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Geometria. — An incidence relationship of hyperspheres in E,.
Nota di AvcusTiNE O. KoNNULLY, presentata @ dal Socio B. SEGRE.

RIASSUNTO. — In un iperspazio euclideo sul campo complesso vengono studiati certi
sistemi di ipersfere da cul si derivano teoremi e configurazioni generalizzanti quelli di Cox
e di Miquel-Clifford relativi a cerchi di un piano.

1. THEOREM. Let S;, ¢=o0,1,"--,n+41), be a set of (n+2) hyper-
spherves in B, having a common orthogonal hyperspherve P. With every set of n
of these hyperspheres let a hypersphere distinct from P be associated which cuts
orthogonally each of the n hyperspheres; the hypersphere so associated with the
set consisting of all the members of the given set of hyperspheres save S; and S;
being denoted by P, Let Sy be the common orthogonal hypersphere of the (n 4+ 1)
hyperspheres Py, (j=o0,1,---,n+1; j==k). Then every set of n + 2
hyperspheres Sy, Si v, Sw, Sy, S,, 0, S, all with different subscripts,
chosen an even number from Si's and the vest from S;'s, has a hypersphere
cutting them all orthogonally. In particular, when n is even, the hyper-
spheres Sy have a common orthogonal hypersphere.

2. Before giving the proof, we first note the condition that, given 7 + 2

hyperspheres S (c—z: ,7;), with ;z-: for centre and #; for radius, (¢=o0,1,---

-+, n + 1), they have a common hypersphere cutting them all orthogonally.
If Lo,Li, --,L, o are the cofactors of the elements of the first row of
the determinant

e} 41 £o cee lut1 2
- = - = - =
1 ay a3 al -az a1 @y 1
- = - = - =
2 as -a1 a2 -az - a2 Q1 1
(1 L=
— — — — — —
lufl @ni1°G1  @uy1°G2 °°° Gui1°Gnp1 1
2 1 I o I o)
2 e 2 '
=22 ... = — it i i
where t,=a}—7%,--+ ¢ =a  —7 ., then it is easily seen that S (a,7),
where
- n+1 .
I —1 Q.
(2) 4=‘—‘—;L0 (ZJLiai )
=1
and ‘
I o1 \1/2
(3) r=(—TL0 L) ,

(*) Nella seduta del 20 aprile 1974.
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represents the common orthogonal hypersphere of the (z + 1) hyperspheres
S(Z,r,), i=1,2,--,7 -+ 1, since we have (Z,-—;Sz :r?———}L/Lo =
=%+ for each i. N ‘

The hypersphere S (a,7) which cuts orthogonally each of the hyper-
spheres S (Z, 70, G=1,2,---, %4 1), will cut S (—;0 ,70) also orthogonally

if and only if 7§ + 7" = (@ — a)". The vector @, can be expressed as

s n4-1 s n+1
= ¥ 0 h Y R,
4 a,= 2, &a,, where >} g0 = 1;
b=1 k=1
and since
— — — 7l - ntl - -
) — 2 N0 Ll ¥
(@y—a) = a} zzgkaka—l—( - Lo L,a,a
k=1 k=1
s n+1
I ;-1
— 2 -
= g E &4 L,"L,
it means that
. ”+_‘:‘l —
— 0 — 22\,
<5> t() - fom | gk t;} ) (t,' - dl‘ 7’1.),

which expresses the condition—necessary and sufficient condition—that the

— - —
hyperspheres S (a,,7,),S (a1,77) ,*+, S(@uy1, 741) have a common orthogo-
nal hypersphere.

This condition may be expressed in a more convenient form. If
—_ = —>

“y, %y, -, u, are a set of linearly independent vectors, then solving for
. nt1 - - -
£, 8%, *, &Y, from the equations Z &a u,=ayu, k=1,2,---,7 and
; ; “~ ‘
n4+1
k=1 4 ’

the condition reduces to the vanishing of the determinant

2o R A
- = - - - >
ao ul a1°u1 a,,.,.l %1 ) .
(5/) ‘B: =det.(6o,é1,---,é,,+1),
: - - - - — —
ay U, a-u, ayy1°U,
1 | S I
- - - - .
were b = (4, a3 1y -+, @3+u, , 1) written as a column.

