Classe Scienze Fisiche Matematiche Naturali

Rendiconti

Augustine O. Konnully

An incidence relationship of hyperspheres in E_{n}

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 56 (1974), n.4, p. 504-511.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1974_8_56_4_504_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Geometria. - An incidence relationship of hyperspheres in E_{n}. Nota di Augustine O. Konnully, presentata ${ }^{(\%}$ dal Socio B. Segre.

Riassunto. - In un iperspazio euclideo sul campo complesso vengono studiati certi sistemi di ipersfere da cui si derivano teoremi e configurazioni generalizzanti quelli di Cox e di Miquel-Clifford relativi a cerchi di un piano.
I. Theorem. Let S_{i}, $(i=\mathrm{o}, \mathrm{I}, \cdots, n+\mathrm{I})$, be a set of $(n+2)$ hyperspheres in E_{n} having a common orthogonal hypersphere P . With every set of n of these hyperspheres let a hypersphere distinct from P be associated which cuts orthogonally each of the n hyperspheres; the hypersphere so associated with the set consisting of all the members of the given set of hyperspheres save S_{i} and S_{j} being denoted by $\mathrm{P}_{i j}$. Let S_{k}^{\prime} be the common orthogonal hypersphere of the $(n+\mathrm{I})$ hyperspheres $\mathrm{P}_{j k},(j=0, \mathrm{I}, \cdots, n+\mathrm{I} ; j \neq k)$. Then every set of $n+2$ hyperspheres $\mathrm{S}_{h}^{\prime}, \mathrm{S}_{i}^{\prime}, \cdots, \mathrm{S}_{m}^{\prime}, \mathrm{S}_{p}, \mathrm{~S}_{q}, \cdots, \mathrm{~S}_{t}$, all with different subscripts, chosen an even number from S_{k}^{\prime} 's and the rest from S_{i} 's, has a hypersphere cutting them all orthogonally. In particular, when n is even, the hyperspheres S_{k}^{\prime} have a common orthogonal hypersphere.
2. Before giving the proof, we first note the condition that, given $n+2$ hyperspheres $\mathrm{S}\left(\vec{a}_{i}, r_{i}\right)$, with \vec{a}_{i} for centre and r_{i} for radius, $(i=\mathrm{o}, \mathrm{I}, \ldots$ $\cdots, n+1$), they have a common hypersphere cutting them all orthogonally. If $L_{0}, L_{1}, \cdots, L_{n+2}$ are the cofactors of the elements of the first row of the determinant

$$
\mathrm{L}=\left|\begin{array}{cccccc}
\mathrm{o} & t_{1} & t_{2} & \cdots & t_{n+1} & 2 \tag{I}\\
t_{1} & \vec{a}_{1} \cdot \vec{a}_{2} & \vec{a}_{1} \cdot \vec{a}_{2} \ldots & \vec{a}_{1} \cdot \vec{a}_{n+1} & \mathrm{I} \\
t_{2} & \vec{a}_{2} \cdot \vec{a}_{1} & \vec{a}_{2} \cdot \vec{a}_{2} \ldots & \vec{a}_{2} \cdot \vec{a}_{n+1} & \mathrm{I} \\
\ldots \ldots & \ldots \ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right|
$$

where $t_{i}=\overrightarrow{a_{i}^{2}}-r_{i}^{2}, \cdots, t_{n+1}=\overrightarrow{a_{n+1}^{2}}-r_{n+1}^{2}$, then it is easily seen that $\left.\mathrm{S} \overrightarrow{(a}, r\right)$, where

$$
\begin{equation*}
\vec{a}=-\frac{1}{2} \mathrm{~L}_{0}^{-1}\left(\sum_{i=1}^{n+1} \mathrm{~L}_{i} \overrightarrow{a_{i}}\right), \tag{2}
\end{equation*}
$$

and
(3)

$$
r=\left(-\frac{\mathrm{I}}{4} \mathrm{~L}_{0}^{-1} \mathrm{~L}\right)^{1 / 2}
$$

(*) Nella seduta del 20 aprile 1974.
represents the common orthogonal hypersphere of the ($n+1$) hyperspheres $\mathrm{S}\left(\vec{a}_{i}, r_{i}\right), i=\mathrm{I}, 2, \cdots, n+\mathrm{I}$, since we have $\left(\vec{a}_{i}-\vec{a}^{2}=r_{i}^{2}-\frac{1}{4} \mathrm{~L} / \mathrm{L}_{0}=\right.$ $=r_{i}^{2}+r^{2}$ for each i.

