Classe Scienze Fisiche Matematiche Naturali

Rendiconti

A. Duane Porter

Some Partitions of a Rectangular Matrix

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 56 (1974), n.5, p. 667-671.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1974_8_56_5_667_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Algebra. - Some Partitions of a Rectangular Matrix. Nota di A. Duane Porter, presentata ${ }^{(*)}$ dal Socio B. Segre.

Riassunto. - Si ottengono espressioni esplicite per il numero delle partizioni di una matrice B su di un campo finito quale somma di matrici di dato tipo, come ad esempio $B=U_{2} U_{1} A+D V_{1} V_{2}$ con le A e D matrici assegnate e le U, V soggette a condizioni di tipo dato.

I. Introduction

Let A be an $m \times n$ matrix of rank r_{1}, D be an $s \times t$ matrix of rank r_{2}, and B be an $s \times n$ matrix. In [2] and [3] John H. Hodges found the number of solutions in a finite field of the matrix equation $\mathrm{UA}+\mathrm{DV}=\mathrm{B}$, where U is $s \times m$ and V is $t \times n$. Certain generalizations of this problem are possible. In particular, one can discuss the number of partitions of a matrix B as defined by

$$
\begin{equation*}
\mathrm{U}_{1} \cdots \mathrm{U}_{\alpha} \mathrm{A}+\mathrm{DV}_{1} \cdots \mathrm{~V}_{\beta}=\mathrm{B} \tag{I.I}
\end{equation*}
$$

where $\mathrm{A}, \mathrm{B}, \mathrm{D}$ are as defined above and $\mathrm{U}_{i}, \mathrm{~V}_{j}, \mathrm{I} \leq i \leq \alpha, \mathrm{I} \leq j \leq \beta$ are matrices of arbitrary sizes subject to the condition that product sum and equality are defined. This number is discussed in Theorem I subject to certain restrictions on A and D . These restrictions can be removed if somewhat easier to handle partitions of the form

$$
\begin{equation*}
\mathrm{U}_{1} \cdots \mathrm{U}_{\alpha} \mathrm{AX}_{1} \cdots \mathrm{X}_{\gamma}+\mathrm{Y}_{1} \cdots \mathrm{Y}_{\delta} D V_{1} \cdots V_{\beta}=B \tag{I.2}
\end{equation*}
$$

are discussed. Partitions of the form (1.2) have already been considered in [7]. This paper is the analog for rectangular matrices of a paper written by the author concerning skew matrices [6]. Later in this paper we find the number of partitions of a matrix B into a sum of k matrices where each is in the form of the left side of (I.I).

2. Notation and preliminaries

Let $\mathrm{F}=\mathrm{GF}(q)$ be the finite field of $q=p^{f}$ elements, p odd. Matrices with elements from F will be denoted by Roman capitals $\mathrm{A}, \mathrm{B}, \cdots$. A (s, m) will denote a matrix of s rows and m columns and $\mathrm{A}(s, m ; r)$ a matrix of the same dimensions with rank r. I_{r} will denote the identity matrix of order r and $\mathrm{I}(s, m ; r)$ will denote an $s \times m$ matrix with I_{r} in its upper left hand

[^0]corner and zeros elsewhere. If $\mathrm{A}=\left(a_{i j}\right)$ is $n \times n$, then $\sigma(\mathrm{A})=a_{11}+\cdots+a_{n n}$ will be called the trace of A. It is apparent that $\sigma(A+B)=\sigma(A)+\sigma(B)$ and for A, B square $\sigma(A B)=\sigma(B A)$.

