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Meccanica. — Reliability tests fo r  structures under general loading 
processes(,). Nota I di A ngelo D i T ommaso e A ntonio T ralli, presen­
ta ta 0”* (**) dal Corrisp. E . G iangreco.

R iassunto. — La programmazione matematica e il metodo degli elementi finiti sono 
utilizzati in questo lavoro allo scopo di istituire un test di affidabilità per strutture sottoposte 
ad un generale processo di carico. Vengono a tal fine considerati elementi a sforzo costante 
ed a comportamento elastico lineare; in tal modo è possibile correlare il dominio delle azioni 
esterne a quello delle risposte strutturali.

Nella Nota I vengono costruiti i modelli matematici, nella Nota II si istituiscono i tests 
di affidabilità.

i. Introduction

In an actual structure subjected to a general loading process it is quite 
impossible to evaluate exactly the amount and position of every external 
action (i.e. forces, dislocations, assigned d isplacem ents...); further these 
external actions very often can be considered statically time-depending.

A complete Reliability test must take into account the set of all structural- 
responses (i. e. displacements, internal stresses, reactions of constraints) 
produced by the set of all possible external actions.

The first problem is to define a mathematical model o f the structure and 
a mathematical model of external actions. As is well known, a mathematical 
model of the structure can be defined through the finite element idealization 
and the constitutive laws of the material. We note that a very consistent 
model of external actions is represented by a set of inequalities (geometri­
cally representing a domain); in such a way it is possible to take into account 
the indéterminations, the statistical nature and the time-dependence of actual 
external actions.

A much hard work is needed in order to perform a complete Reliability 
test taking into account the whole set of external actions if we wish to use 
the influence coefficient method.

M any efforts have been made in these years using mathematical pro­
gramming ponnected to finite element method in developing advanced 
methods of structural mechanics ([6], [7], [9], Plastic Analysis; [8] Structural 
Optimization; [5], [10] Shakedown theory).

Our purpose in this paper is to suggest an automatic procedure suitable 
for performing a complete Reliability test for structures with linear behaviour, 
using mathematical programming and finite element idealization.

(*) The results presented in this paper form part of a Research supported by the National 
Research Council (C.N.R.).

(**) Nella seduta del 20 aprile 1974.



Lincei -  Rend. Se. fis. mat. e nat. -  Vol. LVI -  aprile 1974S 66

2. S t r u c t u r a l  d is c r e t e  m o d e l  a n d  b a s ic  r e l a t io n s

A well known approach consists of developing a discrete model of the 
structure by finite element method.

Let us consider m  elements connected by n nodes; we assume as kine­
matic variables the three components of displacements in x  , y  , z  directions, 
as static variables the three components of external forces acting on the nodes 
in x  , y  , z  directions.

It is convenient to consider a partitioning of displacements column matrix 
u  in conjunction with the forces column m atrix F (in the same order as the 
displacements in vector u):

u a 3 n 'F . '
U —

wß
F =

Fß
where wß is the ß-subvector of the assigned displacements and u a is the a-sub- 
vector of the free (unknown) displacements; then Fß is the ß-subvector of 
the forces corresponding to the wß displacements (reactions of constraints) G> 
and Fa is the a-subvector of the assigned forces.

Therefore the problem starts from the definition of a load condition vector 
I containing, as components, the assigned external forces Fa , the assigned 
dislocations in each element A and the assigned displacements i#g':

( 0  I =  I (Fa , A  , wo)

and it consists of the search of the structural response vector I* containing as 
components, the unknown displacements wa , the internal stresses (or internal 
generalized forces) Q and the reactions of constraints Fß :

0 0 . ;  I*“ I* (wa ) Q , Fß) .

Constant stress elements [1], [2], [8], it seems a convenient choice for 
our purposes; we develop the mathematical model with reference to tetra­
hedral elements whose interaction with the surrounding elements is realized 
through the nodes (vertexes) only. A quite obvious particularization can be 
obtained for triangular elements in plane stress problems or for pin-joined 
bars.

Tp each constant stress /-elem ent the vectors :

(3) stress vector oJ=  [<sJx aJy gz tJJ

(4) strain vector ~J=  [zJx zJy zJz yJxy y i  yJyz]

can be univocally associated.