The hypersphere $\mathrm{S}(\vec{a}, r)$ which cuts orthogonally each of the hyperspheres $\mathrm{S}\left(\vec{a}_{i}, r_{i}\right),(i=\mathrm{I}, 2, \cdots, n+\mathrm{I})$, will cut $\mathrm{S}\left(\vec{a}_{0}, r_{0}\right)$ also orthogonally if and only if $r_{0}^{2}+r^{2}=\left(\vec{a}_{0}-\vec{a}\right)^{2}$. The vector \vec{a}_{0} can be expressed as

$$
\begin{equation*}
\vec{a}_{0}=\sum_{k=1}^{n+1} g_{k}^{0} \vec{a}_{k}, \quad \text { where } \sum_{k=1}^{n+1} g_{k}^{0}=\mathrm{I} \tag{4}
\end{equation*}
$$

and since

$$
\begin{aligned}
\left(\vec{a}_{0}-\vec{a}\right)^{2} & =\overrightarrow{a_{0}^{2}}-2 \sum_{k=1}^{n+1} g_{k}^{0} \overrightarrow{a_{k}} \cdot \vec{a}+\left(-\frac{1}{2} \mathrm{~L}_{0}^{-1}\right) \sum_{k=1}^{n+1} \mathrm{~L}_{k} \vec{a}_{k} \cdot \vec{a} \\
& =\overrightarrow{a_{0}^{2}}-\sum_{k=1}^{n+1} g_{k}^{0} t_{k}-\frac{1}{4} \mathrm{~L}_{0}^{-1} \mathrm{~L}
\end{aligned}
$$

it means that

$$
\begin{equation*}
t_{0}=\sum_{k=1}^{n+1} g_{k}^{0} t_{k}, \quad\left(t_{i}=\overrightarrow{a_{i}^{2}}-r_{i}^{2}\right) \tag{5}
\end{equation*}
$$

which expresses the condition-necessary and sufficient condition-that the hyperspheres $\mathrm{S}\left(\vec{a}_{0}, r_{0}\right), \mathrm{S}\left(\vec{a}_{1}, r_{1}\right), \cdots, \mathrm{S}\left(\vec{a}_{n+1}, r_{n+1}\right)$ have a common orthogonal hypersphere.

This condition may be expressed in a more convenient form. If $\vec{u}_{1}, \vec{u}_{2}, \cdots, \vec{u}_{n}$ are a set of linearly independent vectors, then solving for $g_{1}^{0}, g_{2}^{0}, \cdots, g_{n+1}^{0}$ from the equations $\sum_{i=1}^{n+1} g_{i}^{0} \vec{a}_{i} \cdot \vec{u}_{k}=\vec{a}_{0} \cdot \vec{u}_{k}, k=1,2, \cdots, n$, and

$$
\sum_{k=1}^{n+1} g_{k}^{0}=\mathrm{I}
$$

the condition reduces to the vanishing of the determinant
($\left.5^{\prime}\right) \quad \mathrm{B}=\left|\begin{array}{cccc}t_{0} & t_{1} & \cdots & t_{n+1} \\ \vec{a}_{0} \cdot \vec{u}_{1} & \vec{a}_{1} \cdot \vec{u}_{1} & \cdots & \vec{a}_{n+1} \cdot \vec{u}_{1} \\ \cdots \\ \overrightarrow{a_{0}} \cdot \vec{u}_{n} & \vec{a}_{1} \cdot \vec{u}_{n} & \cdots & \vec{a}_{n+1} \cdot \vec{u}_{n} \\ \mathrm{I} & \mathrm{I} & \cdots & \mathrm{I}\end{array}\right|=\operatorname{det}\left(b_{0}, b_{1}, \cdots, b_{n+1}\right)$,
were $b_{k}=\left(t_{k}, \vec{a}_{k} \cdot \vec{u}_{1}, \cdots, \vec{a}_{k} \cdot \vec{u}_{n}, \mathrm{I}\right)$ written as a column.
34. - RENDICONTI 1974, Vol. LVI, fasc. 4.

