnitude depends only on f  ,g  
and q. The second order equation
0-2) x  +  a x  +  bx  =  q (f) ,

in which a  and b are constants, is in this latter category (II) if

0-3) cl >  o  and b >  o ,

and the conditions on/  and g  which have dominated the investigation of (1.1) 
under the category (II) are generalizations in some form, or other, of (1.3).

(*) Nella seduta del 28 maggio 1974.
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The interested reader is referred to [1], [2], [3] and [4] for an extensive review 
of the techniques, results and other generalizations of the existence problem 
when (1.1) is of the category (I) or (II), as well as for other relevant references. 

The present treatment of (1.1) has a somewhat different motivation from
t

the categories (I) and (II), and concerns the special case in which | q (s) dj 
is bounded for all ty or, what is the same thing, 0

CO

(1.4) f ÿ )  d t =  o . .
Ò

Assume indeed that (1.4) holds and let cp (t) be any co-periodic solution of 
(1.1). Then clearly

CO

(1.5) \  g  ($(?))& =  o .
0

It is however easy to see that (1.5) by itself does not in general imply that 
cp (t), even if co-periodic, is a solution of (1.1), and it is thus of interest to inve­
stigate whether, and under what further conditions of f  and g, (1.5) can be 
used as a basis for the proof of the existence of co-periodic solutions of (1.1). 
One result in this direction which I have been able to establish, and which 
will be proved here, is the following:

Theorem. Assume that (1.4) holds and that f  (x) > a  (all x) fo r  some 
constant a >  o. Let

CO

H =  I cp 6 C1 [o , co]: cp is co-periodic in t and ' 9 (t) dt — o j •
0

I f  g  Is  such that (1.5) holds fo r  each 9^H, then there exists at least one
CO

(à-periodic solution 9* of (1.1) which also satisfies j* 9* (f) dt =  o.
0

2. Remarks on Theorem

The functions g  == o, g  =  bx (b constant) are the more obvious examples 
of functions g  which satisfy (1.5) for each 9 e H. By considering the Fourier 
expansion

,  v v* /  • 2 TC nt . o 2 7T nt \(2.1) 9 ~ h  \*n sm cos
n = l '

CO

for each 9 e H ^note here, by the way, that ß0 =  o, since J'9 d̂  == oj it can
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Ipwever be verified that each of tire following functions- also meets the given 
requirements on g :

n

(0 2  ck *&+1 (« finite integer; c, ,-< • c„, all constants);k— 1
(ii) ^2"*sin^ (m >  o integer);

(hi) fn (x) defined inductively, for any integer n >  o, by /  (a-) =
=  SÌn X> fn+l (X) =  SÌn (/„(*))•

In the sense that, when^ =  bx (with b constant) (1.5) is trivially fulfilled 
for all 9 c II. regardless of the sigh of b, the theorem gives a better generali­
zation of the existence result for the constant-coefficient equation (1.2) than 
any of the theorems for equations (1.1) of the dissipative type which cover 
only the case b >  o in (1.2). Notwithstanding this however, it will not be 
correct to say that the present theorem generalizes any of the standard exi­
stence theorems for equations (1.1) of the dissipative type, and vice versa, 
as there are functions g (x) which satisfy the dissipativity condition g(x)jx  > 0  
for all sufficiently large \ x \ ,  but which do not satisfy the condition on g  in 
the present theorem, and vice versa. For example the function g0 defined by

£ oA) =
2 X ,

X ,
if X >  o
if X <  o

clearly satisfies the dissipativity condition gQ (x)\x >  o (x =j= °) and yet
CÙ

j g Q (sin (2 TTW“1 t)) dt =  TV”1 CO .
0

On the other hand g { (.r) =  sin .v, which satisfies the condition of the present 
theorem, does not satisfy the dissipati vity condition gL(x')ix > o for all 
sufficiently large | x  [.

3. Preliminaries of proof

The procedure is by the Leray-Schauder fixed point technique, although 
we shall specifically use Schaefer’s version of the fixed point theorem (given 
in [5]).

A convenient starting point is the parameter (u)-dependent equation

(3-1) x-j- {(1 — n) a-\- p /(x)} x -\- (1 —• a) S.r~  \ig(x) -- \uj (t) (o <  p. <  1)

which reduces to a constant coefficient when jj. =  o and to the original equation 
(1.1) when p. =  I.  Here 8 is an arbitrarily chosen, though fixed, positive 
constant:1 Note that the equation (3.1) can be represented more compactly 
in the 2-vector form

C3-2) X =  AX +  uG (X ,t)

46. — RENDICONTI 1974, Voi. LVI, fase. 5.
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where the vectors X , G and the matrix A are given by

X =
x
x A =

o
-S G =

We introduce now a vector function 

defined, for any 9 € H, by

Y
- i

( /  O) —  a) x  —  (g (x) —  8x ) + ç  (f)

''L

(3-3) T ® - J e ( t - s ) A  Q  ( y  ^   ̂^  dj. .