(1) Here and in what follows we use the term displacements or forces instead of compo­
nents of displacement or components of force in the x , y  , z  directions.

(2) A superposed tilde denotes transposition.
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Let us introduce the natural generalized strains representing the six side 
elongations of the /te tra h e d ro n  (fig. 1):

Obviously the linear non-singular transformation follows:

(6) T 7 V

where T J is a Square m atrix (6 X 6) whose terms depend on the geometry of 
the /-elem ent (coordinates of the nodes).

If any anelastic dislocation exists in the /e lem en t, we have for the strain 
vector:

(7) (c>E +  6̂ ea) +  eiA

where:
ejA represents the anelastic strain vector due to dislocation AJ' ; 
ç/ea represents the elastic strain vector corresponding to anelastic one; 
eJ'E represents the elastic strain vector due only to external forces 

Fa , to reactions Fß and to assigned displacements u®.

From (6) and (7) it follows:

q j  =  T y (g /E  _j_ g/EA ) +  T J 8 ^(8)
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or:

(9) qj =  eJ +  A*

with:

(10) e’ =  TJ (syE +  fyEA)

9 0 Aj — TW *.

It is clear that e-i =  (e1 e2 • • - represents the elastic elongations of the 
sides due to elastic strains (corresponding to external forces Fa , to reactions 
F3 and internal dislocations A); AJ represents the anelastic elongations of the 
sides.

Then it is possible to define a natural generalized internal forces vector [2] 
referred to the /-element:

(12) Qy =  [Qi Q2 • ■ • Q«]

by the principle of virtual work:

(13) Qs qj =  j  (jS çS dV
vS

where V ; represents the volume of the /-element.
From (6) and for a constant stress element we have:

(14)

From the constitutive law:

(15) . ° j  =  X (*yE +  *yEA)

and from (14), (15) and (10) it follows:

(16) Q / = D ' V

with:

jy i =  W  (T/ ) -1 /  (T7’)“ 1

that ip the stiffness m atrix  of /-element.
Assembling the m  elements we define the following super-vectors:

(i7-a) Q =  [Q1 Q2 • • • Qy • • • Q”]

( I 7-b) e =  [91 ®2 • ' • qJ • • •«"]

(17.C) <7 =  [e1 e2, • • ■ e> • • • em]

(ï7.d) A =  [A1 A2 • • ■Ay •• ■ Am] .
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In this way we have:

(18.a) Q =  De =  D (q — A)

taking into account that from (9) and (17-b), (17.C), (iy.d) it follows e =  q — A; 
the m atrix D is a block m atrix: D =  diag [D1 • • *Dm].

Compatibility throughout the discretized structure requires [1], [2]:

(19) B u =  q

where B is a m atrix that depends only on the geometric layout of the model. 
Taking into account the partitioning over u we have:

(20) 9 =  [Ba ; Bp]

Mp
From (18.a)

(18.b) q •--= D 1 Q I .

Then compatibility equation (19) can be written:

(21) Bm — D-1 Q = J .

Equilibrium equations are [1], [2], [3]:

(22) BQ =  F.

Taking into account the partitioning over B [see (20)], the equilibrium (22) 
and compatibility (21) equations are:

Ba

%
(23-a)

Q =

[ Ba i Bp ]

■e J

Mp

D 1 Q =  A

This system (23) following the form used by Di Pasquale for space 
pin-jointed trusses [3] can be arranged in this way:

! Ba - Ma Fa

(23-b)
0 ;

! Bp 2=2 Fß
B* Bp - D 1 Q A

For our purpose, in order to obtain the vector I and I* previously defined 
in (1) and (2) it is necessary to introduce the unknown forces (reactions of

38. — RENDICONTI 1974, Voi. LVI, fase. 4.
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constraints) Fß in the unknown vector (« structural response vector I* ») and 
the assigned displacement uß in the data vector («load condition vector I»). 
In order to obtain this result we put <3> the system (23.0) in the form [4]:

(24-a)

0 0 ; Ba 0 Wa Fa

0 0 ! ®S I Mß 0

Ba Bß — D"1 ! 0 Q A

0 I 0 i 0 - p e 0
t t ß

Then the general formulation of the problem, more compactly, can be 
written:

(25) AI* =  I

or:

