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Ricerca operativa. — An Extremal Principle for Accounting
Balance of a Resource Value-Transfer Economy: Existence, Uniqueness
and Computation. Nota di ABRAHAM CHARNES e WiLLiaM W. COOPER,
presentata > dal Socio B. SEGRE.

R1ASSUNTO. — In questa Nota si sviluppa un principio estremale per un problema di
contabilita economica di W. P. Drews. Le condizioni di esistenza e unicitd vengono carat-
terizzate completamente mediante un problema di programmazione lineare di tipo distribu-
zione pura (trasporto).

Un teorema di esistenza di Dantzig (stabilito tramite il teorema del punto fisso di Brou-
wer sotto condizioni economiche incerte) appare come un corollario immediato.

11 principio & equivalente a una minimizzazione non vincolata di una semplice funzione
strettamente convessa, tale quindi da rendere facili i calcoli. Il principio porta ad un pro-
blema di programmazione geometrica il cui duale & un problema di minimizzazione di una
funzione strettamente convessa soggetta alla distribuzione di vincoli dianzi menzionata.

I. INTRODUCTION

Events of recent years in re-exhaustible resources led W. P. Drews to
formulate a model (which we have not seen) in which an economy is driven
by a transfer of agreed monetary values of 7 resources, e.g. oil, food, labor,
etc., into agreed monetary receipts of s resource-owner (= goods-consumer)
groups such that (1) total resource valuation equals total monies received, (2)
prices of resources and sizes of owner groups adjust to drive consumer goods
prices and industrial activity levels (employment levels) so that the value
of each resource equals the sum the economy spends for it and the receipts
of each owner-group equals the sum of its expendltures The latter detail (2)
we call “ accounting balance

A variant of Drews’ model was presented and studied by Dantzig in [1].
He shows only, by making a strong (and economically questionable) assump-
tion on a matrix relating resource use to owner group size and employing
the Brouwer fixed point theorem, that relative prices and relative group sizes
exist which satisfy the accounting balance. No possibilities of computation
are suggested, the question of uniqueness is untouched, and nothing is men-
tioned concerning the effect of the structure of the matrix or the agreed mone-
tary divisions on the balance.

In the following we completely characterize such an economy by a non-
linear extremal principle which may be interpreted as the minimization of
an economic potential function. Accounting balance occurs if and only if

(*) Nella seduta del 2o aprile 1974.
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there exists a point of economic equilibrium (minimum potential). Despite
the non-linearity of the functional minimized, the effects of the key (rxs)
matrix M, the resource valuations v, ,---,¥, and the owner receipts 8, ,- -+, 3
on the nature of the minimum (non-existence, existence, uniqueness) are com-
pletely characterized in terms of an associated linear programming problem
of distribution (transportation) type with supplies vy, - -, v, receipts 8 ,- - -, 3,
and with the non-zero entries of M designating the possible  transfer *’ routes.
The extended dual theorem, p. 182, [2], and dual considerations are the key
here.

The extremal problem is reduced to the wncomstrained minimization
of a strictly convex function involving only exponential and linear terms.
Computation is easily possible with SUMT, piecewise linearization, or any
other standard method. Alternately it can be viewed as an extended geome-
tric programming problem, whose dual is a convex programming problem
with pure distribution constraints. The latter formulation seems most
advantageous to compute large systems.

K

2. NOTATION AND FORMULATION

Let ;A , A; be respectively the 7% row, ;% column of the matrix A. Let
2", ¢ be the row, column vector of prices per unit resource, sizes of owner
(consumer) groups; ¥ , x the vectors of goods prices, industry activity (employ-
ment) levels; R, the (#Xs) matrix of resources per unit industrial activity,
C the (7 Xs) matrix of goods per unit owner (consumer) group size, N the
(7 Xm) matrix of industrial activity per unit good, in [1] the inverse of a
Leontief type matrix); M = RNC. We assume v,, 3, >0 for all 7,;. Note
that R, N, C are non-negative matrices,

(2.1) yT=pTRN , x=NCg,

(2.2) Divi=29; i.e. the total value is transferred.
7 7 '

The accounting balance conditions are
(23) Y: = pi (zMg) ’ 8j = @T Mj) gj; all ¢ )j'

LEMMA 1. If v;,8;>0, for all i,j and (2.3) holds then p;= e,

g;,=1¢77 >0, for all 1,j, and M has a positive entry in each row and
each column.

