Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali

Rendiconti

Joseph Adolphe Thas

Translation 4-gonal configurations

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 56 (1974), n.3, p. 303-314.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1974_8_56_3_303_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometrie finite. - Translation 4-gonal configurations. Nota di Joseph Adolphe Thas, presentata ${ }^{(*)}$ dal Socio B. Segre.

Riassunto. - Introdotte certe configurazioni 4-gonali di traslazione, in relazione alla transitività del gruppo G delle loro traslazioni, si mostra la loro equivalenza coll'esistenza in G di taluni T-insiemi formati da sottogruppi, si definisce un campo F detto il loro nucleo e si stabilisce che G può venire considerato come il gruppo additivo di uno spazio vettoriale sopra un sottocampo F^{\prime} di F . In ogni caso $\left[\mathrm{G}: \mathrm{F}^{\prime}\right]=3 n$, con n intero positivo, e la configurazione ammette una certa struttura canonica. Se $[G: F]=3$, la configurazione vien detta desarguesiana ed essa può venire caratterizzata dalla proprietà di risultare isomorfa ad una configurazione 4-gonale di Tits.

i. Introduction and review

A finite 4-gonal configuration of order $s(\geq \mathrm{I})[2]$ is an incidence structure $\mathrm{S}=(\mathrm{P}, \mathrm{B}, \mathrm{I})$, with an incidence relation satisfying the following axioms:
(i) each point is incident with $s+\mathrm{I}$ lines and two distinct points are incident with at most one line;
(ii) each line is incident with $s+1$ points and two distinct lines are incident with at most one point;
(iii) if x is a point and L is a line not incident with x, then there are a unique point x^{\prime} and a unique line L^{\prime} such that $x \mathrm{IL}^{\prime} \mathrm{I} x^{\prime} \mathrm{IL}$.

If $S=(\mathrm{P}, \mathrm{B}, \mathrm{I})$ is a 4 -gonal configuration of order $s(\geq \mathrm{I})$, then $|\mathrm{P}|=|\mathrm{B}|=$ $=s^{3}+s^{2}+s+\mathrm{I}$ [2].

Let $\mathrm{S}=(\mathrm{P}, \mathrm{B}, \mathrm{I})$ be a 4-gonal configuration of order $s(\geq \mathrm{I})$ and let x and y be distinct points of S . The trace of x and y is defined to be the set $\operatorname{tr}(x, y)=\{$ all $z \in \mathrm{P} \| z$ is collinear with both x and $y\}$. The pair (x, y) of distinct points is said to be regular provided each point collinear with at least two points of $\operatorname{tr}(x, y)$ is actually collinear with all points of $\operatorname{tr}(x, y)$ (if the points x and $y(x \neq y)$ are collinear then evidently the pair (x, y) is regular). If (x, y) is a regular pair, the span of x and y is defined unambiguously as the set $s p(x, y)=$ $=\operatorname{tr}(z, w)$ for any distinct points z, w in $\operatorname{tr}(x, y)$ (for collinear points x and $y(x \neq y)$, we have $\operatorname{sp}(x, y)=\operatorname{tr}(x, y))$. When for a point x each pair $(x, y), x \neq y$, is regular, x is said to be regular. These definitions are easily dualized for lines. A point (resp. line) is called coregular provided each line (resp. point) incident with it is regular. And a point or line which is both regular and coregular is said to be biregular (then necessarily s is even [5]).

Let x be a regular point of a 4 -gonal configuration S of order $s(>\mathrm{I})$. Let Π_{x} be the incidence structure whose points are the points of S collinear with x and whose lines are the spans of the (necessarily regular) pairs of distinct points of Π_{x}. Then Π_{x} with the natural incidence relation is a projective plane of order s [6]. This theorem is easily dualized for a regular line L of S .