(26) I* =  A“1 1

being A the square m atrix (if non singular) appearing in the (24. a) and

(27) ï  =  [F«j o j A \Zl\

(28) I* =  [wa ; Wß i Q ; — Fß]

the load condition vector and structural response vector respectively.
The m atrix A"1 can be found inverting the m atrix A; one has it results:

(BojDBa) “ 1 0 (B a D B a ) - 1  B a D — (B a D B a) 1 B a DBß

0 0 0 I

D B a (B a D B a ) _ 1 0 D B a (Ba D B a ) 1 

Ba D  —  D

—  D B a (Ba D B a ) 1

B a D Bß -|- D Bß

B ß D B a (S a  D B a) 1 I -----B ß D B a (Ba D B a) 1

Ba D  - f  Bß D

B ß D B a (B a D B a) 1  

B a D Bß —  Bß DBß

As it can be observed the inversion of the whole m atrix A implies only 

the usual computational work of inverting the external stiffness (Ba DBa). 

Then we note that if (Ba DBa) is singular A is also singular as it appears from

(3) The matrix o is a matrix whose elements are all o and 1 is the identity (matrix whose 
diagonal elements are all 1 while the other elements are zero).
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(29) ; but, as is well known, this singularity means that either some parts of 
structures form a mechanism, or rigid body degrees of freedom are not con­
strained properly by constraints.

3. A DEFINITION OF RELIABILITY FOR THE DISCRETIZED STRUCTURE

The most general load process can be represented by a set ^ o f  all load 
conditions vectors I acting on the structure during it life.

As it shown in (26):

(30)

therefore it is possible to obtain the set:

(31) .^*{1*11* =  A’ 1 1, l e s r }

that obviously represents the set of all structural response vectors I*.
If we define S* as the set of all admissible structural response vectors we 

say that J^ is  an admissible load process if and only if:

(32)

and this settles the Reliability for the discretized structure or for the structural 
discrete model (see fig. 2).

As an alternative procedure it is possible to define:

(33) ai*°, r ° € t f * }

that is the set of all admissible load condition vectors.
In this case the condition

(34)

settles the Reliability for the discretized structure or for the structural discrete 
model under the dTloading process.
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4. M a t h e m a t ic a l  m o d e l  of a  g e n e r a l  l o a d in g  pro cess

The definition of the set of all load conditions vectors ^"depends on the 
required functions of the structure, on the defects of assembling, on the thermal 
effects, on the settlements of foundations, etc.

A reasonable simplification is to assign J b y  a piecewise linear domain 
characterized, as usual, by a m atrix V and vector L; so we can write:

(35) ^ { I | I  =  [Fa : Oj A \ wg] , VI <  L} .

In m any cases the assigned forces Fa , the dislocations and the assigned 
displacements are not joined each other, then it results:

(36) V =  diag [VF, VA, V“] .

Consequently it follows set of all structural response vectors from
(2<5), (31). (35):

(37) iT* {I* I I* =  [«« , «p , Q , ~~Fß] , VAI* <  L} .

5. M a t h e m a t ic a l  m o d e l  of t h e  s e t  of a n  a d m is s ib l e

STRUCTURAL RESPONSE

The definition of the set of all admissible structural response vectors 
<f* depends on the flexibility requirements for the structure, on the mecha­
nical properties of the material, on the characteristics of constraints, etc. Again 
it is reasonable to assign $  by a piecewise linear domain characterized by 
a m atrix N and vector M; so:

(38) s*  {I* |T =  [«« I Mß [ Q I— Fp] , N I*<  M} .

In m any cases we have independent conditions on the displacements u, 
on the stresses Q, on the constraints Fß, so:

(39) N =  diag [N* , Nq, Nf ] .

The domain S  of all admissible load condition vectors will be from (26), 
(33) , ’(38):

(40) € {I | ï  =  [Fa I op j A I ZI ], NA"1 1 <• M} .

Concerning the mechanical properties of material in developing S*  domain 
obviously it is possible to consider the yield piecewise surface of every ele­
ment. (In that follows we will indicate with S*y this yield domain).

If we wish to use the domain S* in the sense of Admissible stress method 
we have to introduce a safety factor on the yielding point o f uniaxial traction 
test, and this is the traditional way.
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