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Matematica. — A Mean Value Theorem in Generalized Bi-Axially
Symmetric Potential Theory. Nota di Dennts W. QuINN e RIcHARD
J. WEeINacuT. presentata @ dal Corrisp. G. Ficuera.

RIASSUNTO. — E dato un teorema di media per soluzioni della equazione della teoria
generalizzata del potenziale simmetrico biassiale. Vengono anche date le analoghe diseguaglianze
del valor medio in relazione alle corrispondenti inequazioni differenziali.

I. INTRODUCTION

In this Note a new mean value theorem is given for solutions of the
equation of Generalized Bi-axially Symmetric Potential Theory (GBSPT)

(I‘I> L [U] = Z:l Ux,‘xi _I_ x]j; Ux,,_l + ‘xg_‘ an = 0.

n—1

In contrast to previous results in GBSPT (Kapilevich [6, 7]; see also the
remark in Section 4 of Hall, Quinn and Weinacht [4]), the point at which
the mean value is attained lies on only one of the two singular hyperplanes
%,.1=0 or x,=0, and not on their intersection; moreover, this point
is not located at the center of enclosing spheres. In the latter respect our
result resembles Fichera’s [3] mean value theorem for functions harmonic
in a torus which also motivated Weinacht [11]. The present mean value
theorem and its corollary for the corresponding differential inequalities are
useful [10] in establishing properties of solution of (1.1) and related equations.

For the real constant p = o, equation (1.1) reduces to Weinstein’s [12, 13]
Generalized Axially Symmetric Potential Theory (GASPT); ¢ is also a
real constant and # is an integer, #> 2. For GASPT mean value theorems
have been given by Weinstein [12], Huber [5], and Weinacht [11] (see also
Kapilevich [7, 8]). More recently Leschen [9] obtained interesting related
results including converse theorems and a new proof of Weinacht’s mean value
theorem. We have adapted some of the ideas of his proof to obtain the present
result. In a paper just published Diaz and Leschen [1] extend Weinstein’s
mean value theorem for GASPT to the range — 1 < ¢ < 0.

2. PRELIMINARIES

The usual notations for vectors in Euclidean #-space will be used. Let
Q denote the open quarter space

Q={x€eR,: x,.1>0, x,>0}.

For 6 > o, let x% be the vector in R, with components 20 = (0,---,0, ).

(*) Nella seduta del 20 aprile 1974.
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For fixed 4 and £ > 1, denote by I" a member of the one-parameter family

of hemispheres in Q with center at (0,---, 0, £6) and radius » = b (,éz —_ 1)1/2
n-1

(2.1) I'= 'gxeR,, P A (x,— A = (P — 1), x> 0% -
iZ1

By H denote the corresponding open hemi ball.

3. THE MEAN VALUE THEOREM

THEOREM. Let G1 be an open connected set in R, with x0 in its interior,
let 1 be the interior (in the topology of R,_1) of G100 {x:x, 1=o0,x,> 0}
and let G =G10 Q. Then for p >0 and g > o, any solution ¢ of (1.1) in G
belonging to C*(GYNC' (G U1) satisfies the mean value relation

T (é L +ﬁ]) 7 2 g—n-1)
(3.1) o@)= - x (6 x)T T o (x) dS
—viz p (! Wi (&)
=t 21_‘(",; [+ 1])

Ty

where L' is any hemisphere of the family (2.1) corvesponding to the parameter
k,>1 and radius r, such that the corvesponding closed hemi-ball H, s
contained in G U1, The function W, is a hypergeometric function

Wik =F(L0t2—0) , TOt+p+e—2) 5 ~(r+p) ;5 +a—4))

Remark. The hypothesis that ¢ belongs to C' (G UI) can be replaced
by that of assuming ¢ belongs to C*(G) N C*(G U I) and that ¢ has bounded
second partial derivatives in G U 1. This follows by adapting the proof of
Lemma 1.2.2. of [9]. '

Proof. Let w; () =F(a,b;c;z) and w, be linearly independent
solutions of the hypergeometric equation which are real valued for real
negative 2 (for non-integral ¢ = %(% + #) > 1 the solution w, can be chosen
as (— z)l“‘F(a— ¢+ 1,6—c+1; 2—c;2) with corresponding expres-
sions [2] for integral %(n + #) where the logarithmic case may arise).