2. TRANSLATION 4-GONAL CONFIGURATIONS

2.I. Translations. Let $\mathrm{S}^{\left(x_{\infty}\right)}=(\mathrm{P}, \mathrm{B}, \mathrm{I})$ be a 4 -gonal configuration of order $s(>\mathrm{I})$ which possesses a coregular point x_{∞}. The $s+\mathrm{I}$ regular lines $\mathrm{L}_{1}, \cdots, \mathrm{~L}_{s+1}$ which are incident with x_{∞} are called the ideal lines of $\mathrm{S}^{\left(x_{\infty}\right)}$, and

[^0]the $s^{2}+s+$ I points which are collinear with x_{∞} are called the ideal points of $S^{\left(x_{\infty}\right)}$. We also introduce the following notations:
$$
L_{\infty}=\left\{\mathrm{L}_{1}, \mathrm{~L}_{2}, \cdots, \mathrm{~L}_{s+1}\right\} \quad \text { and } \quad \mathrm{P}_{\infty}=\left\{\text { all ideal points of } \mathrm{S}^{\left(x_{\infty}\right)}\right\}
$$

A collineation θ of $S^{\left(x_{\infty}\right)}$ is called a translation if θ is the identity or if θ is a collineation satisfying $L_{i}^{\theta}=L_{i} \forall L_{i} \in L_{\infty}$ (this implies that $x_{\infty}^{\theta}=x_{\infty}$) and $x^{\theta} \neq x \quad \forall x \in \mathrm{P} \backslash \mathrm{P}_{\infty}$.
2.2. Theorem. A translation θ of $\mathrm{S}^{\left(x_{\infty}\right)}$ induces a translation θ_{i} of the affine plane $\Pi_{\mathrm{L}_{i}}^{L \infty}\left(L_{\infty}\right.$ is the ideal line of this affine plane), $i \in\{\mathrm{I}, 2, \cdots, s+\mathrm{I}\}$.

Proof. The points of the projective plane $\Pi_{L_{i}}$ are the $s^{2}+s+1$ lines of $S^{\left(x_{\infty}\right)}$ which are concurrent with L_{i}. Lines of $\Pi_{L_{i}}$ are (a) the line $L_{\infty}(b)$ the sets L_{j}^{i} with elements the $s+\mathrm{I}$ lines of $\mathrm{S}^{\left(x_{\infty}\right)}$ incident with the point $x_{i, j} \neq x_{\infty}$, where $x_{i, j} \operatorname{IL}(j=\mathrm{I}, \cdots, s)(c)$ the sets with elements the $s+\mathrm{I}$ lines of $S^{\left(x_{\infty}\right)}$ which are concurrent with L_{i} and a line $L \in B$ not concurrent with L_{i} (i.e. the sets $\operatorname{tr}\left(\mathrm{L}_{i}, \mathrm{~L}\right), \mathrm{L} \in \mathrm{B}$ and $\mathrm{L}_{i}, \mathrm{~L}$ not concurrent).

The translation θ induces a permutation θ_{i} of the pointset of the projective plane $\Pi_{\mathrm{L}_{i}}$. Moreover $\mathrm{L}_{j}^{\theta_{i}}=\mathrm{L}_{j}, j=\mathrm{I}, \cdots, s+\mathrm{I}$. Now we show that θ_{i} is a collineation of the projective plane $\Pi_{L_{i}}$.

