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Algebra. — Some Partitions of a Rectangular Matrix. Nota di
A. Duane PorTER, presentata ® dal Socio B. SEGRE.

RiassunTO. — Si oftengono espressioni esplicite per il numero delle partizioni di
una matrice B su di un campo finito quale somma di matrici di dato tipo, come ad esempio
B=TU2U1A+DViVz conle A e D matrici assegnate e le U,V soggette a condizioni di
tipo dato.

I. INTRODUCTION

Let A be an 7 X7 matrix of rank »;, D be an sX# matrix of rank 7,,
and B be an sX# matrix. In [2] and [3] John H. Hodges found the
number of solutions in a finite field of the matrix equation UA 4DV = B,
where U is sXm and V is #X#n. Certain generalizations of this problem
are possible. In particular, one can discuss the number of partitions of a
matrix B as defined by ’

(1.1) U, -+ U,A +DV; .- Vg = B,

where A, B, D are as defined above and U,,V;, 1 <7 <o, 1 <;j <P are
matrices of arbitrary sizes subject to the condition that product sum and
equality are defined. This number is discussed in Theorem 1 subject to certain
restrictions on A and D. These restrictions can be removed if somewhat easier
to handle partitions of the form

(1.2) Ul“'UaAXI"'XY+Y1"‘Y8DV1"‘V6=B

are discussed. Partitions of the form (1.2) have already been considered
in [7]. This paper is the analog for rectangular matrices of a paper written
by the author concerning skew matrices [6]. Later in this paper we find the
number of partitions of a matrix B into a sum of # matrices where each is in
the form of the left side of (1.1).

2. NOTATION AND PRELIMINARIES

Let F = GF (¢) be the finite field of ¢ = p/ elements, p odd. Matrices
with elements from F will be denoted by Roman capitals A, B,---. A (s, m)
will denote a matrix of s rows and # columns and A (s, 7 ;7) a matrix of
the same dimensions with rank ». I, will denote the identity matrix of order »
and I (s, ;7) will denote an sX matrix with I, in its upper left hand

(*) Nella seduta del 28 maggio 1974.
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corner and zeros elsewhere. If A= (a,;)is #nX#n, then 6(A) = a;; + -+ + a,,
will be called the trace of A. It is apparent that ¢ (A 4+ B) = ¢ (A) 46 (B)
and for A, B square ¢ (AB) = o (BA).

For a € F, we define
(2.1) e(@=exp2mnit(@))p ; t@=a+at -+ - + a7,
where by its definition #(a) € GF (p). It follows directly from (2.1) that
9,a=0,
o,a=Fo0,

(2.2) e(a+0) = e(a)e(d) , ;e(ag) ={

where the sum is over all 4 € F.

A direct application of (2.1) and the definition of trace also will show
that if A = A (m , »), then

(2.3) - 2e{c(AB)} =

B

qmn,A=O’
yA=Fo,

where in this case the sum is over all matrices B = B (%, ). The number
g(a,b;y) of aXé matrices of rank y is given by Landsberg [4] to be

(2.4) gla,b;y)= qﬂy—l)/?lji (g1 — 1) (@1 — D)J(f— 1),

Following [1; 8.4], if B= B (s,#;p), we define
(2.5) HB,s)= 3 e{—0o(B, 2},

C(t,s:2)

where the sum is over all matrices C (¢,s;2). This sum is evaluated
[1; Theor. 7] to be

Z

(260 H(B,3) =g Y (— 1)/ g7=2-12 [j-]q(s—~ e, t—p35—7),

7=0
with

[f]l=a—e =i —g - 1 —).