3. Proof of the theorem

Let $\overrightarrow{a_{k}^{\prime}}$ be the centre and r_{k}^{\prime}, the radius of S_{k}^{\prime}, $(k=\mathrm{o}, \mathrm{I}, \cdots, n+\mathrm{I})$. Each vector $\overrightarrow{a_{k}^{\prime}}$, for $k=1,2, \cdots, n+1$, can be expressed as

$$
\begin{equation*}
\overrightarrow{a_{k}^{\prime}}=g_{0}^{k} \overrightarrow{a_{0}^{\prime}}+\sum_{i=1}^{n+1} g_{i}^{k} \overrightarrow{a_{i}}, \quad \text { where } \quad g_{k}^{k}=0, \quad \text { and } \quad \sum_{i=0}^{n+1} g_{i}^{k}=\mathrm{I} \tag{6}
\end{equation*}
$$

Since the hyperspheres $S_{0}^{\prime}, S_{1}, \cdots, S_{k-1}, S_{k}^{\prime}, S_{k+1}, \cdots, S_{n+1}$ have a common orthogonal hypersphere, viz., $\mathrm{P}_{0 k}$, we have by (5),
(7) $\quad t_{k}^{\prime}=g_{0}^{k} t_{0}^{\prime}+\sum_{i=1}^{n+1} g_{i}^{k} t_{i}, \quad\left(t_{j}^{\prime}=\vec{a}_{j}^{\prime 2}-r_{j}^{\prime 2}\right), \quad$ for $\quad k=\mathrm{I}, 2, \cdots, n+\mathrm{I}$.

Further, $\mathrm{S}_{i}^{\prime}, \mathrm{S}_{j}^{\prime}, \mathrm{S}_{0}, \mathrm{~S}_{1}, \cdots, \mathrm{~S}_{i-1}, \mathrm{~S}_{i+1}, \cdots, \mathrm{~S}_{j-1}, \mathrm{~S}_{j+1}, \cdots, \mathrm{~S}_{n+1},(i \neq 0, j \neq 0)$, have a common orthogonal hypersphere, viz., $\mathrm{P}_{i j}$; the condition for this is, by $\left(5^{\prime}\right)$, the vanishing of the determinant $\mathrm{B}(i, j)^{\prime}=\operatorname{det} .\left(b_{0}, b_{1}, \cdots, b_{i-1}\right.$, $\left.b_{i}^{\prime}, b_{i+1}, \cdots, b_{j}^{\prime}, \cdots, b_{n+1}\right)$, where $b_{k}^{\prime}=\left(t_{k}^{\prime}, \overrightarrow{a_{k}^{\prime}} \cdot \overrightarrow{u_{1}}, \overrightarrow{a_{k}^{\prime}} \cdot \vec{u}_{2}, \cdots, \overrightarrow{a_{k}^{\prime}} \cdot \vec{u}_{n}\right.$, I). Substituting for $t_{0}, t_{i}^{\prime}, t_{j}^{\prime}$ from (5) and (7) and for $\vec{a}_{0}, \overrightarrow{a_{i}^{\prime}}, \overrightarrow{a_{j}^{\prime}}$ from (4) and (6), it is easily seen that
$\mathrm{B}(i, j)^{\prime}= \pm \mathrm{B}(\mathrm{o})^{\prime} \mathrm{G}(\mathrm{o}, i, j)$, where $\mathrm{B}(\mathrm{o})^{\prime}=\operatorname{det}\left(b_{0}^{\prime}, b_{1}, \cdots, b_{n+1}\right)$ and

$$
\mathrm{G}(o, i, j)=\left|\begin{array}{lll}
g_{0}^{0} & g_{i}^{0} & g_{j}^{0} \\
g_{0}^{i} & g_{i}^{i} & g_{j}^{i} \\
g_{0}^{j} & g_{i}^{j} & g_{j}^{j}
\end{array}\right|, \quad\left(g_{0}^{0}=0\right)
$$