First of all we remark that $L_{\infty}^{\theta_{i}}=L_{\infty}$. Next we consider a line L_{j}^{i} of type (b). Then $\left(L_{j}^{i j}\right)^{\theta_{i}}=L_{j^{\prime}}^{i}$, where $x_{i, j}^{\theta}=x_{i, j^{\prime}}$. Finally we consider a line L of type (c) of $\Pi_{L_{i}}$, where $L=\operatorname{tr}\left(\mathrm{L}_{i}, \mathrm{~L}\right), \mathrm{L} \in \mathrm{B}$ and $\mathrm{L}_{i}, \mathrm{~L}$ not concurrent. Then the elements $\mathrm{M}_{1}, \mathrm{M}_{2}, \cdots, \mathrm{M}_{s}, \mathrm{~L}_{j}(i \neq j)$ of L are mapped by θ onto the lines $\mathrm{M}_{1}^{\theta}, \mathrm{M}_{2}^{\theta}, \cdots, \mathrm{M}_{s}^{\theta}, \mathrm{L}_{j}^{\theta}=\mathrm{L}_{j}$ which are concurrent with $\mathrm{L}_{i}^{\theta}=\mathrm{L}_{i}$ and L^{θ} (remark that L^{θ} is not concurrent with L_{i}). Consequently $L^{\theta_{i}}=\left\{\mathrm{M}_{1}^{\theta}, \mathrm{M}_{2}^{\theta}, \cdots, \mathrm{M}_{s}^{\theta}\right.$, $\left.\mathrm{L}_{j}\right\}=\operatorname{tr}\left(\mathrm{L}_{i}, \mathrm{~L}^{\theta}\right)$ is a line of type (c) of $\Pi_{\mathrm{L}_{i}}$. We conclude that θ_{i} is a collineation of the projective plane $\Pi_{\mathrm{L}_{i}}$. As $\mathrm{L}_{j}^{\hat{\theta}_{i}}=\mathrm{L}_{j}, \forall \mathrm{~L}_{j} \in L_{\infty}, \theta_{i}$ can be considered as a dilatation of the affine plane $\Pi_{L_{i}}^{L \infty}$. Next we prove that θ_{i} is a translation of the affine plane $\Pi_{\mathrm{L}_{i}}^{L \infty}$.

