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Ricerca operativa. — A n  Extremal Principle fo r Accounting 
Balance of a Resource Value-Transfer Economy. Existence, Uniqueness 
and Computation. N o ta  di A braham Charnes e W illiam W. Cooper, 
p resen ta ta  (*) dal Socio B. S egre.

R iassunto. — In  questa N ota si sviluppa un principio estremale per un problem a di 
contabilita economica di W. P. Drews. Le condizioni di esistenza e unicità vengono cara t­
terizzate com pletam ente m ediante un problem a di program m azione lineare di tipo d istribu­
zione pura  (trasporto).

U n teorem a di esistenza di D antzig (stabilito tram ite il teorem a del punto fisso di Brou­
wer sotto condizioni economiche incerte) appare come un corollario immediato.

Il principio è equivalente a una minimizzazione non vincolata di una semplice funzione 
strettam ente convessa, tale quindi da rendere facili i calcoli. Il principio porta ad un pro­
blem a di program m azione geom etrica il cui duale è un problem a di minimizzazione di una 
funzione strettam ente convessa soggetta alla distribuzione di vincoli dianzi m enzionata.

i. Introduction

Events of recent years in re-exhaustible resources led W. P. Drews to 
form ulate a model (which we have not seen) in which an econom y is driven 
by a transfer of agreed m onetary  values of r  resources, e.g. oil, food, labor, 
etc., into agreed m onetary  receipts of s resource-owner ( =  goods-consumer) 
groups such th a t (1) to tal resource valuation equals to tal monies received, (2) 
prices of resources and sizes of owner groups ad just to drive consum er goods 
prices and industrial activ ity  levels (em ploym ent levels) so th a t the value 
of each resource equals the sum the economy spends for it and the receipts 
of each owner-group equals the sum of its expenditures. T he latter detail (2) 
we call “ accounting balance ” .

A  varian t of D rew s’ model was presented and studied by D antzig in [1]. 
H e shows only, by m aking a strong (and economically questionable) assum p­
tion on a m atrix  relating resource use to owner group size and employing 
the Brouwer fixed point theorem , tha t relative prices and relative group sizes 
exist which satisfy the accounting balance. No possibilities of com putation 
are suggested, the question of uniqueness is untouched, and nothing is m en­
tioned concerning the effect of the structure of the m atrix  or the agreed m one­
ta ry  divisions on the balance.

In  the following we com pletely characterize such an economy by  a non­
linear extrem al principle which m ay be interpreted as the m inim ization of 
an  economic potential function. Accounting balance occurs if and only if

(*) Nella seduta del 20 aprile 1974.
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there exists a point of economic equilibrium  (m inimum  potential). Despite 
the non-linearity of the functional minimized, the effects of the key (rXs) 
m atrix  M, the resource valuations yA,• • •, yr and the owner receipts SA / • • •, 
on the nature of the m inim um  (non-existence, existence, uniqueness) are com­
pletely characterized in term s of an associated linear program m ing problem  
of distribution (transportation) type with supplies yA , • • •, yr receipts Si , • • *, 8S 
and with the non-zero entries of M designating the possible “ transfer ” routes. 
The extended dual theorem , p. 182, [2], and dual considerations are the key 
here.

The extrem al problem  is reduced to the unconstrained m inim ization 
of a strictly  convex function involving only exponential and linear terms. 
C om putation is easily possible w ith SUM T, piecewise linearization, or any 
other standard  m ethod. A lternately  it can be viewed as an extended geom e­
tric program m ing problem , whose dual is a convex program m ing problem  
with pure distribution constraints. The latter form ulation seems m ost 
advantageous to com pute large systems.

2. Notation and Formulation

Let ,-A , Ay be respectively the ith row, j th column of the m atrix  A. Let 
p T, q be the row, column vector of prices per unit resource, sizes of owner 
(consumer) groups; y  , x the vectors of goods prices, industry  activity (employ­
m ent) levels; R, the (rXs) m atrix  of resources per unit industrial activity, 
C the ( mXs ) m atrix  of goods per un it owner (consumer) group size, N the 
(n Xm ) m atrix  of industrial activ ity  per unit good, in [1] the inverse of a 
Leontief type m atrix); M == RNC. W e assume y,., Sy >  o for all i  , / .  Note 
th a t R, N, C are non-negative matrices,

(2.1) y T =  fiT R N  , x = NC q,
(2-2) S  y* =  2  i*e* the total value is transferred.

i j

T he accounting balance conditions are

(2.3) y,. =  A ( »  , S y = ( ^ TMy)^y, all i j .