Thus $\mathrm{G}(\mathrm{o}, i, j) \mathrm{B}(\mathrm{o})^{\prime}=\mathrm{o}$. But $\mathrm{B}(\mathrm{o})^{\prime} \neq \mathrm{o}$, for $\mathrm{B}(\mathrm{o})^{\prime}=\mathrm{o}$ would mean that the hyperspheres $S_{0}^{\prime}, S_{1}, S_{2}, \cdots, S_{n+1}$ have a common orthogonal hypersphere, which hypersphere would be P , being the common orthogonal hypersphere of the ($n+1$) hyperspheres $S_{1}, S_{2}, \cdots, S_{n+1}$ as also be P_{10}, being the common orthogonal hypersphere of the ($n+1$) hyperspheres $S_{0}^{\prime}, S_{2}, \cdots, S_{n+1}$, so that P and P_{10} would be identical contrary to the initial choice of P_{10} as distinct from P. Hence $\mathrm{G}(\mathrm{o}, i, j)=\mathrm{o}$, that is, $g_{j}^{0} g_{i}^{j} g_{0}^{i}+g_{i}^{0} g_{j}^{i} g_{0}^{j}=\mathrm{o}$. Thus

$$
\begin{equation*}
g_{i}^{0} g_{j}^{i} g_{0}^{j}=-g_{j}^{0} g_{i}^{j} g_{0}^{i}, \quad(i, j=\mathrm{I}, 2, \cdots, n+\mathrm{I}) \tag{8}
\end{equation*}
$$

Now consider any set of hyperspheres $\mathrm{S}_{h}^{\prime}, \mathrm{S}_{i}^{\prime}, \mathrm{S}_{j}^{\prime}, \cdots, \mathrm{S}_{m}^{\prime}, \mathrm{S}_{p}, \mathrm{~S}_{q}, \cdots, \mathrm{~S}_{t}$, where $\{h, i, j, \cdots, m\}$ is a subset of the index set $\mathrm{I}=\{\mathrm{o}, \mathrm{r}, \cdots, n+\mathrm{r}\}$ with an even number of elements and $\{p, q, \cdots, t\}$ is its complement in I . The condition for these hyperspheres to have a common orthogonal hypersphere is the vanishing of the determinant $\mathrm{B}(h, i, \cdots, m)^{\prime}$ which is B with its columns of indices h, i, \cdots, m all primed. We shall assume that $h<i<\cdots<m$ and $p<q<\cdots<t$. If $o \in\{p, q, \cdots, t\}$ we must have $p=0$ and $h \neq 0$; and then substituting for $t_{h}^{\prime}, t_{i}^{\prime}, \cdots, t_{m}^{\prime}$ and t_{0}
from (7) and (5), and for ${\overrightarrow{a_{k}^{\prime}}}_{\prime}, \vec{a}_{i}^{\prime}, \cdots, \overrightarrow{a_{m}^{\prime}}$ and \vec{a}_{0} from (6) and (4) we get $\mathrm{B}(h, i, \cdots, m)^{\prime}= \pm \mathrm{B}(\mathrm{o})^{\prime} \mathrm{G}(\mathrm{o}, h, \cdots, m)$, where

$$
\mathrm{G}(\mathrm{o}, h, \cdots, m)=\left|\begin{array}{cccc}
g_{0}^{0} & g_{h}^{0} & \cdots & g_{m}^{0} \\
g_{0}^{h} & g_{h}^{h} & \cdots & g_{m}^{h} \\
\cdots & \cdots & \cdots & \cdots \\
g_{0}^{m} & g_{h}^{m} & \cdots & g_{m}^{m}
\end{array}\right|
$$