For that purpose we suppose that θ is not the identity and that $L^{\theta}=L$ or $\mathrm{L}^{\theta_{i}}=\mathrm{L}$, where L is a point of $\Pi_{\mathrm{L}_{i}}$ and $\mathrm{L} \notin L_{\infty}$. We remark that $x_{i, j}^{\theta}=x_{i, j}$, with $\mathrm{LI} x_{i, j} \mathrm{IL}_{i}$. Next let y be a point of $\mathrm{P} \backslash \mathrm{P}_{\infty}$ which is not collinear with $x_{i, j}$. Call M and z the elements defined by $y \mathrm{IMI} z \mathrm{IL}$ and M^{\prime} and z^{\prime} the elements defined by $y^{\theta} \mathrm{IM}^{\prime} \mathrm{I} z^{\prime} \mathrm{IL}$ (remark that $z \neq x_{i, j}$). Then evidently $\mathrm{M}^{\prime}=\mathrm{M}^{\theta}$ and $z^{\prime}=z^{\theta}$ (remark that $z^{\theta} \neq z$ and $\left.\mathrm{M}^{\theta} \neq \mathrm{M}\right)$. If M is concurrent with $\mathrm{L}_{k}(i \neq k)$, then also $\mathrm{M}^{\prime}=\mathrm{M}^{\theta}$ is concurrent with L_{k} (we also remark that the points m and m^{\prime}, defined by $\mathrm{MI} m \mathrm{IL}_{k}$ and $\mathrm{M}^{\prime} \mathrm{I}^{\prime} \mathrm{IL}_{k}\left(m^{\prime}=m^{\theta}\right)$, are distinct). Next let N and u be defined by $y \mathrm{INI} u \mathrm{IL}_{i}$ and N^{\prime} and u^{\prime} be defined by $y^{\theta} \mathrm{IN}^{\prime} \mathrm{I} u^{\prime} \mathrm{IL}_{i}$ (remark that $u \notin\left\{x_{\infty}, x_{i, j}\right\}$). Then evidently $\mathrm{N}^{\prime}=\mathrm{N}^{\theta}$ and $u^{\prime}=u^{\theta}$. As L_{k} is regular there exists a point v which is incident with N and M^{\prime}, and there also exists a point v^{\prime} which is incident with N^{\prime} and M . Let us suppose a moment that $u \neq u^{\theta}$ (then $v \neq y^{\theta}$ and $y \neq v^{\prime}$) and consider the dilatation θ_{i} of the affine plane $\Pi_{\mathrm{L}_{l}}^{L_{\infty}}, l \neq i$. Let $x_{l, j} \mathrm{IL}_{l}$ with $x_{l, j} \neq x_{\infty}$, call a and A the elements defined by $x_{l, j}$ IAI $a \mathrm{IL}$, and call $x_{l, j^{\prime}}$ and A^{\prime} the elements defined
by $a^{\theta} \mathrm{IA}^{\prime} \mathrm{I} x_{l, j^{\prime}}, \mathrm{IL}_{l}$. Then evidently $x_{l, j^{\prime}}=x_{l, j}^{\theta}$. Now from $a \neq a^{\theta}$ there follows that $x_{l, j}^{\theta} \neq x_{l, j}$. Consequently the only fixed points of the dilatation θ_{l} are the ideal points $\mathrm{L}_{1}, \mathrm{~L}_{2}, \cdots, \mathrm{~L}_{s+1}$ of the affine plane $\Pi_{\mathrm{L}_{l}}^{L_{\infty}}$. There results that the dilatation θ_{l} is a translation of the affine plane $\Pi_{\mathrm{L}_{l}}^{L_{\infty}}$. As $\mathrm{A}, \mathrm{A}^{\prime}=\mathrm{A}^{\theta}=$ $=\mathrm{A}^{\theta_{l}}, \mathrm{~L}_{i}$ are collinear points of the projective plane Π_{l}, the ideal point L_{i} is the center of the translation θ_{l} of the affine plane $\Pi_{\mathrm{L}_{l}}^{L \infty}$. Now we suppose that $l \notin\{i, k\}$. Let b and B be defined by $y \mathrm{IBI} b \mathrm{IL}_{l}$ and b^{\prime} and B^{\prime} by $y^{\theta} \mathrm{IB}^{\prime} \mathrm{I}^{\prime} \mathrm{IL}_{l}$. Then $\mathrm{B}^{\prime}=\mathrm{B}^{\theta}=\mathrm{B}^{\theta} l$ and $b^{\prime}=b^{\theta}$. From the preceding there follows that $b \neq b^{\theta}$ and that $\mathrm{B}, \mathrm{B}^{\prime}, \mathrm{L}_{i}$ are collinear points of the projective plane $\Pi_{\mathrm{L} l}$. There follows that there exists a point $c \in \mathrm{P}$ such that $\mathrm{NI} c \mathrm{IB}^{\prime}$. So we obtain a triangle in $\mathrm{S}^{\left(x_{\infty}\right)}$ (with vertices c, v, y^{θ} and sides $\mathrm{M}^{\theta}, \mathrm{B}^{\theta}, \mathrm{N}$), a contradiction. So we conclude that $u=u^{\theta}$. There follows immediately that $v=y^{\theta}$ and $v^{\prime}=y$ and so $\mathrm{N}=\mathrm{N}^{\theta}=\mathrm{N}^{\theta_{i}}$. As $\mathrm{N}=\mathrm{N}^{\theta_{i}}$ and $\mathrm{L}=\mathrm{L}^{\theta_{i}}$ ($L \notin L_{\infty}$ and $\mathrm{N} \notin L_{\infty}$), the dilatation θ_{i} of the affine plane $\Pi_{\mathrm{L}_{i}}^{L_{i}}$ is the identity.

From the preceding there follows that each translation θ of $S^{\left(x_{\infty}\right)}$ induces a translation θ_{i} of the affine plane $\Pi_{\mathrm{L}_{i}}^{L_{i}}$.
2.3. Theorem. The set G of all translations of $\mathrm{S}^{\left(x_{\infty}\right)}$ is a group.