For $a \in \mathrm{~F}$, we define

$$
\begin{equation*}
e(a)=\exp 2 \pi i t(a) \mid p \quad ; \quad t(a)=a+a^{p}+\cdots+a^{p^{f-1}} \tag{2.I}
\end{equation*}
$$

where by its definition $t(a) \in G F(p)$. It follows directly from (2.I) that

$$
e(a+b)=e(a) e(b), \quad \sum_{b} e(a b)=\left\{\begin{array}{l}
q, a=0, \tag{2.2}\\
0, a \neq 0,
\end{array}\right.
$$

where the sum is over all $b \in \mathrm{~F}$.
A direct application of (2.1) and the definition of trace also will show that if $\mathrm{A}=\mathrm{A}(m, n)$, then

$$
\sum_{\mathrm{B}} e\{\sigma(\mathrm{AB})\}= \begin{cases}q^{m n}, & \mathrm{~A}=0 \tag{2.3}\\ 0 & , \mathrm{~A} \neq 0\end{cases}
$$

where in this case the sum is over all matrices $\mathrm{B}=\mathrm{B}(n, m)$. The number $g(a, b ; y)$ of $a \times b$ matrices of rank y is given by Landsberg [4] to be

$$
\begin{equation*}
g(a, b ; y)=q^{y(y-1) / 2} \prod_{i=1}^{y}\left(q^{a-i+1}-\mathrm{I}\right)\left(q^{b-i+1}-\mathrm{I}\right) /\left(q^{i}-\mathrm{I}\right) . \tag{2.4}
\end{equation*}
$$

Following [$\mathrm{I} ; 8.4$], if $\mathrm{B}=\mathrm{B}(s, t ; \rho)$, we define

$$
\begin{equation*}
\mathrm{H}(\mathrm{~B}, z)=\sum_{\mathrm{C}(t, s ; z)} e\{-\sigma(\mathrm{B}, z)\}, \tag{2.5}
\end{equation*}
$$

where the sum is over all matrices $\mathrm{C}(t, s ; z)$. This sum is evaluated [I; Theor. 7] to be

$$
\mathrm{H}(\mathrm{~B}, z)=q^{\rho z} \sum_{j=0}^{z}(-\mathrm{I})^{j} \dot{q}^{j(j-2 \rho-1) / 2}\left[\begin{array}{l}
\rho \tag{2.6}\\
j
\end{array}\right] q(s-\rho, t-\rho ; z-j),
$$

with

$$
\left[\begin{array}{l}
\rho \\
j
\end{array}\right]=\left(\mathrm{I}-q^{\rho}\right) \cdots\left(\mathrm{I}-q^{\rho-j+1}\right) /(\mathrm{I}-q) \cdots\left(\mathrm{I}-q^{j}\right) .
$$

3. An evaluation of (I.I)

We are now able to prove
Theorem i. Let α, β be integers $\geq 2 ; \mathrm{A}=\mathrm{A}(m, n ; n) ; \mathrm{D}=\mathrm{D}(s, t ; s)$; $\mathrm{B}=\mathrm{B}(s, n ; \rho) \quad ; \quad \mathrm{U}_{1}=\mathrm{U}_{1}\left(s, s_{1}\right) \quad, \quad \mathrm{U}_{i}=\mathrm{U}_{i}\left(s_{i-1}, s_{i}\right) \quad$ for $\mathrm{I} \leq i<\alpha ;$ $\mathrm{U}_{\alpha}=\mathrm{U}_{\alpha}\left(s_{\alpha-1}, m\right) \quad ; \quad \mathrm{V}_{1}=\mathrm{V}_{1}\left(t, t_{1}\right) \quad ; \quad \mathrm{V}_{j}=\mathrm{V}_{j}\left(t_{j-1}, t_{j}\right) \quad$ for $\quad \mathrm{I} \leq j<\beta$; $\mathrm{V}_{\beta}=\mathrm{V}_{\beta}\left(t_{\beta-1}, n\right)$, where $m, n, s, t, \rho, s_{1}, \cdots, s_{\alpha-1}, t_{1}, \cdots, t_{\beta-1}$ represent arbitrary positive integers. Then the number N of partitions of a matrix. B as described in (1.1) is given by

$$
\mathrm{N}=q^{r-s t} \sum_{z=0}^{(n, s)} \mathrm{H}(\mathrm{~B}, z) \mathrm{N}_{\alpha}(z) \mathrm{N}_{\beta}(z),
$$

where $r=m s_{\alpha-1}+n t_{\beta-1} ; \mathrm{H}(\mathrm{B}, z)$ is given by (2.5) and (2.6); $(n, s)=$ minimum of n and $s ; \mathrm{N}_{\alpha}(z)$ is given by (3.4) and $\mathrm{N}_{\beta}(z)$ is obtained from $\mathrm{N}_{\alpha}(z)$ by replacing α with β and s_{k} with t_{k}.

