ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

AUGUSTINE O. KONNULLY

An incidence relationship of hyperspheres in E_n

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **56** (1974), n.4, p. 504–511. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1974_8_56_4_504_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Geometria. — An incidence relationship of hyperspheres in E_n. Nota di Augustine O. Konnully, presentata (*) dal Socio B. Segre.

RIASSUNTO. — In un iperspazio euclideo sul campo complesso vengono studiati certi sistemi di ipersfere da cui si derivano teoremi e configurazioni generalizzanti quelli di Cox e di Miquel-Clifford relativi a cerchi di un piano.

- I. Theorem. Let S_i , $(i=0,1,\cdots,n+1)$, be a set of (n+2) hyperspheres in E_n having a common orthogonal hypersphere P. With every set of n of these hyperspheres let a hypersphere distinct from P be associated which cuts orthogonally each of the n hyperspheres; the hypersphere so associated with the set consisting of all the members of the given set of hyperspheres save S_i and S_j being denoted by P_{ij} . Let S_k' be the common orthogonal hypersphere of the (n+1) hyperspheres P_{jk} , $(j=0,1,\cdots,n+1;j\neq k)$. Then every set of n+2 hyperspheres S_h' , S_i' , \cdots , S_m' , S_p , S_q , \cdots , S_t , all with different subscripts, chosen an even number from S_k' 's and the rest from S_i 's, has a hypersphere cutting them all orthogonally. In particular, when n is even, the hyperspheres S_k' have a common orthogonal hypersphere.
- 2. Before giving the proof, we first note the condition that, given n+2 hyperspheres $S(a_i, r_i)$, with a_i for centre and r_i for radius, $(i = 0, 1, \cdots, n+1)$, they have a common hypersphere cutting them all orthogonally. If $L_0, L_1, \cdots, L_{n+2}$ are the cofactors of the elements of the first row of the determinant

where $t_i = \overset{\rightarrow}{a_i^2} - r_i^2$, \cdots , $t_{n+1} = \overset{\rightarrow}{a_{n+1}^2} - r_{n+1}^2$, then it is easily seen that $S(\vec{a}, r)$, where

(2)
$$\overrightarrow{a} = -\frac{1}{2} \operatorname{L}_{0}^{-1} \left(\sum_{i=1}^{n+1} \operatorname{L}_{i} \overrightarrow{a_{i}} \right),$$

and

(3)
$$r = \left(-\frac{1}{4} L_0^{-1} L\right)^{1/2},$$

(*) Nella seduta del 20 aprile 1974.

represents the common orthogonal hypersphere of the (n + 1) hyperspheres $S(\vec{a}_i, r_i)$, $i = 1, 2, \dots, n + 1$, since we have $(\vec{a}_i - \vec{a})^2 = r_i^2 - \frac{1}{4} L/L_0 = r_i^2 + r^2$ for each i.

The hypersphere $S(\vec{a},r)$ which cuts orthogonally each of the hyperspheres $S(\vec{a}_i,r_i)$, $(i=1,2,\cdots,n+1)$, will cut $S(\vec{a}_0,r_0)$ also orthogonally if and only if $r_0^2 + r^2 = (\vec{a}_0 - \vec{a})^2$. The vector \vec{a}_0 can be expressed as

(4)
$$\vec{a}_0 = \sum_{k=1}^{n+1} g_k^0 \vec{a}_k$$
, where $\sum_{k=1}^{n+1} g_k^0 = 1$;

and since

$$\begin{split} (\overrightarrow{a}_0 - \overrightarrow{a})^2 &= \overrightarrow{a}_0^2 - 2 \sum_{k=1}^{n+1} g_k^0 \overrightarrow{a}_k \cdot \overrightarrow{a} + \left(-\frac{1}{2} L_0^{-1} \right) \sum_{k=1}^{n+1} L_k \overrightarrow{a}_k \cdot \overrightarrow{a} \\ &= \overrightarrow{a}_0^2 - \sum_{k=1}^{n+1} g_k^0 t_k - \frac{1}{4} L_0^{-1} L, \end{split}$$

it means that

(5)
$$t_0 = \sum_{k=1}^{n+1} g_k^0 t_k, \qquad (t_i = \overset{\rightarrow}{a_i^2} - r_i^2);$$

which expresses the condition—necessary and sufficient condition—that the hyperspheres $S(\vec{a_0}, r_0)$, $S(\vec{a_1}, r_1)$, \cdots , $S(\vec{a_{n+1}}, r_{n+1})$ have a common orthogonal hypersphere.