This infinite integral is quite standard in the investigation of periodic solutions 
of (3.2) in cases where the matrix A has all its eigenvalues with negative real 
parts, as is indeed the case here since a and § are both positive. The reader 
is particularly referred to the arguments in § 4.2 of [6] which can be carried 
over, with very slight changes, to show that Y  is well defined and has the 
following periodicity and smoothness properties:

(Px) Y  (f) is tù-periodic in t fo r  each 9 e H;

(P2) Y  (i) exists and satisfies

(34) A y (0 =  A Y (0 .+  G ( 9 ( / ) ,0 .

Consider now the mapping T on H defined by

(T<p) (/) =  ^ ( 0  (9 e H ) .

It is not difficult to see that T : H -> H. Indeed by (Pi), 4i *s ^-periodic 
and by (P2) exists and is continuous. Finally, by the definitions of A 
and G, we have from (3.4) that

(3-5) L  =  42

(3-6) 4*2 =  — S4i — — ( / ( ? )  — a) ? — { g  (?) — s?> +  ? (0 •

Integrating (3.5) from o to co and using the co-periodicity of (Jq gives

that I 42 dt =  o. Similarly, from (3.6), we have that 
o'

CO (Ù

o =  —  8 j  (jq dt — a I <p2 dt =  o,
0 6

CO

sinceT j* q (t) dt =  0 and (1.5) holds for each 9 £ H. Thus we have
co 0 co

j d /=  — afr-1 4*2 dt =  o,

that

so that T : H -> H as was asserted. But
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the main feature of the mapping T which is of special relevance to the 
existence problem in hand is the result that

Lemma i. Any ç e H satisfying the functional equation

(3-7) 9 =  (Æp

is necessarily a solution of (3.1).

Proof of lemma. Indeed if 9 e H satisfies (3.7) then 9 =   ̂ T9 so 
that, by (3.5) and (3.6)

9 =  — S9 — aj> — [x {/(<p) — a) f  — y. {g  (9) — 89} +  [iq (t)

which shows that 9 is a solution of (3.1).
It will be shown in the next three sections that, subject to the given 

conditions on / ,  g  and q, there exists indeed at least one. 9 e H satisfying

(3.8) 9 =  T9

and the existence theorem for (1.1) will then follow from Lemma 1, since (3.1) 
reduces to (1.1) when [a =  1.

4. For further progress in the proof of (3.8), it is convenient to 
consider H now as a normed linear space with the operations of addition 
and multiplication by a scalar defined in the usual way, and with the 
norm || • || defined by

II 9 II.=  sup { I 9 (0 I +  14*00 I}-0 < t  < 63
It is a simple matter, by proceeding in almost the same way as in § 4.4 

of [6], to verify that the mapping T : H ^ - H  here is completf ly continuous. 
Thus the existence of a 9 6 H satisfying (3.8) will follow, as in [6], from 
Schaefer’s theorem (cited earlier in § 3) if it can be shown that there exists 
a constant D >  o, independent of y., such that

(4-0  II 9 II < D
for every 9 e H satisfying (3.7) (o <  y. <  1).

Actually since (see Lemma 1) every 9 e H which satisfies (3.7) necessarily 
satisfied (3.1), what we shall do here is to establish that every solution 9 e H 
of (3.1) satisfies

(4-2) I 9 (0  I +  I 9 (f) I <  D V <  t  <  T +  (Ù

for some ;, and the theorem will then follow since (4.2) implies (4.1).

5. Boundedness of \ 9 (f) | . Set

Q0 =  max I q (t) \ (t e [o , w]) .

In what follows hereafter the capitals D (with or without a suffix) will 
denote positive constants whose magnitude depends only on ca , 0 , 8  , Q , /
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and g, but nof on p,. The D ’s are not necessarily the same each time they 
occur unless suffixes are attached, but the numbered D ’s: Do , Di , D2 , • • • 
retain the same identity throughout.

We shall require the following subsidiary results:

Lemma 2. For each <peH
CO CO

(5-0 | W ) d / <  D„J<p2 (0 d/.
6 0

Proof. If 9 has the Fourier Series expansion (2.1) then
00 .