Proof. If θ is a translation of $S^{\left(x_{\infty}\right)}$ then evidently θ^{-1} is also a translation of $S^{\left(x_{\infty}\right)}$.

Next let θ, θ^{\prime} be two translations of $S^{\left(x_{\infty}\right)}$. Then $L_{i}^{\theta \theta^{\prime}}=L_{i}, \forall L_{i} \in L_{\infty}$, and $\theta \theta^{\prime}$ induces the translation $\theta_{i} \theta_{i}^{\prime}$ of the affine plane $\Pi_{\mathrm{L}_{i}}^{L_{\infty}}, i \in\{\mathrm{I}, 2, \cdots$, $, \cdots, s+\mathrm{I}\}$. Now let us suppose that $x^{\theta \theta^{\prime}}=x, x \in \mathrm{P} \backslash \mathrm{P}_{\infty}$. Call x_{i} and M_{i} the elements defined by $x \mathrm{IM}_{i} \mathrm{I} x_{i} \mathrm{IL}_{i}, i=\mathrm{I}, 2, \cdots, s+\mathrm{I}$. Then evidently $\mathrm{M}_{i} \theta^{\theta^{\prime}}=\mathrm{M}_{i}^{\theta_{i} \theta_{i}^{\prime}}=\mathrm{M}_{i}, i=\mathrm{I}, 2, \cdots, s+\mathrm{I}$. Consequently the translation $\theta_{i} \theta_{i}^{\prime}$ of $\Pi_{\mathrm{L}_{i}}^{L \infty}$ is the identity, $i=\mathrm{I}, 2, \cdots, s+\mathrm{I}$. If follows that $\mathrm{L}^{\theta \theta^{\prime}}=\mathrm{L}$, $\forall \mathrm{L} \in \mathrm{B}$, and so $y^{\theta \theta^{\prime}}=y, \forall y \in \mathrm{P}$. Hence the collineation $\theta \theta^{\prime}$ of $\mathrm{S}^{\left(x_{\infty}\right)}$ is the identity. We conclude that for any two translations θ, θ^{\prime} of $S^{\left(x_{\infty}\right)}$, the product $\theta \theta^{\prime}$ is also a translation of $S^{\left(x_{\infty}\right)}$.

From the preceding there follows immediately that the set G of all translations of $\mathrm{S}^{\left(x_{\infty}\right)}$ is a group.
2.4. Remark. If G_{i} is the group of all translations of the plane $\Pi_{\mathrm{L}_{i}}^{L_{\infty}}$, then $\Phi_{i}: \mathrm{G} \rightarrow \mathrm{G}_{i}, \theta \rightarrow \theta_{i}$ is a homomorphism of G into $\mathrm{G}_{i}(i=\mathrm{I}, 2, \cdots$ $\cdots, s+\mathrm{I}$).
2.5. Theorem. If x and y are elements of $\mathrm{P} \backslash \mathrm{P}_{\infty}$ then there is at most one translation θ of $\mathrm{S}^{\left(x_{\infty}\right)}$ for which $x^{\theta}=y$.

Proof. If $x^{\theta}=y$ and $x^{\theta^{\prime}}=y$, then $x^{\theta \theta^{\prime-1}}=x$. Hence $\theta \theta^{\prime-1}$ is the identity, and so $\theta=\theta^{\prime}$.
2.6. Definition. If the group G of all translations of $\mathrm{S}^{\left(x_{\infty}\right)}$ is transitive on $P \backslash P_{\infty}$, then we say that $S^{\left(x_{\infty}\right)}$ is a translation 4 -gonal configuration (from 2.5. there follows that the translation group G of a translation 4-gonal configuration $S^{\left(x_{\infty}\right)}$ is sharply transitive on $\left.\mathrm{P} \backslash \mathrm{P}_{\infty}\right)$.
2.7. THEOREM. Let $\mathrm{S}^{\left(x_{\infty}\right)}$ be a translation 4-gonal configuration. Then (a) the order s of $\mathrm{S}^{\left(x_{\infty}\right)}$ is a prime power p^{h}; (b) the group G of all translations of $\mathrm{S}^{\left(x_{\infty}\right)}$ is an elementary abelian group.