3. AN EVALUATION OF (1.1)

We are now able to prove

THEOREM 1. Let o, B be integers > 2, A=A (m,n;n); D =D (s,2;9);
B.='B>(s,n;p) ;s Ur=U;(s,s) , U, =U,(s;21,s) for 1<i<a;
Ue=Uy(sar,7) 5 Vi=Vilt,t) 5 V,=V;(44,28) for 1<;<B;
Ve = Vg (ts_1,n), where m ,n, s, t,0,s, -, Sac1, 2,0ty rvepresent
arbitrary positive integers. - Then the number N of partitions of a matrix B
as déscribed in (1.1) is given by ‘ : '

(n,s) .
N=g= ZHB )N Ne(a),
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where r =msq_1+ ntg_1; H(B, 2) is given by (2.5) and (2.6); (n, §) = minimum
of n and s; Ny(2) is given by (3.4) and Ng(z) is obtained from N,(2) by
replacing o with B and s, with .

Proof. By noting (2.3), we may express the number of partitions of B
as described by (1.1) by the following formula:

N=g== X S(Us,- -, Uy,V1, -+, Vg) e{c([Us--- U, A+ DV;-- -V, — B] O)},
C

where S (Up,---, Uy, V1, -+, Vg) denotes a summation over all U, Vv,
I <7z<a, 1 <j7<P as these matrices are defined above, and the sum
over C is over all C = C (z, s). If we divide the sum over C into successive
sums over C(z,s;2), 0 <z < (z,s) = minimum of » and s, note (2.2)
as well as the properties of trace, we may write the above equation as

(n,s)

3.1 N=g== 23, 2 e{—o(BO}-

5=0 C(n,s;7)

SUL, -, Ua, Vi, V) e {c(U; -+ - U, AC)} e {c (DV; - - - V,C) 1.

However, since the variable matrices in each of the exponential functions
in the second line above are distinct from each other, we may write this line
as "

(32) S(Uy,+, Ue{o (U U, AC)}S(Vy,- -+, Vg) e { (DV, - -+ V4 O)}.

We must now evaluate each sum in (3.2). To do this we first note that
for any fixed choice of Uy ,---,U,,V;, -+, Vg and any C=C(n,s;2), we
have 6(U;- - -U,AC)=6(ACU, - - -U,) and ¢(DV;:--VzC)=0 (CDV; - - -Vp).
By making these substitutions into (3.2) and summing over U, and Vi
in accordance with (2.3), we can see that the only nonzero contributions
to (3.2) come from terms such that

(3.3) ACU; -+ U,y=0 and CDV,.- Vg =o0,

and each such term contributes ¢” to the sum, where » = ms,_y + nfs_;.
So, as Up,--+,Us_1,V1,--+,Vg_; vary over all matrices of their respective
sizes with elements from F, we must determine how many times (3.3) is
satisfied.  Hence, for any fixed C =C (%, s;2) we must find the number
of solutions to the matric equations in (3.3). It is at this point we need the
added restrictions on the matrices A and D. We first discuss the left equation
in (3.3). The number of solutions, which we call N, (z), of ACU;--- Uy_;=0

a special case of [5; Theorem 1]. However, it is shown in this paper that
Nagzﬁ is a functlon of the rank of the constant matrix AC so that we must
know the rank of AC. If the rank of A is not equal to the number of columns
of A then, in general, the rank of AC is not a function of only the rank of C.
But, with A = A (m,n;n) then we have rank AC = rank C = 2. Hence,
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Ni(2) is given by [5; Theorem 1] to be

(:a__]_,z)

(3-4) No(®)=¢" (& @ Sut ama) g el .

Jou—2=

0—2 GomirSa—7)

: ].—.[ . 2 g(ja—i,sa—i;ja—z'—l) qu

i=1 Jy_s 1=0

with T =541 (Se—g—2) + 55+ + Su_3 Su_2 and W= —j,_; 1Sa—i_1,

where (# , %) = minimum of % and v; g(a,b;y) is given by (2.4); the sum
over any j, is defined to be 1 when the upper limit is zero; the product over 7
is defined to be 1 for a= 2, and for a= 2,3 5,9, S«_3 are defined to be o.