34, — RENDICONTI 1974, Vol. LVI, fasc. 4.
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3. PROOF OF THE THEOREM

.
Let a; be the centre and 7;, the radius of S, (#=o0,1,-++,2-+1). Each

—
vector a;, for £#=1,2,---, % 4+ 1, can be expressed as
— - ”.'*1} — ntl
’ !
(6) akzgéao—l—.lgfaz., where g%=o0, and Z}gf=1,
i= =
Since the hyperspheres Sy, Si1,---, Sz_1,Ss, Se41,°*+, Spp1 have a common

orthogonal hypersphere, viz., Py, we have by (5),

n41

N
(7) ¢;=ggz(;+2{gf.ti, ¢ =a?—r?), for k=1,2,--,n+1L
~“

FUI’thCI‘, S; ) Sjl I} SO 3 Sl yt Tty Si—l 3 Si+1 P Sj—l ) Sj-l-l PR Sn+1, (Z:i: 0o l]:*: O)»
have a common orthogonal hypersphere, viz., P;; the condition for this is,
by (5"), the vanishing of the decterminant B (¢, 7)' = det. (bo, b1, *+, b;_1,
1 ’ ! ’ »l - —+I e _+l e
biybiyi, ry by, buyr), where b = (84, @41y, apug, -, apu,, 1). Sub-

stituting for 4y, #; ,# from (5) and (7) and for _;0 ,Z,’- ,Z} from (4) and (6),
it is easily seen that
B@G,7)=+B(©)G(,?, ]) where B (0)' = det (g, 61, -, b,41) and

& & &
G@,2,)=\g & &,  (&=0).
& & &

Thus G (0,7, j) B(0)’=o0. But B (0)'==0, for B (0)'= o would mean that
the hyperspheres Sg,S1,S2,-++,S,41 have a common orthogonal hyper-
sphere, which hypersphere would be P, being the common orthogonal hyper-
sphere of the (% 4 1) hyperspheres S1, Sz ,---,S,1 as also be P, being the
common orthogonal hypersphere of the (% 4 1) hyperspheres Sg, Sz, -+, S,41,
so that P and Pip would be identical contrary to the initial choice of Plo as
distinct from P. Hence G (o, 7, f) = o, that is, &lgigt +&%gigj{=o0. Thus

® 8:8;8] = —£;8187, G j=1,2,,n+0).

Now consider any set of hyperspheres S;,S;,S;,- -.,S;,SP,Sq, -5,
where {%,7, 7, --+,m} is a subset of the index set I ={o,1,--+,7 + 1}
with an even number of elements and {p,¢,---, ¢} is its complement in L.
The condition for these hyperspheres to have a common orthogonal hyper-
sphere is the vanishing of the determinant B (%#,7,---,) which is B
with ‘its columns of indices h,z’,---,m all primed. We shall assume
that 2 <i<---<m and p<g¢<---<t. If oe{p,q, -, ¢} we must

have p=o0 and %4=Fo0; and then substltutlng for #,¢ ,--+, 4, and ¢,
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—_ — —
from (7) and (5), and for c—;/', @iyt ay, and @ from (6) and (4) we get
B,i,---,m))=+B(©)G(,4, --,m), where
8 &8,
& &8,

G(O’ﬁ,...’m>=

s &

and if o€{p,qg,-+,m}, A=o0 and p==o0; and then substituting for
L;,t; oo+, b, from (7) and for a;,a;, - -, a,, from (6) we get, B(4,7 ,- - -, m) =
=B(©)'G@E,s, -,m) where G(Z,j, - -,m) is the determinant G(,%, -,m)
with its first two rows and columns suppressed. By virtue of (8),
on multiplying its columms by 1,g%,¢7, -, gy respectively and the rows
by —1,¢9,8%,---,8% respectively, G (% ,¢,- - -,m) becomes a skew-symmetric
determinant of odd order and therefore vanishes. Similarly G(z,---, m),
on its rows being multiplied by g9, &), +,&% respectively and columns
by 5,85, -, &y becomes a skew-symmetric determinant of odd order
and therefore vanishes. Thus in either case B(%,7,---, m)' = o. It follows
that S;,S;,--+,5,,5;,S,,--+,S, have a hypersphere cutting them all
orthogonally.