Proof. If $S^{\left(x_{\infty}\right)}$ is a translation 4-gonal configuration then the group $\mathrm{G}^{\Phi_{i}}=\mathrm{G}_{i}^{\prime}$ is transitive on the points of the affine plane $\Pi_{\mathrm{L}, i}^{L \infty}(i=\mathrm{I}, 2, \ldots$ $\cdots, s+\mathrm{I})$. Consequently $\Pi_{\mathrm{L}_{i}}^{L \infty}$ is a translation plane and $\mathrm{G}_{i}^{\prime{ }^{i}}$ is the group G_{i} of all translations of $\Pi_{\mathrm{L}_{i}}^{L_{i}}(i=\mathrm{I}, 2, \cdots, s+\mathrm{I})$ [2]. Hence the order s of $\Pi_{\mathrm{L}_{i}}^{L_{i}}$ (i.e. the order of $\left.\mathrm{S}^{\left(x_{\infty}\right)}\right)^{2}$ is a prime power p^{h}, and $\mathrm{G}_{i}=\mathrm{G}^{\Phi_{i}}$ is an elementary abelian group [2].

Next we consider the mapping $\Theta: \mathrm{G} \rightarrow \mathrm{G}_{i} \times \mathrm{G}_{j}, \theta \rightarrow\left(\theta_{i}, \theta_{j}\right)(i \neq j)$. It is easy to show that Θ is a monomorphism of G into $G_{i} \times G_{j}$. As G_{i} and G_{j} are elementary abelian groups of order $s^{2}=p^{2 h}$, there follows immediately that G is an elementary abelian group (of order $s^{3}=p^{3 k}$).

3. The 4-Gonal configurations $\mathrm{G}(T)$

3.I. T-sets. Let G be an abelian group of order $s^{3}(s>1)$. Suppose that $T=\left\{\mathrm{H}_{1}, \mathrm{H}_{2}, \cdots, \mathrm{H}_{s+1}\right\}$ is a set of $s+\mathrm{I}$ subgroups of order s of G , and that $\mathrm{H}_{i} \mathrm{H}_{j} \mathrm{H}_{k}=\mathrm{G} \forall i, j, k$ with i, j, k distinct. Such a set T is called a T-set of the abelian group G.

First of all we remark that $\mathrm{H}_{i} \cap \mathrm{H}_{j}=\{\mathrm{I}\}, i \neq j$. The cosets of the subgroup $\mathrm{H}_{i}, i=\mathrm{I}, 2, \cdots, s+\mathrm{I}$, are denoted by $\mathrm{H}_{i}=\mathrm{H}_{i, 1}, \mathrm{H}_{i, 2}, \cdots, \mathrm{H}_{i, s^{2}}$ (so we obtain $s^{3}+s^{2}$ cosets). Each coset contains s elements of G and through each element of G there pass $s+\mathrm{I}$ cosets. From $\mathrm{H}_{i} \cap \mathrm{H}_{j}=\{\mathrm{I}\}$, $i \neq j$, there follows immediately that two different cosets have at most one element in common. As $\mathrm{H}_{i} \mathrm{H}_{j} \mathrm{H}_{k}=\mathrm{G}(\forall i, j, k$ with i, j, k distinct), there do not exist three cosets $\mathrm{H}_{i, j}, \mathrm{H}_{i^{\prime}, j^{\prime}}, \mathrm{H}_{i^{\prime \prime}, j^{\prime \prime}}$ with $\mathrm{H}_{i, j} \cap$ $\cap \mathrm{H}_{i^{\prime}, j^{\prime}}=\left\{a^{\prime \prime}\right\}, \mathrm{H}_{i^{\prime}, j^{\prime}} \cap \mathrm{H}_{i^{\prime \prime}, j^{\prime \prime}}=\{a\}, \mathrm{H}_{i^{\prime \prime}, j^{\prime \prime}} \cap \mathrm{H}_{i, j}=\left\{a^{\prime}\right\}$ and $a, a^{\prime}, a^{\prime \prime}$ distinct elements of G . So the tactical configuration with as points the s^{3} elements of G , with as lines the $s^{3}+s^{2}$ cosets $\mathrm{H}_{i, j}$, and with the natural incidence relation, does not possess triangles.