and if $\mathrm{o} \notin\{p, q, \cdots, m\}, h=0$ and $p \neq \mathrm{o}$; and then substituting for $t_{i}^{\prime}, t_{j}^{\prime}, \cdots, t_{m}^{\prime}$ from (7) and for $a_{i}^{\prime}, a_{j}^{\prime}, \cdots, a_{m}^{\prime}$ from (6) we get, $\mathrm{B}(h, i, \cdots, m)^{\prime}=$ $=\mathrm{B}(\mathrm{o})^{\prime} \mathrm{G}(i, j, \cdots, m)$ where $\mathrm{G}(i, j, \cdots, m)$ is the determinant $\mathrm{G}(\mathrm{o}, h, \cdots, m)$ with its first two rows and columns suppressed. By virtue of (8), on multiplying its columms by $1, g_{0}^{h}, g_{0}^{i}, \cdots, g_{0}^{m}$ respectively and the rows by -- I $, g_{h}^{0}, g_{i}^{0}, \cdots, g_{m}^{0}$ respectively, $\mathrm{G}(h, i, \cdots, m)$ becomes a skew-symmetric determinant of odd order and therefore vanishes. Similarly $G(i, \cdots, m)$, on its rows being multiplied by $g_{i}^{0}, g_{j}^{0}, \cdots, g_{m}^{0}$ respectively and columns by $g_{0}^{i}, g_{0}^{j}, \cdots, g_{0}^{m}$ becomes a skew-symmetric determinant of odd order and therefore vanishes. Thus in either case $\mathrm{B}(h, i, \cdots, m)^{\prime}=0$. It follows that $S_{h}^{\prime}, S_{i}^{\prime}, \cdots, S_{m}^{\prime}, S_{p}, S_{q}, \cdots, S_{t}$ have a hypersphere cutting them all orthogonally.
4. Let $\mathrm{U}=\{h, i, \cdots, m\}$ and $\mathrm{V}=\{p, q, \cdots, t\}$ be complementary subsets of the index set $\mathrm{I}=\{\mathrm{O}, \mathrm{I}, \cdots, n+\mathrm{I}\}$. The set of hyperspheres $\mathrm{S}_{h}^{\prime}, \mathrm{S}_{i}^{\prime}, \cdots, \mathrm{S}_{m}^{\prime}, \mathrm{S}_{p}, \mathrm{~S}_{q}, \cdots, \mathrm{~S}_{t}$ will have then a common orthogonal hypersphere whenever U has an even number of elements: this hypersphere shall be denoted by $\mathrm{P}_{h i \ldots m}$ or $\mathrm{P}_{p q \cdots t}^{\prime}$. The hypersphere cutting orthogonally all the hyperspheres $S_{0}, S_{1}, \cdots, S_{n+1}$ has been denoted by P and it arises when U is the null subset of I. As U ranges over all subsets of I with an even number of elements, we get a set of hyperspheres which we shall refer to as P-hyperspheres. And the hyperspheres $\mathrm{S}_{0}, \mathrm{~S}_{1}, \cdots, \mathrm{~S}_{n+1}, \mathrm{~S}_{0}^{\prime}, \mathrm{S}_{1}^{\prime}, \cdots, \mathrm{S}_{n+1}^{\prime}$ may the refered to as S-hyperspheres. Including P, there will be altogether $2^{n+1} \mathrm{P}$-hyperspheres. Each P-hypersphere will have $n+2$ S-hyperspheres cutting it orthogonally; and each S-hypersphere will have 2^{n} P-hyperspheres cutting it orthogonally.

The figure consisting of the $2^{n+1} \mathrm{P}$-hyperspheres and $2 n+4$ S-hyperspheres is generated by P and the $n+2$ S-hyperspheres $\mathrm{S}_{0}, \mathrm{~S}_{1}, \cdots, \mathrm{~S}_{n+1}$. The same figure could be thought of equally as generated by any P-hypersphere together with the $n+2$ hyperspheres cutting it orthogonally. In this sense the figure has a homogeneity. Also when n is even, the figure will have a symmetry with $\mathrm{P}_{i j \ldots m}^{\prime}$ counter to $\mathrm{P}_{i j \ldots m}$ and S_{i}^{\prime} counter to S_{i}.
5. There are some special cases to be considered.

Let R be the radius of the hypersphere P which cuts orthogonally the hyperspheres S_{0}, \cdots, S_{n+1}. If the hypersphere $P_{i j}$ which we associate with
a set of n of these hyperspheres, is to have also radius R, then $P_{i j}$ is unique, since there are two and only two hyperspheres of the same radius R which cut orthogonally the given set of n hyperspheres, of which P is one and $\mathrm{P}_{i j}$ is to be distinct from it. We now prove the following

Theorem. If the hyperspheres $\mathrm{P}_{i j},(i, j=\mathrm{o}, \mathrm{I}, \cdots, n+\mathrm{I}, i \neq j)$, have all the same radius as P , then every P -hypersphere has the same radius as P . In particular, when P and $\mathrm{P}_{i j}$ all become points, then every P -hypersphere becomes a point.

Proof. To prove this, it will be enough to show that the hypersphere $\mathrm{P}_{12 \ldots p}, p$ even, has radius R , when P and each $\mathrm{P}_{i j}$ have all the same radius R; since, by a relabelling of the hyperspheres S_{i}, any P-hypersphere could be made to have such a representation.