This condition may be expressed in a more convenient form. If $\overrightarrow{u}_1, \overrightarrow{u}_2, \cdots, \overrightarrow{u}_n$ are a set of linearly independent vectors, then solving for $g_1^0, g_2^0, \cdots, g_{n+1}^0$ from the equations $\sum_{i=1}^{n+1} g_i^0 \overrightarrow{a}_i \cdot \overrightarrow{u}_k = \overrightarrow{a}_0 \cdot \overrightarrow{u}_k, \ k=1, 2, \cdots, n$, and

$$\sum_{k=1}^{n+1} g_k^0 = 1,$$

the condition reduces to the vanishing of the determinant

(5')
$$B = \begin{vmatrix} t_0 & t_1 & \cdots & t_{n+1} \\ \overrightarrow{a_0} \cdot \overrightarrow{u_1} & \overrightarrow{a_1} \cdot \overrightarrow{u_1} & \cdots & \overrightarrow{a_{n+1}} \cdot \overrightarrow{u_1} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \overrightarrow{a_0} \cdot \overrightarrow{u_n} & \overrightarrow{a_1} \cdot \overrightarrow{u_n} & \cdots & \overrightarrow{a_{n+1}} \cdot \overrightarrow{u_n} \\ & \vdots & \vdots & \cdots & \vdots \end{vmatrix} = \det \cdot (b_0, b_1, \cdots, b_{n+1}),$$

were $b_k = (t_k, a_k \cdot u_1, \dots, a_k \cdot u_n, I)$ written as a column.

34. - RENDICONTI 1974, Vol. LVI, fasc. 4.

3. Proof of the theorem

Let $\overrightarrow{a'_k}$ be the centre and r'_k , the radius of S'_k , $(k = 0, 1, \dots, n+1)$. Each vector $\overrightarrow{a'_k}$, for $k = 1, 2, \dots, n+1$, can be expressed as

(6)
$$\vec{a}_{k} = g_{0}^{k} \vec{a}_{0}' + \sum_{i=1}^{n+1} g_{i}^{k} \vec{a}_{i}, \quad \text{where} \quad g_{k}^{k} = 0, \quad \text{and} \quad \sum_{i=0}^{n+1} g_{i}^{k} = 1.$$

Since the hyperspheres S'_0 , S_1 , ..., S_{k-1} , S'_k , S_{k+1} , ..., S_{n+1} have a common orthogonal hypersphere, viz., P_{0k} , we have by (5),

(7)
$$t'_{k} = g_{0}^{k} t'_{0} + \sum_{i=1}^{n+1} g_{i}^{k} t_{i}, \quad (t'_{j} = \overrightarrow{a}_{j}^{'2} - r'_{j}^{'2}), \quad \text{for } k = 1, 2, \dots, n+1.$$

Further, S_i' , S_j' , S_0 , S_1 , \cdots , S_{i-1} , S_{i+1} , \cdots , S_{j-1} , S_{j+1} , \cdots , S_{n+1} , $(i \neq 0, j \neq 0)$, have a common orthogonal hypersphere, viz., P_{ij} ; the condition for this is, by (5'), the vanishing of the determinant $B(i,j)' = \det(b_0,b_1,\cdots,b_{i-1},b_i',b_{i+1},\cdots,b_j',\cdots,b_{n+1})$, where $b_k' = (t_k',\overrightarrow{a_k'},\overrightarrow{u_1},\overrightarrow{a_k'},\overrightarrow{u_2},\cdots,\overrightarrow{a_k'},\overrightarrow{u_n},1)$. Substituting for t_0 , t_i' , t_j' from (5) and (7) and for a_0 , a_i' , a_j' from (4) and (6), it is easily seen that

 $\mathbf{B}(i,j)' = \pm \mathbf{B}(\mathbf{o})' \mathbf{G}(\mathbf{o},i,j)$, where $\mathbf{B}(\mathbf{o})' = \det(b_0',b_1,\cdots,b_{n+1})$ and

$$G(0, i, j) = \begin{vmatrix} g_0^0 & g_i^0 & g_j^0 \\ g_0^i & g_i^i & g_j^i \\ g_0^j & g_i^j & g_j^j \end{vmatrix}, \qquad (g_0^0 = 0).$$

Thus G(o, i, j) B(o)' = o. But $B(o)' \neq o$, for B(o)' = o would mean that the hyperspheres $S_0, S_1, S_2, \dots, S_{n+1}$ have a common orthogonal hypersphere, which hypersphere would be P, being the common orthogonal hypersphere of the (n+1) hyperspheres S_1, S_2, \dots, S_{n+1} as also be P_{10} , being the common orthogonal hypersphere of the (n+1) hyperspheres S_0, S_2, \dots, S_{n+1} , so that P and P_{10} would be identical contrary to the initial choice of P_{10} as distinct from P. Hence G(o, i, j) = o, that is, $g_j^0 g_j^i g_j^i + g_0^0 g_j^i g_j^i = o$. Thus