Proof. By noting (2.3), we may express the number of partitions of B as described by (I.I) by the following formula:
$\mathrm{N}=q^{-s n} \sum_{\mathrm{C}} \mathrm{S}\left(\mathrm{U}_{1}, \cdots, \mathrm{U}_{\alpha}, \mathrm{V}_{1}, \cdots, \mathrm{~V}_{\beta}\right) e\left\{\sigma\left(\left[\mathrm{U}_{1} \cdots \mathrm{U}_{\alpha} \mathrm{A}+\mathrm{DV}_{1} \cdots \mathrm{~V}_{\beta}-\mathrm{B}\right] \mathrm{C}\right)\right\}$, where $\mathrm{S}\left(\mathrm{U}_{1}, \cdots, \mathrm{U}_{\alpha}, \mathrm{V}_{1}, \cdots, \mathrm{~V}_{\beta}\right)$ denotes a summation over all $\mathrm{U}_{i}, \mathrm{~V}_{j}$, $\mathrm{I} \leq i \leq \alpha, \mathrm{I} \leq j \leq \beta$ as these matrices are defined above, and the sum over C is over all $\mathrm{C}=\mathrm{C}(n, s)$. If we divide the sum over C into successive sums over $\mathrm{C}(n, s ; z), 0 \leq z \leq(n, s)=$ minimum of n and s, note (2.2) as well as the properties of trace, we may write the above equation as

$$
\begin{gather*}
\mathrm{N}=q^{-s n} \sum_{z=0}^{(n, s)} \sum_{\mathrm{C}(n, s ; z)} e\{-\sigma(\mathrm{BC})\} \tag{3.I}\\
\mathrm{S}\left(\mathrm{U}_{1}, \cdots, \mathrm{U}_{\alpha}, \mathrm{V}_{1}, \cdots, \mathrm{~V}_{\beta}\right) e\left\{\sigma\left(\mathrm{U}_{1} \cdots \mathrm{U}_{\alpha} \mathrm{AC}\right)\right\} e\left\{\sigma\left(\mathrm{DV}_{1} \cdots \mathrm{~V}_{\beta} \mathrm{C}\right)\right\} .
\end{gather*}
$$

However, since the variable matrices in each of the exponential functions in the second line above are distinct from each other, we may write this line as
(3.2) $\mathrm{S}\left(\mathrm{U}_{1}, \cdots, \mathrm{U}_{\alpha}\right) e\left\{\sigma\left(\mathrm{U}_{1} \cdots \mathrm{U}_{\alpha} \mathrm{AC}\right)\right\} \mathrm{S}\left(\mathrm{V}_{1}, \cdots, \mathrm{~V}_{\beta}\right) e\left\{\sigma\left(\mathrm{DV}_{1} \cdots \mathrm{~V}_{\beta} \mathrm{C}\right)\right\}$.

We must now evaluate each sum in (3.2). To do this we first note that for any fixed choice of $\mathrm{U}_{1}, \cdots, \mathrm{U}_{\alpha}, \mathrm{V}_{1}, \cdots, \mathrm{~V}_{\beta}$ and any $\mathrm{C}=\mathrm{C}(n, s ; z)$, we have $\sigma\left(\mathrm{U}_{1} \cdots \mathrm{U}_{\alpha} \mathrm{AC}\right)=\sigma\left(\mathrm{ACU}_{1} \cdots \mathrm{U}_{\alpha}\right)$ and $\sigma\left(\mathrm{DV}_{1} \cdots \mathrm{~V}_{\beta} \mathrm{C}\right)=\sigma\left(\mathrm{CDV}_{1} \cdots \mathrm{~V}_{\beta}\right)$. By making these substitutions into (3.2) and summing over U_{α} and V_{β} in accordance with (2.3), we can see that the only nonzero contributions to (3.2) come from terms such that

$$
\begin{equation*}
\mathrm{ACU}_{1} \cdots \mathrm{U}_{\alpha-1}=\mathrm{o} \quad \text { and } \quad \mathrm{CDV}_{1} \cdots \mathrm{~V}_{\beta-1}=\mathrm{o} \tag{3.3}
\end{equation*}
$$