Lemma i. I f  yf. , Sy >  o, fo r  all i  , j  and (2.3) holds then =  e l ,
e J j >  0, fo r  all i  , j ,  and M has a positive entry in each row and 

each column.
Lemma 2. A t accounting balance,

1 J
Then (2.3) may be rewritten

(2.4) Sy, all i , j .
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Let

(2.5) * ’( « , » ) =  S  M ÿ S y
' *>J * j

Then, by the K uhn-T ucker Theorem , since (u , v) is convex and analytic 
in (u , v),

THEOREM i . (u , v) has a m inimum at (u , v) i f  and only i f  the accoun­
ting balance (2.4) holds.

T he problem  of balance m ay therefore be rendered by the Extrem al 
Principle:

(2.5) m inimize p TMy — 2  Ï* In p t- —  2  Sy In £  ,
i j

with p T , q >  o ,  or equivalently

(2.6) minimize r€ (u  ,v )  =  2  M,y —  2  y,. —  2  §y z>y
ÌJ i j

w ithout constraints.
Note: (2.5) m ay be recognized as an extended geom etric program m ing 

problem.

3. Existence

The necessary condition on M in Lem m a I is not sufficient even tha t 
(U )V) be bounded below. To characterize this situation, consider the fol­

lowing “ transfer ” system  (of “ pure distribution ” type in linear program ­
m ing jargon):

xij T t > 2 ==z I , * * *, r
/ e j ( 0

(3-0 X  * * = « / .  j  =
* e l  ( J )  

x ij >  o,

where J (0  -  { j  :M ÿ >  o} , I ( j)  ~  { i  : M #>  o} .

Theorem 2. ( u , v) is bounded below i f  and only i f  the transfer system
(3.1) has a solution.

Proof. If  (3.1) has a solution x# , we can rewrite (2.6) as

(3.2) « ( « , » )  =  £  M,y eû j  —  2  Xi}. (*, +  Vj)
i,j

and get

(3-3) V ( u , v ) >  2  z*  [I  -  In (% /M ÿ) ] ,
(*,./) eP

where P =  {(i , j) : x,y>  o}.
If  (3.1) has no solution, we minimize 2  ° ' x ij subject to the transfer

i , j
conditions. The dual thorem  [2] implies th a t a sequence (un , vn) exists for 
which fé7 (un , vn) - > —  00 , q.e.d.
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Let D be the coefficient m atrix  of the left side of the equations in (3.1). 
Its m axim um  possible ran k  is r  +  s —  1 . By the “ regularization ” proce­
dure of Charnes and Cooper [2] all cases can be reduced (also com putatio­
nally!) to this case. W e discuss this elsewhere.

H ere we note th a t the existence of a solution to (3.1), while sufficient 
for an infimum, is not sufficient for existence of a m inim um  o f <g(u,v).

Theorem 3. (u , v) has a m inim um  ( =  accounting balance) i f  and 
only i f  the transfer system (3*1) has a solution x iy whose non-zero values desi­
gnate a sub-matrix of D of equal rank to D.

Proof. Suppose (3-0  has a solution x iy whose non-zero components 
designate a subm atrix  of ran k  less than  D. Let w iy =  u{ +  vy for x iy >  o. 
Let zki =  uk -f- vt if dkî >  o and xkl =  o. Then the zkï are independent varia­
bles i.e. the uk vt cannot be expressed in term s of the w {j. W e can now 
write

(3.4) «’(* ,* ) =  <? (w ,*) ss £  (M,y ew* — Xy Wy) +  2  M„ ,
*ij>  « 0M)e K

where K  =  {(k  , i)  : M kl >  o , xkl =  o} .

Clearly, (w , z ) <%'  (w , z) w henever z <  z  and some zkl <  zkl. Thus 
cC{u ,v )  has an infimum and no m inim um  whenever K =f= 0- I f  K  =  0 , then

(3.5) « ’( « , » ) =  2  (M ÿ ewf ixÿ wii) >  2  (My  «"’*'— * *  y) =  ^  («0
Xv >0 (A/)eQ

where x  {j satisfies (3.1), Q =  { ( i j )  : x iy>  0} C { ( / , / )  : x {j >  0} and Q desi­
gnates linearly independent columns of D, hence independent variables w iy..