(8)
$$g_i^0 g_j^i g_0^j = -g_j^0 g_i^j g_0^i, \qquad (i, j = 1, 2, \dots, n+1).$$

Now consider any set of hyperspheres $S_h', S_i', S_j', \cdots, S_m', S_p, S_q, \cdots, S_t$, where $\{h, i, j, \cdots, m\}$ is a subset of the index set $I = \{0, 1, \cdots, n+1\}$ with an even number of elements and $\{p, q, \cdots, t\}$ is its complement in I. The condition for these hyperspheres to have a common orthogonal hypersphere is the vanishing of the determinant $B(h, i, \cdots, m)'$ which is B with its columns of indices h, i, \cdots, m all primed. We shall assume that $h < i < \cdots < m$ and $p < q < \cdots < t$. If $0 \in \{p, q, \cdots, t\}$ we must have p = 0 and $h \neq 0$; and then substituting for t_h', t_i', \cdots, t_m' and t_0

from (7) and (5), and for $\overrightarrow{a_h}$, $\overrightarrow{a_i}$, \cdots , $\overrightarrow{a_m}$ and $\overrightarrow{a_0}$ from (6) and (4) we get B $(h, i, \cdots, m)' = \pm B$ (o)' G (o, h, \cdots, m) , where

$$G(o, h, \dots, m) = \begin{vmatrix} g_0^0 & g_h^0 & \cdots & g_m^0 \\ g_0^h & g_h^h & \cdots & g_m^h \\ \vdots & \vdots & \ddots & \vdots \\ g_0^m & g_h^m & \cdots & g_m^m \end{vmatrix}$$

and if $o \notin \{p, q, \dots, m\}$, h = o and $p \neq o$; and then substituting for t_i', t_j', \dots, t_m' from (7) and for a_i', a_j', \dots, a_m' from (6) we get, $B(h, i, \dots, m)' = B(o)' G(i, j, \dots, m)$ where $G(i, j, \dots, m)$ is the determinant $G(o, h, \dots, m)$ with its first two rows and columns suppressed. By virtue of (8), on multiplying its columns by $I, g_0^h, g_0^i, \dots, g_0^m$ respectively and the rows by $-I, g_h^0, g_i^0, \dots, g_m^0$ respectively, $G(h, i, \dots, m)$ becomes a skew-symmetric determinant of odd order and therefore vanishes. Similarly $G(i, \dots, m)$, on its rows being multiplied by $g_i^0, g_j^0, \dots, g_m^0$ respectively and columns by $g_0^i, g_0^j, \dots, g_0^m$ becomes a skew-symmetric determinant of odd order and therefore vanishes. Thus in either case $B(h, i, \dots, m)' = o$. It follows that $S_h', S_i', \dots, S_m', S_p, S_q, \dots, S_t$ have a hypersphere cutting them all orthogonally.

4. Let $U = \{h, i, \dots, m\}$ and $V = \{p, q, \dots, t\}$ be complementary subsets of the index set $I = \{0, 1, \dots, n+1\}$. The set of hyperspheres $S_h, S_i, \dots, S_m, S_p, S_q, \dots, S_t$ will have then a common orthogonal hypersphere whenever U has an even number of elements: this hypersphere shall be denoted by $P_{hi \dots m}$ or $P_{pq \dots t}$. The hypersphere cutting orthogonally all the hyperspheres S_0, S_1, \dots, S_{n+1} has been denoted by P and it arises when U is the null subset of I. As U ranges over all subsets of I with an even number of elements, we get a set of hyperspheres which we shall refer to as P-hyperspheres. And the hyperspheres $S_0, S_1, \dots, S_{n+1}, S_0, S_1, \dots, S_{n+1}$ may the refered to as P-hyperspheres. Including P, there will be altogether P-hyperspheres. Each P-hypersphere will have P P-hyperspheres cutting it orthogonally; and each P-hypersphere will have P P-hyperspheres cutting it orthogonally.

The figure consisting of the 2^{n+1} P-hyperspheres and 2n+4 S-hyperspheres is generated by P and the n+2 S-hyperspheres S_0 , S_1 , \cdots , S_{n+1} . The same figure could be thought of equally as generated by any P-hypersphere together with the n+2 hyperspheres cutting it orthogonally. In this sense the figure has a homogeneity. Also when n is even, the figure will have a symmetry with $P'_{ij...m}$ counter to $P_{ij...m}$ and S'_i counter to S_i .