By using a similar discussion, we may determine the number Ng(z) of
solutions of CDV;- - Vg_; =0 from (3.4) by replacing « with B and s, with
?, in this expression. The theorem now follows by substituting the value
N, (2)Ng(2) ¢ into (3.1), noting (2.5), and simplifying the resulting expression.

4. SOME PARTICULAR RESULTS

It is perhaps of some interest to consider (1.1) in the cases o« = I,
@=2and a >1, = 1. Clearly, « = = 1 is given by Hodges [3]. The
details of the proofs of these cases are somewhat like the proof of Theor. 1
so will not be included.

THEOREM 2. Let a=1, B> 2 be integers with A,B,D,V,, -, Vg as
defined in Theor. I and U,=U, (s ,m). Then the number N (1,B) of partitions
of B as defined by (1.1) is given by ¢g*Ng(0) where v=s (m—n) -+ nta_y,
and Ng(0) is defined in Theor. I.

THEOREM 3. Let a>1, =1, A,B,D,Us,---,U, be as in Theor. 1
with N1=V1(¢,n). Then the number of partitions of B as defined by (1.1)
is given by ¢°Ny(0), where 8=n(t— s) + msa_1, and N, (0) is given by (3.4).

5. THE GENERAL PARTITION

For each 1 <4< %, we define A,=A, (m;,n,;n,), D,=D,(s;,%; 5,
and Ah U,V D,=U, - -+ Uha;,A}z +D; V.- V;z{ah where U, =T, (s, 5,0,
Usi = Ui (Sn,-1, 5,0) for 1 <4 < o, Upa = Uy (Sh,0m1, 725), Vie =V (s i),
Vi =V -1, for 1 <j<B,, Vig=V,5p_1,7). We now seek
the number of ways a matrix B = B (s, #; p) may be partitioned as

(5.1) | Al(Ul:Vl)Dl"l‘"'—I‘Ak(Uk:Vk)Db:B-

It is possible to prove.
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THEOREM 4. If a,,B,>2, 1 <k < &, then the number N, of partitions
of @ matrix B = B (s,n;p) as described by (5.1) is given by

(n,s) 3
Nk = Q'R_”' ZO H (B y Z> };l:_']:: Nah (Z) Nﬁﬁ (3),

where R=r  + -+ + 7, with v, = msya_+ntyp_1, H(B,2) is defined by
(2.6), Ny, (2), Ng,(2) are defined immediately following (5.3), and (n, s) = mini-
mum of n and s.

Proof. In view of (2.3), we may write
Ny=g—* Z 2 Uy »th> € {6([A1 (U1, V) D1 +--- + A, (U, Vi) Dp— B]C},
C

where the sum over C is over all C=C (z,s) and X (U, V,;) denotes a
summation over each U, ,V,;, 1 </ < %, as these matrices are defined
above. Now if we divide the sum over C into successive sums over all
C=C(n,s;2), o<z<(n,s)=minimum of » and s, and note (2.2),
we may write the above line as

(n,5) )3

(5.2) Ni=g=t > De{—aBOIIW,, where:
z=0 C h=1
le=S(Ulzlf”':Ulza;,’vlzl,"':V}zﬂ;)e{G[Alz(Ulz:Vlz>DkC]}'

If we make appropriate substitutions into (3.1) through (3.4), we may obtain
the value of W, to be

(5.3) W, = ¢"% Noy(2) Ny, (2)

where 7, = ms),a_1 4 nt5,8_1 , Nyy(2) is obtained from (3.4) by letting s, =,
for all subscripts @, « = a,; and N, (2) is obtained from Ng by letting 2, = #, ,,
B=28,. The theorem now follows by substituting (5.3) into (5.2) and
noting (2.4).

We note'that theorems corresponding to Theor. 4 when some or all of
a; and (or) B, = 1 can be obtained, but we shall not dwell on that.
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