and each such term contributes q^{r} to the sum, where $r=m s_{\alpha-1}+n t_{\beta-1}$. So, as $\mathrm{U}_{1}, \cdots, \mathrm{U}_{\alpha-1}, \mathrm{~V}_{1}, \cdots, \mathrm{~V}_{\beta-1}$ vary over all matrices of their respective sizes with elements from F , we must determine how many times (3.3) is satisfied. Hence, for any fixed $\mathrm{C}=\mathrm{C}(n, s ; z)$ we must find the number of solutions to the matric equations in (3.3). It is at this point we need the added restrictions on the matrices A and D . We first discuss the left equation in (3.3). The number of solutions, which we call $N_{\alpha}(z)$, of $\mathrm{ACU}_{1} \cdots \mathrm{U}_{\alpha-1}=0$ is a special case of [5; Theorem I]. However, it is shown in this paper that $\mathrm{N}_{\alpha}(z)$ is a function of the rank of the constant matrix AC so that we must know the rank of $A C$. If the rank of A is not equal to the number of columns of A then, in general, the rank of AC is not a function of only the rank of C . But, with $\mathrm{A}=\mathrm{A}(m, n ; n)$ then we have $\operatorname{rank} \mathrm{AC}=\operatorname{rank} \mathrm{C}=\boldsymbol{z}$, Hence,
$\mathrm{N}_{\alpha}(z)$ is given by [5; Theorem I] to be

$$
\begin{align*}
& \mathrm{N}_{\alpha}(z)=q^{\mathrm{T}} \sum_{j_{\alpha-2}=0}^{\left(s_{\alpha-1}, z\right)} g\left(z, s_{\alpha-1} ; j_{\alpha-2}\right) q^{-s_{\alpha-2} j_{\alpha-2}} . \tag{3.4}\\
& \cdot \prod_{i=1}^{\alpha-2} \sum_{j_{\alpha-i-1}=0}^{\left(j_{\alpha-i}, s_{\alpha-i}\right)} g\left(j_{\alpha-i}, s_{\alpha-i} ; j_{\alpha-i-1}\right) q^{\mathrm{W}}
\end{align*}
$$

with $\quad \mathrm{T}=s_{\alpha-1}\left(s_{\alpha-2}-z\right)+s s_{1}+\cdots+s_{\alpha-3} s_{\alpha-2} \quad$ and $\quad \mathrm{W}=-j_{\alpha-i-1} s_{\alpha-i-1}$,
where $(u, v)=$ minimum of u and $v ; g(a, b ; y)$ is given by (2.4); the sum over any j_{k} is defined to be I when the upper limit is zero; the product over i is defined to be I for $\alpha=2$, and for $\alpha=2,3 s_{\alpha-2}, s_{\alpha-3}$ are defined to be o.

By using a similar discussion, we may determine the number $\mathrm{N}_{\beta}(z)$ of solutions of $\mathrm{CDV}_{1} \cdots \mathrm{~V}_{\beta-1}=\mathrm{o}$ from (3.4) by replacing α with β and s_{k} with t_{k} in this expression. The theorem now follows by substituting the value $\mathrm{N}_{\alpha}(z) \mathrm{N}_{\beta}(z) q^{r}$ into (3.1), noting (2.5), and simplifying the resulting expression.

4. Some particular results

It is perhaps of some interest to consider (I.I) in the cases $\alpha=\mathrm{I}$, $\beta \geq 2$ and $\alpha \geq \mathrm{I}, \beta=\mathrm{I}$. Clearly, $\alpha=\beta=\mathrm{I}$ is given by Hodges [3]. The details of the proofs of these cases are somewhat like the proof of Theor. I so will not be included.

Theorem 2. Let $\alpha=\mathrm{I}, \beta \geq 2$ be integers with $\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{V}_{1}, \cdots, \mathrm{~V}_{\beta}$ as defined in Theor. I and $\mathrm{U}_{1}=\mathrm{U}_{1}(s, m)$. Then the number $\mathrm{N}(\mathrm{I}, \beta)$ of partitions of B as defined by (I.I) is given by $q^{\gamma} \mathrm{N}_{\beta}(\mathrm{O})$ where $\gamma=s(m-n)+n t_{\beta-1}$, and $\mathrm{N}_{\beta}(\mathrm{o})$ is defined in Theor. I.