As the radius r of the common orthogonal hypersphere of $S\left(\vec{a}_{1}, r_{1}\right), \ldots$ $\cdots, \mathrm{S}\left(\vec{a}_{n+1}, r_{n+1}\right)$ is given by $r^{2}=-\frac{1}{4} \mathrm{~L} / \mathrm{L}_{0}$, so the radius q of $\mathrm{P}_{12 \cdots p}$, the common orthogonal hypersphere of $\mathrm{S}_{1}^{\prime}, \mathrm{S}_{2}^{\prime}, \cdots, \mathrm{S}_{p}^{\prime}, \mathrm{S}_{p+1}, \cdots, \mathrm{~S}_{n+1}$, is given by $q^{2}=-\frac{1}{4} \mathrm{~L}(\mathrm{I}, 2, \cdots, p)^{\prime \prime} / \mathrm{L}_{0}(\mathrm{I}, 2, \cdots, p)^{\prime \prime}$, where $\mathrm{L}(\mathrm{I}, 2, \cdots, p)^{\prime \prime}$ and $\mathrm{L}_{0}(\mathrm{I}, 2, \cdots, p)^{\prime \prime}$ are L and L_{0} respectively with the rows and columns of indices $\mathrm{I}, 2, \cdots, p$ all primed, that is,
and $\mathrm{L}_{0}(\mathrm{I}, 2, \cdots, p)^{\prime \prime}$ is the same without its first row and column.
Let M be the determinant
bordered in the first row and column by the elements $\mathrm{o}, \mathrm{G}_{0}, \mathrm{G}_{1}, \cdots, \mathrm{G}_{n+1}, \mathrm{o}$, where $\mathrm{G}_{p+1}=\mathrm{G}_{p+2}=\cdots=\mathrm{G}_{n+1}=\mathrm{o}$ and $\mathrm{G}_{0}, \mathrm{G}_{1}, \cdots, \mathrm{G}_{p}$ are the cofactors of the elements of the first row of the determinant

$$
\mathrm{G}=\left|\begin{array}{ccccc}
\mathrm{I} & \mathrm{o} & \mathrm{o} & \cdots & \mathrm{o} \\
g_{0}^{1} & g_{1}^{1} & g_{2}^{1} & \cdots & g_{p}^{1} \\
g_{0}^{2} & g_{1}^{2} & g_{2}^{2} & \cdots & g_{p}^{2} \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right| .
$$

Then, it is easily seen that M, on multiplying it twice by G, reduces, by virtue of the relations (6) and (7), to a determinant equal to $-\mathrm{G}_{0}^{2} \mathrm{~L}(\mathrm{I}, \cdots, p)^{\prime \prime}$, that is, $G M G=-G_{0}^{2} L(1,2, \cdots, p)^{\prime \prime}$. Since $G=G_{0}$, we have

$$
\mathrm{L}(\mathrm{I}, 2, \cdots, p)^{\prime \prime}=-\mathrm{M}=\sum_{i=0}^{n+1} \sum_{j=0}^{n+1} \mathrm{D}^{i j} \mathrm{G}_{i} \mathrm{G}_{j}
$$

where

$$
\mathrm{D}^{i j},(i, j=-\mathrm{I}, \mathrm{o}, \mathrm{I}, \cdots, n+\mathrm{I}, n+2)
$$

are the cofactors of the elements of D.
Similarly, $\mathrm{L}_{0}(\mathrm{I}, 2, \cdots, p)^{\prime \prime}=\sum_{i=0}^{n+1} \sum_{j=0}^{n+1} \mathrm{D}_{0}^{i j} \mathrm{G}_{i} \mathrm{G}_{j}$, where $\mathrm{D}_{0}^{i j},(i, j=0, \mathrm{I}, \cdots$ $\cdots, n+1, n+2$), are the cofactors of the elements of the determinant D_{0} obtained from D on suppressing its first row and first column.