4. Let U={%,¢,---,m} and V={p,q, -, ¢} be complementary
subsets of the index set I = {o,1,---,%2 + 1}. The set of hyperspheres
Si,Sis o+, Sm, S,,S,,-++,S, will have then a common orthogonal hyper-
sphere whenever U has an even number of elements: this hypersphere shall
be denoted by Pj,...,, or Pj,.... The hypersphere cutting orthogonally all
the hyperspheres So, S1,- -+, S,;1 has been denoted by P and it arises when
U is the null subset of I. As U ranges over all subsets of I with an even number
of elements, we get a set of hyperspheres which we shall refer to as P-hyper-
spheres. And the hyperspheres So,S1, -+, S,41,5),Si,- -, S,+1 may the
refered to as S-hyperspheres. Including P, there will be altogether 27+1 P-hyper-
spheres. Each P-hypersphere will have # + 2 S-hyperspheres cutting it
orthogonally; and each S-hypersphere will have 2” P-hyperspheres cutting
it orthogonally.

The figure consisting of the 27+1 P-hyperspheres and 27 -+ 4 S-hyperspheres
is generated by P and the » -+ 2 S-hyperspheres Sy, Sy, - +,S,41. The same
figure could be thought of equally as generated by any P-hypersphere toge-
ther with the » + 2 hyperspheres cutting it orthogonally. In this sense the
figure has a homogeneity. Also when # is even, the figure will have a sym-
metry with P;..,, counter to P.., and S; counter to S,.

5. There are some special cases to be considered.
Let R be the radius of the hypersphere P which cuts orthogonally the
hyperspheres So,- -, S,;1. If the hypersphere P,; which we associate with
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a set of 7 of these hyperspheres, is to have also radius R, then P,; is unique,
since there are two and only two hyperspheres of the same radius R which
cut orthogonally the given set of z hyperspheres, of which P is one and P
is to be distinct from it. We now prove the following

THEOREM. [f the hyperspheres Py, ({,j=10,1, -, n+1,i==7), have
all the same radius as P, then every P-hypersphere has the same radius as P.

In particular, when P and P;all become points, then every P-hypersphere
becomes a point.

Proof. To prove this, it will be enough to show that the hypersphere
Pia.. 4, p even, has radius R, when P and each P, have all the same radius

R; since, by a relabelling of the hyperspheres S;, any P-hypersphere could
be made to have such a representation.

As the radius # of the common orthogonal hypersphere of S(_a)l ROEE

>
. . I .
o+, S(@u41,7411) is given by 72 = — " L/Ly, so the radius ¢ of Pyy.. 4, the
common ‘orthogonal hypersphere of Si,S;,---,S;,Ss41,- -, S,11, is given
I 1" r 14
by ¢ = —-ZLO v 2, ) Lo(1, 2,0+, )", where L(1,2,---, 5" and
Lo(1,2,---, ) are L and Ly respectively with the rows and columns of
indices 1,2 ,---, p all primed, that is,
(o] ti l} tp+1 fn+1 2
— — — — — — — —
51 aq a ay @y AL @y a Qpyq 1
, — — - - = — - —
v | Gy @i ap cay @y @yt @y cGuyy 1
L<112:"':P) = — — — - = — — —
Lpt1 @pr17 @1 Qpp1°@p @py1tppy c o Gpy1t gy 1
"‘ — — — - = - — —
lutl Qup1°G1° Qui1' @y Cpil @pyl " * Quy1 Apyy |
2 I R I <o I o
and Lo(1,2, -+, )" is the same without its first row and column.

Let M be the determinant

o Z‘(,) 4 %5 SRR S| 2
%y @ @y ay @ @ -ay @y @y 1

—_ — — — — - — —
tl ay dO al a ay az al a”+1 I

D=
e — - - - — —
’

Intl Qni1°@y Qui1°@1 Gui1° Qg Qpi1*Auy1 1
2 I I I oo I o
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bordered in the first row and column by the elements 0, Go, G1,- -+, G,.1, 0,
where Gy11 =Gypg=---=G,;.;y =0 and Go,Gy,- -, G, are the cofactors
of the elements of the first row of the determinant

I O O --- 0
g & & &
G=\g g 2 £
& & & &
Then, it is easily seen that M, on multiplying it twice by G, reduces, by virtue
of the relations (6) and (7), to a determinant equal to — GgL(1,---, p)",
that is, GMG = — Go L(1,2,---,p)". Since G = Gy, we have

n+1 n+1

L(1,2,+,p) =—M = LZD”GG

where
DY,(,j=—1,0,1,,n+1,n+2),
are the cofactors of the elements of D.
n+_} n-}-‘l B .
Similarly, Lo(1,2,- -+, 2) = 3, 2, D& G;G;, where DY , (4, =0, 1
i=0 =0

s+, 7+ 1,n 4 2), are the cofactors of the elements of the determinant Dy
obtained from D on suppressing its first row and first column.