5. There are some special cases to be considered.

Let R be the radius of the hypersphere P which cuts orthogonally the hyperspheres S_0, \dots, S_{n+1} . If the hypersphere P_{ij} which we associate with

a set of n of these hyperspheres, is to have also radius R, then P_{ij} is unique, since there are two and only two hyperspheres of the same radius R which cut orthogonally the given set of n hyperspheres, of which P is one and P_{ij} is to be distinct from it. We now prove the following

Theorem. If the hyperspheres P_{ij} , $(i,j=0,1,\cdots,n+1,i\neq j)$, have all the same radius as P, then every P-hypersphere has the same radius as P. In particular, when P and P_{ij} all become points, then every P-hypersphere becomes a point.

Proof. To prove this, it will be enough to show that the hypersphere $P_{12\dots p}$, p even, has radius R, when P and each P_{ij} have all the same radius R; since, by a relabelling of the hyperspheres S_i , any P-hypersphere could be made to have such a representation.

As the radius r of the common orthogonal hypersphere of $S(\vec{a}_1, r_1), \cdots$ \cdots , $S(\vec{a}_{n+1}, r_{n+1})$ is given by $r^2 = -\frac{1}{4} L/L_0$, so the radius q of $P_{12...p}$, the common orthogonal hypersphere of $S'_1, S'_2, \cdots, S'_p, S_{p+1}, \cdots, S_{n+1}$, is given by $q^2 = -\frac{1}{4} L(1, 2, \cdots, p)''/L_0(1, 2, \cdots, p)''$, where $L(1, 2, \cdots, p)''$ and $L_0(1, 2, \cdots, p)''$ are L and L_0 respectively with the rows and columns of indices $1, 2, \cdots, p$ all primed, that is,

and $L_0(r, 2, \dots, p)''$ is the same without its first row and column. Let M be the determinant

bordered in the first row and column by the elements o, G_0 , G_1 , \cdots , G_{n+1} , o, where $G_{p+1} = G_{p+2} = \cdots = G_{n+1} = o$ and G_0 , G_1 , \cdots , G_p are the cofactors of the elements of the first row of the determinant

$$G = \begin{vmatrix} \mathbf{I} & \mathbf{O} & \mathbf{O} & \cdots & \mathbf{O} \\ g_0^1 & g_1^1 & g_2^1 & \cdots & g_p^1 \\ g_0^2 & g_1^2 & g_2^2 & \cdots & g_p^2 \\ \vdots & \vdots & \ddots & \vdots \\ g_0^p & g_1^p & g_2^p & \cdots & g_p^p \end{vmatrix}.$$

Then, it is easily seen that M, on multiplying it twice by G, reduces, by virtue of the relations (6) and (7), to a determinant equal to $-G_0^2 L(1,\dots,p)''$, that is, $GMG = -G_0^2 L(1,2,\dots,p)''$. Since $G = G_0$, we have

$$L(I, 2, \dots, p)'' = -M = \sum_{i=0}^{n+1} \sum_{j=0}^{n+1} D^{ij} G_i G_j$$

where

$$D^{ij}$$
, $(i, j = -1, 0, 1, \dots, n+1, n+2)$,

are the cofactors of the elements of D.

Similarly, $L_0(1, 2, \dots, p)'' = \sum_{i=0}^{n+1} \sum_{j=0}^{n+1} D_0^{ij} G_i G_j$, where D_0^{ij} , $(i, j = 0, 1, \dots, n+1, n+2)$, are the cofactors of the elements of the determinant D_0 obtained from D on suppressing its first row and first column.

By the formula (3), the square of the radius of P, P_{01} , \cdots , P_{0n+1} will be seen to be given by $-\frac{1}{4} D^{00}/D_0^{00}$, $-\frac{1}{4} D''/D_0''$, \cdots , $-\frac{1}{4} D^{n+1,n+1}/D_0^{n+1,n+1}$ respectively. So we have $R^2 = -\frac{1}{4} D^{ii}/D_0^{ii}$, $(i=0,1,\cdots,n+1)$. Writing $T_{ij} = D^{ij} + 4 R^2 D_0^{ij}$, we obtain

(9)
$$T_{ii} = 0$$
, $(i = 0, 1, \dots, n+1)$.