Theorem 3. Let $\alpha \geq \mathrm{I}, \beta=\mathrm{I}, \mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{U}_{1}, \cdots, \mathrm{U}_{\alpha}$ be as in Theor. I with $\mathrm{V}_{1}=\mathrm{V}_{1}(t, n)$. Then the number of partitions of B as defined by (I.I) is given by $q^{\delta} \mathrm{N}_{\alpha}(\mathrm{o})$, where $\delta=n(t-s)+m s_{\alpha-1}$, and $\mathrm{N}_{\alpha}(\mathrm{o})$ is given by (3.4).

5. The general partition

For each $\mathrm{I} \leq h \leq k$, we define $\mathrm{A}_{h}=\mathrm{A}_{h}\left(m_{h}, n_{h} ; n_{h}\right), \quad \mathrm{D}_{h}=\mathrm{D}_{h}\left(s_{h}, t_{h} ; s_{h}\right)$ and $\mathrm{A}_{h}\left(\mathrm{U}_{h}, \mathrm{~V}_{h}\right) \mathrm{D}_{h}=\mathrm{U}_{h 1} \cdots \mathrm{U}_{h \alpha_{h}} \mathrm{~A}_{h}+\mathrm{D}_{h} \mathrm{~V}_{h 1} \cdots \mathrm{~V}_{h \rho_{h}}$ where $\mathrm{U}_{h 1}=\mathrm{U}_{h 1}\left(s, s_{h 1}\right)$, $\mathrm{U}_{h i}=\mathrm{U}_{h i}\left(s_{h, i-1}, s_{h, i}\right)$ for $\mathrm{I}<i<\alpha_{h}, \mathrm{U}_{h \alpha}=\mathrm{U}_{h \alpha}\left(s_{h, \alpha-1}, m_{h}\right), \mathrm{V}_{h 1}=\mathrm{V}_{h 1}\left(t_{h}, t_{h 1}\right)$, $\mathrm{V}_{h j}=\mathrm{V}_{h j}\left(t_{h, j-1}, t_{h, j}\right)$ for $\mathrm{I}<j<\beta_{h}, \mathrm{~V}_{h \beta}=\mathrm{V}_{h \beta}\left(t_{h, \beta-1}, n\right)$. We now seek the number of ways a matrix $\mathrm{B}=\mathrm{B}(s, n ; \rho)$ may be partitioned as

$$
\begin{equation*}
\mathrm{A}_{1}\left(\mathrm{U}_{1}, \mathrm{~V}_{1}\right) \mathrm{D}_{1}+\cdots+\mathrm{A}_{k}\left(\mathrm{U}_{k}, \mathrm{~V}_{k}\right) \mathrm{D}_{k}=\mathrm{B} \tag{5.I}
\end{equation*}
$$

It is possible to prove.

Theorem 4. If $\alpha_{h}, \beta_{h} \geq 2$, $\mathrm{I} \leq h \leq k$, then the number N_{k} of partitions of a matrix $\mathrm{B}=\mathrm{B}(s, n ; \rho)$ as described by (5.1) is given by

$$
\mathrm{N}_{k}=q^{\mathrm{R}-s n} \sum_{z=0}^{(n, s)} \mathrm{H}(\mathrm{~B}, z) \prod_{h=1}^{k} \mathrm{~N}_{\alpha h}(z) \mathrm{N}_{\beta h}(z)
$$

where $\mathrm{R}=r_{1}+\cdots+r_{k}$ with $r_{h}=m s_{h, \alpha-1}+n t_{h, \beta-1}, \mathrm{H}(\mathrm{B}, z)$ is defined by (2.6), $\mathrm{N}_{\alpha h}(z), \mathrm{N}_{\beta h}(z)$ are defined immediately following (5.3), and ($\left.n, s\right)=$ minimum of n and s.