LEMMA 2. At accounting balance,

’ZY;'=PTM9 = ZSj.

J

Then (2.3) may be rewritten

(2.4) DM M=y, DM Y=,  all i,;
J ‘
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Let
(2.5) %(u,'z;)EZMije"i“’J‘_—.ZY’.ui—;ijj.
7,7 Z

Then, by the Kuhn-Tucker Theorem, since & («,v) is convex and analytic
in (% ,v),

THEOREM 1. € (u,v) has a minimum at (u ,v) if and only if the accoun-
ting balance (2.4) holds.

The problem of balance may therefore be rendered by the Extremal
Principle:

(2.5) minimize pTMg — 2 Yilnp,— 2 3 Ing;,
, 7 7
with pT,¢ >0, or equivalently
(2.6) minimize % (x,v) = Z M,; " — Z Yiu;— 2 8,0
without constraints. ! '

Note: (2.5) may be recoghized as an extended geometric programming
problem.

3. EXISTENCE

The necessary condition on M in Lemma 1 is #zof sufficient even that
% (#,v) be bounded below. To characterize this situation, consider the fol-
lowing ¢ transfer ” system (of “ pure distribution ™ type in linear program-
ming jargon):

lej—Yl.’ Z=Z’ y v
7el@)
' ~ .
<3I> Z‘ xz:i=8j: ]21;"')3
2el(s)
x,:,'ZO,

where J (@) = {/:M; >0}, 1(j)={s:My> o}.

THEOREM 2. € (u,v) is bounded below if and only if the transfer system
(3.1) has a solution.

Proof. If (3.1) has a solution X;, we can rewrite (2.6) as

(3.2) € (u,v) = Z M,; " — Z X, (u; + v;)
2,7 2,7
and get
(3:3) C0) = 2 Ryl —In (7M)],
Z,7)€

where P ={(7,/):%;> o}.
If (3.1) has no solution, we minimize Zo'xij subject to the transfer

z,7 .
conditions. The dual thorem [2] implies that a sequence (2", ") exists for
which & (u", v") - — oo, g.c.d.
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Let D be the coefficient matrix of the left side of the equations in (3.1).
Its maximum possible rank is » 4 s — 1 . By the “ regularization ” proce-
dure of Charnes and Cooper [2] all cases can be reduced (also computatio-
nally!) to this case. We discuss this elsewhere.

Here we note that the existence of a solution to (3.1), while sufficient
for an infimum, is #zo¢ sufficient for existence of a minimum of (n,v).

THEOREM 3. % (u,v) has a minimum (= accounting balance) if and
only if the transfer system (3.1) has a solution %, whose non-zero values desi-
gnate a sub-matrix of D of equal rank to D.

Proof. Suppose (3.1) has a solution ¥; whose non-zero components
designate a submatrix of rank less than D. Let wy; = u; +v; for X; > o.
Let 2, = u, + v, if dj; > 0 and X;,,= 0. Then the 2, are 1ndependent varia-
bles i.e. the #, 4 v, cannot be expressed in terms of the w,;. We can now
write

(3-4) Cu,v) =% (w,2) E-E>0(Mije ¥ — X w,) + 2 M,, e,
i

(#,5)eK
where K= {(4,1): M;;>o0, ¥, =o0}.