Also, since the radius of P_{hk} , $(h, k = 1, 2, \dots, n + 1)$, is R, we have $R^2 = -\frac{1}{4} L(h, k)''/L_0(h, k)''$. And it is seen, as above, that

$$L(h,k)'' = \sum_{i=0}^{n+1} \sum_{j=0}^{n+1} D^{ij} F_i F_j; \text{ and } L_0(h,k)'' = \sum_{i=0}^{n+1} \sum_{j=0}^{n+1} D_0^{ij} F_i F_j,$$

where F_0 , F_k , F_k are the cofactors of the first row of

$$\mathrm{F} = egin{array}{c|cccc} \mathrm{I} & \mathrm{O} & \mathrm{O} & & & & & & \\ g_0^h & g_h^h & g_k^h & & & & & \\ g_0^k & g_h^k & g_k^k & & & & & \\ \end{array}, \quad \mathrm{and} \quad \mathrm{F}_i = \mathrm{O} \quad \mathrm{for} \quad i \notin \{\mathrm{O}, h, k\}.$$

It means, $L(h, k)'' + 4R^2L_0(h, k)'' = \sum_{i=0}^{n+1} \sum_{j=0}^{n+1} T_{ij} F_i F_j = 0$. Since $T_{ii} = 0$ and $F_i = 0$ for $i \neq 0$, h, k, this reduces to

It follows that

$$\begin{split} &\sum_{k=1}^{p} \sum_{h=1}^{p} G_{h} T_{hk} G_{k} = \sum_{h=1}^{p} \sum_{k=1}^{p} G_{k} g_{k}^{h} (\mathbf{I}/g_{0}^{h}) T_{0h} G_{h} + \sum_{k=1}^{p} \sum_{h=1}^{p} G_{h} g_{h}^{k} (\mathbf{I}/g_{0}^{k}) T_{0k} G_{k} = \\ &= - \sum_{h=1}^{p} G_{0} T_{0h} G_{h} - \sum_{k=1}^{p} G_{0} T_{0k} G_{k}, \quad \text{since } \sum_{k=0}^{p} g_{k}^{h} G_{k} = 0, \quad (h = \mathbf{I}, \mathbf{2}, \dots, p). \end{split}$$

Hence

$$\sum_{k=0}^{p} \sum_{k=0}^{p} G_{k} T_{kk} G_{k} = o, \quad (G_{0} T_{00} G_{0} = o, \text{ by } (9)).$$

Thus,

$$L(I, 2, \dots, p)'' + 4R^{2}L_{0}(I, 2, \dots, p)'' =$$

$$= \sum_{i=0}^{n+1} \sum_{j=0}^{n+1} D^{ij} G_{i} G_{j} + 4R^{2} \sum_{i=0}^{n+1} \sum_{j=0}^{n+1} D^{ij} G_{i} G_{j} =$$

$$= \sum_{i=0}^{n+1} \sum_{j=0}^{n+1} G_{i} T_{ij} G_{j} = \sum_{i=0}^{p} \sum_{j=0}^{p} G_{i} T_{ij} G_{j} = 0.$$

It follows that

$$R^2 = -\frac{\tau}{4} \, L(\tau \,, 2 \,, \cdots, \not\! p)'' / L_0(\tau \,, 2 \,, \cdots, \not\! p)'' = \mathit{q}^2.$$

That is, the radius of $P_{12...p}$ is R.

6. Of special interest is the case when R = 0, that is, P becomes a point so that S_0 , S_1 , \cdots , S_{n+1} are hyperspheres through a fixed point, and P_{ij} are also points, viz., the points in which the n+2 hyperspheres, takes n by n, meet. For then all the P-hyperspheres become points, giving the relationship: Given (n+2) hyperspheres S_0 , S_1 , \cdots , S_{n+1} in E_n , all passing through a fixed point P, with each set of n+1 out of the n+2 hyperspheres if we associate a hypersphere, viz., the one containing the n+1 points in which the n+1 hyperspheres, taken n by n, meet apart from P; and if S_0 , S_1 , \cdots , S_{n+1} are the hyperspheres so obtained, S_i being the hypersphere associated with the n+1 hyperspheres of the set excluding S_i ; then every set of n+2 hyper-

spheres chosen an even number from S''s and the rest with different subscripts from S's have a point in common in which they all meet. This relationship is analogous to the Miquel-Clifford configuration of circles and points in a plane.

The 2n+4 hyperspheres (S-hyperspheres) and 2^{n+1} points (P-hyperspheres) of which the figure generated will be made up, distribute themselves so that through each point half the number (=n+2) of the hyperspheres pass and on each hypersphere half the number $(=2^n)$ of points lie. Thus it constitutes a configuration of hyperspheres and points in E_n . The n+2 hyperspheres passing through any one of the points of the configuration will generate the same figure.