Following [9] put

| b= [Zj 22+ 52] (2 bx,)
=1
and set
(3.2) 9 (@) = 27 TTIRW (k)

where

(3:3) W@ = (5 [1— &) (£ [1 — 1) — (£ [1 — ]Jeon (£ [1 — 4]
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and
a=_(+p—q , b=tptg—2 , c=_(n+p).

Then ¢* is a (real valued) solution of (1.1) in H, which vanishes on I', and
is singular at x9.
For

o<e<—(A—1) and 0<3¥<_b[(1+ e —1]"
consider the region Q bounded by I',, the hyperplane x, ;=38 and the
hemisphere I'; of the family (2.1) corresponding to the parameter 2= 1 + «.

Then Green’s second identity (using the exterior unit normal y on the
boundary 2€) for L defined by (1.1)

0
wr125 (@ Lp] — oL [¢ ] dr = [ ) 1#l(¢" 55 — o S2-)dS
dy QY

%] 3Q

yields for ¢* defined in (3.2) and the function ¢ given in the theorem

? x99 3"
(3.4) { x,,_lxn(cp 2 )ds f wiwle - ds
FE r*
since the boundary integrals over x,_;= 3 tend to zero as § tends to zero
from above and since ¢*=o0 on T,.
The mean value relation (3.1) follows from (3.4) by letting ¢ tend to zero
and simplifying in the following way. On any curve of the family (2.1)

e e
35 G =|E—0EWE S L n—p—g) v, WE)|w "
with W given by (3.3). Hence, introducing hyperspherical coordinates with
pole at (0,---,0, (1 + ¢)4) and letting ¢ tend to zero from above, the left

side of (3.4) tends to
—nzp (!
(s 4 1)

T(5 0+ 1)

(3:6) 2T n—p) WL () ? (9
where the cases of integral and non-integral %(n + ) must be considered.

From (3.5) the right side of (3.4) becomes

(3.7) WA (B— DY | ik PR 5 () dS.
F*

Equat;ion (3.7) may be simplified by observing that W'(4,) is the Wronskian
of w and w, at 4, multiplied by the factor (—~ %) so that

(38) W/ (é*> — 2n+p—-2 (2 —n _p) (,é?e— I)-(n+ﬁ)/2 .
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Combining (3.6) and (3.7) yields by use of (3.8) the mean value
relation (3.1).

Remark 1. Putting 2z = 2 and letting p tend to zero through positive
values in (3.1) yields Weinacht’s mean value theorem [11] for GASPT in the
form given by Leschen [9] for ¢ even in x,_;.

Remark 2. 1f the point x0 is on the plane x, = o0,ie 20= (0 ,--
*++,0,6,0), then an analogous mean value theorem is obtained from equa-
tion (3.1) by interchange of p and ¢, x,; and x,, etc.

COROLLARY (Mean value inequality). Zf @ in the theorem satisfies
Lle] <o (respectively L [@] = 0) rather than L [¢]| = o, then (3.1) is valid
provided equality is replaced by = (respectively <).

Proof. Following the proof of the theorem it is easy to see that (3.4) holds
with equality replaced by the appropriate inequality, provided ¢" is non-
negative in H, . Then, upon simplification of (3.4) as before, the assertion
follows.

To show that ¢ is non-negative in H_ is equivalent to showing that W
in (3.3) is positive on (1, £,). First notice that W, (#) is positive for &> 1
as follows from (3.1) for ¢ =1 or by use of the hypergeometric integral for

. I . o, .
real negative z = -~ (1—4,). Now, recalling W(%,)= o, it is easy to see that

W does not have a zero on (1, 4,); for, if so, then Sturm’s separation theorem
applied to W and W1 would require W1 to have a zero on (1, 4,), contradic-
ting the positivity of Wi. Hence, W is of one sign on (1, £,) and this sign is
positive since W (£,) = o and W’ (£,) <o from (3.8). This completes the
proof of the corollary.
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