By the formula (3), the square of the radius of P, Po,---, Py, will
be seen to be given by — _;— D°°/D°° — L D'/Dy -+, — % Db
respectively. So we have R?= D”/DO , =o,1, -, n+1). Writing
T,;= D"+ 4R®D{, we obtain ‘

(9) Tz'z':O) (Z-——_O,I,"‘,F’Z—l—l)

Also, since the radius of Py, (A, k=1,2, -+, 2z + 1), is R, we have
R%= —%L‘(h,é)”/Lo(/z ,£)'". And it is seen, as above, that

1 n+1 241 ﬂ+4 71-):}
Lk, k)" =2, 2 D”F,;F,; and Lo(k, &) = 2, D{ F, F,,

1=0 j= =0 7

||
(=)

where F, F,, F, are the cofactors of the first row of
I 0 o
F= g g g|, and F,=o0 for ie{o,h,r}.
£ & & '
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n+1 n4+1

It means, L(%2,4)" +4R?Ly(h, A" = 3, 2, T,;F;F,=o0. Since T,,=o

zO/

and F;= o for 79=0, /%, 4, this reduces to
(IO) T}zb F/z F'é —I_ TO/t FO F;; + TOk FO Fk = 0, or

Tkk:TOhgz/gg_l_TOkgz/ggr (}l,é:O, I ,2,"',7Z+I>.

It follows that

J’b-

2 2 A .
2 Gy T G = 20 24 G 84(1/60) Tos Gs + 24 23 G £4(1/86) T Gy =

k=1 4=1

Il

? 2 s
— 2 Gy TouGy— 2 G T Gy, since X giGy—=o0, (h=1,2, -, p).
h=1 £=0

Hence

A

&
s k%(,) G, T;G,=o0, (G TooGp =0, by (9)).

3

Thus,
L<I ’ 2:"':?),,+4R2L0<I ’2"”’p>”:

n+1 ntl 2n—l—l n+_}
ut . 0 ..
— DY G,G,+4R* 3 >, DG, G, =
i=07=0 i=0 7 =0
n+1 n41

$%6,1,6—0

7=0

I
p
II

g

i
f==1
N,
i
(=1

It follows that

R = —LL,2, ) o1, 2, ) =
That is, the radius of Pis..., is R.

6. Of special interest is the case when R = o, that is, P becomes a point
so that So, 51, -+, S,;1 are hyperspheres through a fixed point, and P; are
also points, viz., the points in which the # - 2 hyperspheres, takes 7z by 7,
meet. For then all the P-hyperspheres become points, giving the relationship:

- Given (7 + 2) hyperspheres So,S1,- -+, S,41 in E,, all passing through a fixed
point P, with each set of # 4~ 1 out of the # + 2 hyperspheres if we associate
a hypersphere, viz., the one containing the # -+ 1 points in which the » 4 1
hyperspheres, taken 7 by 7, meet apart from P; and if Sg,S;,---, S, are
the hyperspheres so obtained, S; being the hypersphere associated with the
7 -+ 1 hyperspheres of the set excluding S;; then every set of » 4 2 hyper-
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spheres chosen an even number from S’ ’s and the rest with different subscripts
from S’s have a point in common in which they all meet. This relationship
is analogous to the Miquel-Clifford configuration of circles and points in a plane.

The 27 + 4 hyperspheres (S-hyperspheres) and 27+1 points (P-hyper-
spheres) of which the figure generated will be made up, distribute themselves
so that through each point half the number (= 7z + 2) of the hyperspheres
pass and on each hypersphere half the number (= 2%) of points lie. Thus it
constitutes a configuration of hyperspheres and points in E,. The -} 2
hyperspheres passing through any one of the points of the configuration will
generate the same figure.