But (w) -> o o  as I w  I -> 00 . Since K  =  0  if and only if the rank  of
the subm atrix  of D designated by x iy >  o equals th a t of D, the theorem
follows.

D antzig’s result is the

Corollary 1. I f  M >  o, fé7 ( u , v) has a minimum.

Corollary 2. I f  P =  { (i J )  ■ * 2>. >  0} =  Q =  { ( ? , / ) :  My  > 0} and 
the columns of D designated by P are linearly independent, then the minumutn 
of <£ (u , v) takes place at +  vs =  In (3cÿ/M,y) , (i , f )  e P.

4. U niqueness

Assuming- a m inum um  exists, if p T , q is a (price, size) solution so is 
pT =  <xpT , q =  (a-1) q for any  a >  o. Uniqueness is possible at m ost to
relative p r ic e s . and sizes. However, extending the argum ent in Theor. 3,
we can show there exists a “ basic ” solution x tj of (3.1) so th a t

(3.6) « ’( « , » ) =  2  (M,y ewii—  Xywd)  +  2  My  efo(w),
x.->  0 X..=0
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where (w) is linear in the independent variables w tj . Evidently  the right 
hand is a strictly convex function of the . (W ithout assum ing a 
m inim um , <€ (u ,v )  m ay be written in form (3.6) plus possible additional 
exponential term s in zkl, i.e., as a strictly convex function of w iy- and zkl).

T heorem  4. The m inimum of T  (u , v) is unique in variables w {j- of (3.6).

THEOREM 5. I f  w - minimizes (3.6), then the set of m inimizing (u , v) 
is the set of all solutions to

%  +  V j  =  W i j  , X i j  > 0
(3-7) , , v -Ui +  Vj = f i j  ( w f  , Xij  =  o,

where the subm atrix  of D associated with the x is a basis for (3.1).
Questions of uniqueness and stability  of the system to arb itra ry  but small 

perturbations of the y,*, Sy are closely related. S tability  of solution to such 
perturbations implies th a t the rank  of D m ust be r  +  s —  1, i.e.

THEOREM 6. I f  no sub sums of the y?- and 8- are-equal, then fo r  a m ini­
mum to exist the rank of D must be r ~f s — 1. The m inimum point is unique 
up to relative prices and sizes.

Sometimes M m ay be decomposable in block diagonal on suitable in ter­
changes of rows and of columns. If  there are B blocks, the problem  splits 
into B independent problem s of the same form. W hen soluble, each indepen­
dent problem  m inim um  can be at most unique up to a scale factor for prices 
(and its reciprocal for sizes). I t m ust be so unique if the block problem  is 
stable under local perturbations of its own y,-, Sy.

5. Computation

T he accounting balance prices and sizes and corresponding consum er 
goods prices and em ploym ent levels m ay be com puted from (2.6) and its 
variants by  any  of the standard  convex program m ing methods, e.g. SU M T 
or piecewise linearization. A lternately, N ew ton-R aphson schemes can be 
applied to solve the balance equations directly, now th a t one knows the theory  
of their am bient system. A  th ird  direction, which m ay  be m ost convenient 
for large systems is through solving the geometric program m ing dual to (2.5).

From  [3], page 210 et seq., the extended geom etric program

(5.1) minimize p T M q +  In [P lYl * • * p~Yr q ~ • • • q j 8s] w ith p T , q >  o, 

has a dual

(5.2) minimize — ^(8) — 2  8,y[ln(8,y/^) — ln M 2y] subject to (4.1) on the 8,y.
(fii)eQ

I f 1 8*y is an optim al solution, then

(S-3) =  Q.

Note how (5.3) recovers the result in (3.7).
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Since linear program m ing problem s of distribution type m ay be com pu­
ted at least 100 times faster than  general linear program s, e.g. in a few seconds 
on existing codes for r , s  ~  io 2 (and larger), and since existing codes for 
distribution problem s handle by fai the largest linear program s, this mode 
of solution seems most attractive for large systems.

6. Extensions

The model needs extension in the directions of more explicit connections 
between em ploym ent levels, consum er-group sizes, etc. M ulti-period exten­
sions would also be desirable, as would introduction of stochastic (risk or uncer­
tainty) elements. T he A uthors are currently  m aking such extensions.
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