Proof. In view of (2.3), we may write
$\mathrm{N}_{k}=q^{-s t} \sum_{\mathrm{C}} \sum\left(\mathrm{U}_{h i}, \mathrm{~V}_{h j}\right) e\left\{\sigma\left(\left[\mathrm{~A}_{1}\left(\mathrm{U}_{1}, \mathrm{~V}_{1}\right) \mathrm{D}_{1}+\cdots+\mathrm{A}_{k}\left(\mathrm{U}_{k}, \mathrm{~V}_{k}\right) \mathrm{D}_{k}-\mathrm{B}\right] \mathrm{C}\right\}\right.$,
where the sum over C is over all $\mathrm{C}=\mathrm{C}(n, s)$ and $\Sigma\left(\mathrm{U}_{h i}, \mathrm{~V}_{h j}\right)$ denotes a summation over each $\mathrm{U}_{h i}, \mathrm{~V}_{h j}, \mathrm{I} \leq h \leq k$, as these matrices are defined above. Now if we divide the sum over C into successive sums over all $\mathrm{C}=\mathrm{C}(n, s ; z), \quad 0 \leq z \leq(n, s)=$ minimum of n and s, and note (2.2), we may write the above line as

$$
\begin{align*}
\mathrm{N}_{k} & =q^{-s t} \sum_{z=0}^{(n, s)} \sum_{\mathrm{C}} e\{-\sigma(\mathrm{BC})\} \prod_{h=1}^{k} \mathrm{~W}_{h}, \quad \text { where: } \tag{5.2}\\
\mathrm{W}_{h} & =\mathrm{S}\left(\mathrm{U}_{h 1}, \cdots, \mathrm{U}_{h \alpha_{h}}, \mathrm{~V}_{h 1}, \cdots, \mathrm{~V}_{h \beta_{h}}\right) e\left\{\sigma\left[\mathrm{~A}_{h}\left(\mathrm{U}_{h}, \mathrm{~V}_{h}\right) \mathrm{D}_{h} \mathrm{C}\right]\right\} .
\end{align*}
$$

If we make appropriate substitutions into (3.I) through (3.4), we may obtain the value of W_{k} to be

$$
\begin{equation*}
\mathrm{W}_{h}=q^{r_{h}} \mathrm{~N}_{\alpha h}(z) \mathrm{N}_{\beta h}(z) \tag{5.3}
\end{equation*}
$$

where $r_{h}=m s_{h, \alpha-1}+n t_{h, \beta-1}, \mathrm{~N}_{\alpha h}(z)$ is obtained from (3.4) by letting $s_{a}=s_{h, a}$ for all subscripts $a, \alpha=\alpha_{h}$; and $\mathrm{N}_{\beta h}(z)$ is obtained from N_{β} by letting $t_{a}=t_{h, a}$, $\beta=\beta_{h}$. The theorem now follows by substituting (5.3) into (5.2) and noting (2.4).

We note that theorems corresponding to Theor. 4 when some or all of α_{k} and (or) $\beta_{k}=\mathrm{I}$ can be obtained, but we shall not dwell on that.

References

[r] John H. Hodges (1956) - Representations by bilinear forms in a finite feld, "Duke Math. Journ.», 22, 497-5io.
[2] John H. Hodges (1956) - The matric equation $\mathrm{AX}=\mathrm{B}$, "Amer. Math. Monthly», 63, 243-244.
[3] John H. Hodges (1957) - Some matrix equations over a finite field, "Ann. di Mat.», 44, 245-250.
[4] Georg Landsberg (1893) - Über eine Anzahlbestimmung und eine damit zusammenhängende Reihe, "Journal für die Reine und Ang. Math.», 3, 87-88.
[5] A. Duane Porter (1968) - The matric equation $\mathrm{AX}_{1} \cdots \mathrm{X}_{a}=\mathrm{B}$, «Rend. Acc. Naz. dei Lincei», 44, 727-732.
[6] A. Duane Porter (1969) - Some partitions of a skew matrix, "Ann. di Mat.», 82, i1 5-120.
[7] A. Duane Porter (1970) - Generalized bilinear forms in a finite field, "Duke Math. Journ. », 37, 55-60.

[^0]: (*) Nella seduta del 28 maggio 1974 .