By the formula (3), the square of the radius of $\mathrm{P}, \mathrm{P}_{01}, \cdots, \mathrm{P}_{0 n+1}$ will be seen to be given by $-\frac{\mathrm{I}}{4} \mathrm{D}^{00} / \mathrm{D}_{0}^{00},-\frac{\mathrm{I}}{4} \mathrm{D}^{\prime \prime} / \mathrm{D}_{0}^{\prime \prime}, \cdots,-\frac{\mathrm{I}}{4} \mathrm{D}^{n+1, n+1} / \mathrm{D}_{0}^{n+1, n+1}$ respectively. So we have $\mathrm{R}^{2}=-\frac{\mathrm{I}}{4} \mathrm{D}^{i i} / \mathrm{D}_{0}^{i i},(i=\mathrm{o}, \mathrm{I}, \cdots, n+\mathrm{I})$. Writing $\mathrm{T}_{i j}=\mathrm{D}^{i j}+4 \mathrm{R}^{2} \mathrm{D}_{0}^{i j}$, we obtain

$$
\begin{equation*}
\mathrm{T}_{i i}=\mathrm{o}, \quad(i=\mathrm{o}, \mathrm{I}, \cdots, n+\mathrm{I}) \tag{9}
\end{equation*}
$$

Also, since the radius of $\mathrm{P}_{h k},(h, k=\mathrm{I}, 2, \cdots, n+\mathrm{I})$, is R , we have $\mathrm{R}^{2}=-\frac{1}{4} \mathrm{~L}(h, k)^{\prime \prime} / \mathrm{L}_{0}(h ; k)^{\prime \prime}$. And it is seen, as above, that

$$
\mathrm{L}(h, k)^{\prime \prime}=\sum_{i=0}^{n+1} \sum_{j=0}^{n+1} \mathrm{D}^{i j} \mathrm{~F}_{i} \mathrm{~F}_{j} ; \text { and } \mathrm{L}_{0}(h, k)^{\prime \prime}=\sum_{i=0}^{n+1} \sum_{j=0}^{n+1} \mathrm{D}_{0}^{i j} \mathrm{~F}_{i} \mathrm{~F}_{j}
$$

where $\mathrm{F}_{0}, \mathrm{~F}_{h}, \mathrm{~F}_{k}$ are the cofactors of the first row of

$$
\mathrm{F}=\left|\begin{array}{ccc}
\mathrm{I} & \mathrm{o} & \mathrm{o} \\
g_{0}^{h} & g_{h}^{h} & g_{k}^{h} \\
g_{0}^{k} & g_{h}^{k} & g_{k}^{k}
\end{array}\right|, \quad \text { and } \quad \mathrm{F}_{i}=\mathrm{o} \quad \text { for } i \notin\{\mathrm{o}, h, k\}
$$

It means, $\mathrm{L}(h, k)^{\prime \prime}+4 \mathrm{R}^{2} \mathrm{~L}_{0}(h, k)^{\prime \prime}=\sum_{i=0}^{n+1} \sum_{j=0}^{n+1} \mathrm{~T}_{i j} \mathrm{~F}_{i} \mathrm{~F}_{j}=\mathrm{o}$. Since $\mathrm{T}_{i i}=0$ and $\mathrm{F}_{i}=\mathrm{o}$ for $i \neq \mathrm{o}, h, k$, this reduces to

$$
\begin{align*}
& \mathrm{T}_{h k} \mathrm{~F}_{h} \mathrm{~F}_{k}+\mathrm{T}_{0 k} \mathrm{~F}_{0} \mathrm{~F}_{h}+\mathrm{T}_{0 k} \mathrm{~F}_{0} \mathrm{~F}_{k}=0 ; \text { or } \tag{io}\\
& \mathrm{T}_{h k}=\mathrm{T}_{0 k} g_{k}^{h} / g_{0}^{h}+\mathrm{T}_{0 k} g_{h}^{k} / g_{0}^{k}, \quad(h, k=\mathrm{o}, \mathrm{I}, 2, \cdots, n+\mathrm{I})
\end{align*}
$$