(5.2) <p 2 2  { n<x.„ cos (2 7into-11) — n$„ sin (2 izno-11) } .
n —1

By Parseval’s Theorem applied to (2.1),
CO
r  °°
/ cp2 (t) dt =  —  co 2  (a« +  ß«).

J  2 n = l
0

Similarly from (5.2) we have that

92 (Y) dt =  2 re2 co 1 2  (a2 +  ß2)
»=1
00

>  2 U2 tò“1 2  («« +  ß»)
«=1

~  4 TT2 6> 2 J 92 (t) dt 
0

which proves (5.1) with Do — ( i/4) o)2 7r~"2.

Lemma 3. Zfcré? exists Di such that, fo r  any fixed  t  any 9 e H 
satisfying (3.1)

T-j- CO

(5-3) , J?2 (f) àt <  D i.
T

Proof\ Given 9 € H, define V by
9

2 V == <p2 (1 — p.) s<p2 -}- [ i j g  (s) dj .
0

If cp is a solution of (3.1), an elementary calculation will show that 

V =  — { (1 — {*) a +  (x/(cp) } <p2 + M  (t) <p
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so that, since /  >  a and o <  [jt, <  i imply that

(i — [*) a +  [a /(9) >  a ,
we have

V <  — «<p2 + Q 0 1 <pi

<  — — tf?2 +  D.

Integrating both sides from t to t +  a, and noting that V is «-periodic in t,
since 9 is co-periodic in we obtain that

T-f-CO

o < ----— a J <p2 at +  Do>
T

from which (5.3) now follows.
The boundedness of | 9 (t) | , for each 9 e FI satisfying (3.1) can now 

be established. Fiist of all, note that if 9 e FI satisfies (3.1) then

(54) I? (t0)! <CDoDi6>-i)i/2

for some r0 . For otherwise, that is if | 9 (f) j >  DoDico“1 for all /, then
£0r

j 92 (t) dt >  Do Di
Ó

contradicting the estimate
<

92 (t) dt <  Do Di

obtainable from combining (5.1) and (5.3). 
Next, from the identity

0

9 00 =  9 (to) +  j ’ ?(s) d̂

we have that
t

I ? 09! < | ? ( t 0) |  +  J |  9 (-0 Idj
To

T 0 +  6)

<  I 9 (t0) I +  o>1/2̂  j - <p2 (s) d.?j (t0 <  t <  t 0 +  «)
h

by Schwarz’s inequality; so that by (5.3) and (5.4)

I 9 (0 I <  (Do Di w-1)1'2 +  (Di co)1/2 =  Da

Since 9 is «-periodic, it follows that

(S-5) ! 9 OD I ^  D2 for all t .

(Tq <  / <  T0 +  «).
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6. Boundedness of |<p(V)'|. Let <p e H be any solution of (3.1). We 
shall prove here the existence of some T >  o such that

I? (01 < D , * > T

and the required boundedness of 9 for all t will then follow since 9 is 
co-periodic.

Define W =  W (t) by

2 W =  92 (0 .

Since 9 satisfies (3.1) we have that

W =  {(1 f )  a +  [a/ (9) } <p2 — {(1 — [J-) S9 +  y.g (9) — ft#} 9 .

As before,

(1 — f )  a +  (4/(9) >  a >  o .

Also, by (5.5) and since o <  ja <  1 and q is bounded,

I (1 — p) 89 +  (9) — w  I <  D .

Hence

(6.1) W <  — a<p2 +  D I 9 I

<  — I , if I 9 I >  D3 

for some sufficiently large D3. It is easy to see from this that

C6-2) I ? (Ti) I <  d 3

for some yx. Indeed if otherwise we had that [ 9 (/) j >  D3 for all t, then 
by (6 .1) W — 00 as t -> co , which is impossible, W being non negative. 

We assert now that, with 14 determined by (6.2),

(6-3) I 9 (0 I A 2 D3 for all t  '>x1 .

For suppose that this were not so. Then, by (6.2) and (6.3), 9 (/) being 
continuous, there exist h  , t2 with h  >  tx >  z1 such that

(64) I 9 Oh) I =  D3 , I 9 (V2) I =  2 D3

and

(6-5) I 9 (f) I >  D3

But, by the definition of W, (6.4) implies that

W (4 > .= 2 Df >  i -  Df =  W (O ,

(h <  t <  ti).
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which clearly contradicts the inequality

w ( / 2) <  w ( o

implied by (6.1) if 9 is subject to (6.5). This proves (6.3) and hence also the 
required boundedness of | 9 (t) | for all /.

With the result (4.2) thus completely established for any 9cH  satisfying 
(3.1), the theorem now follows as was pointed out in §4.
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