Clearly, % (w,?) <% (w,2) whenever Z<z and some 7, <z, Thus
% (#,v) has an infimum and no minimum whenever K == g. If K= g, then

(3.5) EC(u,v)= L M e % w,) > Z (M,,e Y— iy wy) =G (w)
Fig > el

where 2 satisfies (3.1), Q=1{(,/): %,>0}C{(, /): %;>o0}and Q desi-
gnates llnearly independent columns of D, hence independent variables w,;

But @ (w) - ocoas |w|—oco. Since K= g if and only if the rank of
the submatrix of D designated by X, > o0 equals that of D, the theorem
follows.

Dantzig’s result is the

COROLLARY 1. If M >o0, €(u,v) has a minimum.

COROLLARY 2. If P={(i,5):%;>0}=Q = {(/,/):M; >0} and
the columns of D designated by P are linearly zndependmt then the minumum
of €(u,v) takes place at wy; = u;+ v, = In (X;/M;), (7,7) € P.

4. UNIQUENESS

Assummg a minumum exists, if pT,g is a (price, size) solution so is
pr=0p",§= (a1 g for any « > o. Uniqueness is possible at most to
relative prices and sizes. However, extending the argument in Theor. 3,
we can show there exists a * basic ” solution %z of (3.1) so that

(3.6) C(u,v) = E>0 (M, €% — 7 ;) +§2OM,J. ™
i

x..
27
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where f,; (w) is linear in the independent variables w,;. Evidently the right
hand is a strictly convex function of the w;. (Without assuming a
minimum, % («,v) may be written in form (3.6) plus possible additional
>xponential terms in 2z, i.e., as a strictly convex function of w,; and z,).

THEOREM 4. The minimum of € (u,v) is unique in variables w,; of (3.6).

THEOREM 5. If w,; minimizes (3.6), then the set of minimizing (i ,?)
is the set of all solutions to

22 —l—v]-———w,j,x,y >0

u; + v, =f; (sz]> ,* )

37

where the submatrix of D associated with the x,; is a basis for (3.1).
Questions of uniqueness and stability of the system to arbitrary but small

perturbations of the vy,, 3; are closely related. Stability of solution to such

perturbations implies that the rank of D must be » + s — 1, i.e.

THEOREM 6. If no subsums of the v, and §; are-equal, then for a mini-
mum to exist the rank of D must be r -+ s —1. The minimum point is unigque
up to relative prices and sizes.

Sometimes M may be decomposable in block diagonal on suitable inter-
changes of rows and of columns. If there are B blocks, the problem splits
into B independent problems of the same form. When soluble, each indepen-
dent problem minimum can be at most unique up to a scale factor for prices
(and its reciprocal for sizes). It must be so unique if the block problem is
stable under local perturbations of its own v;, 3;.

5. COMPUTATION

The accounting balance prices and sizes and corresponding consumer
goods prices and employment levels may be computed from (2.6) and its
variants by any of the standard convex programming methods, e.g. SUMT
or piecewise linearization. Alternately, Newton-Raphson schemes can be
applied to solve the balance equations directly, now that one knows the theory
of their ambient system. A third direction, which may be most convenient
for large systems is through solving the geometric programming dual to (2.5).

From [3], page 210 et seq., the extended geometric program

(3.1)  minimize 2T Mg +In[pY--- p=% g%+ g7%] with pT, g >o,
has a 'dual

(5.’2}- minimize —v(3) = QSz-j[ln (8;/e)—InM,] subject_ to (4.1) onthe 3.

(Z,7)e
If 8}; is an optimal solution, then
(5-3) S =Mypiqf . (.)eQ.
Note how (5.3) recovers the result in (3.7).
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Since linear programming problems of distribution type may be compu-
ted at least 100 times faster than general linear programs, e.g. in a few seconds
on existing codes for »,s ~ 10% (and larger), and since existing codes for
distribution problems handle by fa: the largest linear programs, this mode
of solution seems most attractive for large systems.

6. EXTENSIONS

The model needs extension in the directions of more explicit connections
between employment levels, consumer-group sizes, etc. Multi-period exten-
sions would also be desirable, as would introduction of stochastic (risk or uncer-
tainty) elements. The Authors are currently making such extensions.
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