It follows that

$$
\begin{aligned}
& \sum_{k=1}^{p} \sum_{h=1}^{p} \mathrm{G}_{h} \mathrm{~T}_{h k} \mathrm{G}_{k}=\sum_{h=1}^{p} \sum_{k=1}^{p} \mathrm{G}_{k} g_{k}^{h}\left(\mathrm{I} / g_{0}^{h}\right) \mathrm{T}_{0 k} \mathrm{G}_{h}+\sum_{k=1}^{p} \sum_{h=1}^{p} \mathrm{G}_{h} g_{h}^{k}\left(\mathrm{I} / g_{0}^{k}\right) \mathrm{T}_{0 k} \mathrm{G}_{k}= \\
= & -\sum_{h=1}^{p} \mathrm{G}_{0} \mathrm{~T}_{0 k} \mathrm{G}_{k}-\sum_{k=1}^{p} \mathrm{G}_{0} \mathrm{~T}_{0 k} \mathrm{G}_{k}, \quad \text { since } \sum_{k=0}^{p} g_{k}^{h} \mathrm{G}_{k}=\mathrm{o}, \quad(h=\mathrm{I}, 2, \cdots, p) .
\end{aligned}
$$

Hence

$$
\sum_{h=0}^{p} \sum_{k=0}^{p} \mathrm{G}_{k} \mathrm{~T}_{h k} \mathrm{G}_{k}=\mathrm{o}, \quad\left(\mathrm{G}_{0} \mathrm{~T}_{00} \mathrm{G}_{0}=\mathrm{o}, \text { by }(9)\right) .
$$

Thus,

$$
\begin{aligned}
& \mathrm{L}(\mathrm{I}, 2, \cdots, p)^{\prime \prime}+4 \mathrm{R}^{2} \mathrm{~L}_{0}(\mathrm{I}, 2, \cdots, p)^{\prime \prime}= \\
& =\sum_{i=0}^{n+1} \sum_{j=0}^{n+1} \mathrm{D}^{i j} \mathrm{G}_{i} \mathrm{G}_{j}+4 \mathrm{R}^{2} \sum_{i=0}^{n+1} \sum_{j=0}^{n+1} \mathrm{D}^{i j} \mathrm{G}_{i} \mathrm{G}_{j}= \\
& =\sum_{i=0}^{n+1} \sum_{j=0}^{n+1} \mathrm{G}_{i} \mathrm{~T}_{i j} \mathrm{G}_{j}=\sum_{i=0}^{p} \sum_{j=0}^{p} \mathrm{G}_{i} \mathrm{~T}_{i j} \mathrm{G}_{j}=\mathrm{o} .
\end{aligned}
$$

It follows that

$$
\mathrm{R}^{2}=-\frac{\mathrm{I}}{4} \mathrm{~L}(\mathrm{I}, 2, \cdots, p)^{\prime \prime} / \mathrm{L}_{0}(\mathrm{I}, 2, \cdots, p)^{\prime \prime}=q^{2}
$$

That is, the radius of $\mathrm{P}_{12 \ldots p}$ is R .
6. Of special interest is the case when $R=0$, that is, P becomes a point so that $S_{0}, S_{1}, \cdots, S_{n+1}$ are hyperspheres through a fixed point, and $P_{i j}$ are also points, viz., the points in which the $n+2$ hyperspheres, takes n by n, meet. For then all the P-hyperspheres become points, giving the relationship: Given $(n+2)$ hyperspheres $S_{0}, S_{1}, \cdots, S_{n+1}$ in E_{n}, all passing through a fixed point P, with each set of $n+1$ out of the $n+2$ hyperspheres if we associate a hypersphere, viz., the one containing the $n+\mathrm{I}$ points in which the $n+\mathrm{I}$ hyperspheres, taken n by n, meet apart from P; and if $S_{0}^{\prime}, S_{1}^{\prime}, \cdots, S_{n+1}^{\prime}$ are the hyperspheres so obtained, S_{i}^{\prime} being the hypersphere associated with the $n+$ I hyperspheres of the set excluding S_{i}; then every set of $n+2$ hyper-
spheres chosen an even number from S^{\prime} 's and the rest with different subscripts from S's have a point in common in which they all meet. This relationship is analogous to the Miquel-Clifford configuration of circles and points in a plane.

The $2 n+4$ hyperspheres (S-hyperspheres) and 2^{n+1} points (P-hyperspheres) of which the figure generated will be made up, distribute themselves so that through each point half the number $(=n+2)$ of the hyperspheres pass and on each hypersphere half the number ($=2^{n}$) of points lie. Thus it constitutes a configuration of hyperspheres and points in E_{n}. The $n+2$ hyperspheres passing through any one of the points of the configuration will generate the same figure.