Now we consider the cosets of $\mathrm{H}_{i}, i \in\{\mathrm{I}, 2, \cdots, s+\mathrm{I}\}$, having an element in common with the set $\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \cdots \cup \mathrm{H}_{s+1}$. From the preceding there follows that in this way we obtain $s^{2}-s+\mathrm{I}$ cosets (one of these cosets is the group H_{i}). So there remain s - I cosets $\mathrm{H}_{i, j_{1}}, \mathrm{H}_{i, j_{2}}, \cdots, \mathrm{H}_{i, j_{s-1}}$ of H_{i}. The set $\mathrm{H}_{i} \cup \mathrm{H}_{i, j_{1}} \cup \cdots \cup \mathrm{H}_{i, j_{s-1}}$ is denoted by $\mathrm{H}_{i}^{*}(i=\mathrm{I}, 2, \cdots, s+\mathrm{I})$.
3.2. Theorem. The set H_{i}^{*} is a subgroup (of order s^{2}) of $\mathrm{G}(i=\mathrm{I}, 2, \ldots$ $\cdots, s+$ I).

Proof. Consider the natural homomorphism $\sigma_{i}: \mathrm{G} \rightarrow \mathrm{G} / \mathrm{H}_{i}, a \rightarrow a^{\prime}$. We introduce the following notations: $\mathrm{H}_{i}^{\sigma_{i}}=\left\{\mathrm{I}^{\prime}\right\}, \mathrm{H}_{j}^{\sigma_{i}}=\mathrm{H}_{j}^{\prime \prime}(j \neq i), \mathrm{H}_{i, j_{1}}^{\sigma_{i}}=$ $=\left\{h_{1}^{\prime}\right\}, \mathrm{H}_{i, j_{2}}^{\sigma_{i}}=\left\{h_{2}^{\prime}\right\}, \cdots, \mathrm{H}_{i, j_{s-1}}^{\sigma_{i}}=\left\{h_{s-1}^{\prime}\right\}, \mathrm{H}_{i}^{\prime}=\left\{\mathrm{I}^{\prime}, h_{1}^{\prime}, h_{2}^{\prime}, \cdots, h_{s-1}^{\prime}\right\}$. We remark that $\mathrm{H}_{k}^{\prime} \cap \mathrm{H}_{l}^{\prime}=\left\{\mathrm{I}^{\prime}\right\}(k \neq l)$, that $\mathrm{H}_{1}^{\prime} \cup \mathrm{H}_{2}^{\prime} \cup \cdots \cup \mathrm{H}_{s+1}^{\prime}=\mathrm{G} / \mathrm{H}_{i}$,
that $\mathrm{H}_{j}^{\prime}(j \neq i)$ is a subgroup of order s of the group $\mathrm{G} / \mathrm{H}_{i}$ (of order s^{2}), and that $\mathrm{H}_{k}^{\prime} \mathrm{H}_{l}^{\prime}=\mathrm{G} / \mathrm{H}_{i}(k \neq l, k \neq i, l \neq i)$. Now we prove that H_{l}^{\prime} is a subgroup (of order s) of $\mathrm{G} / \mathrm{H}_{i}$.

Let h_{k}^{\prime} be an element of H_{i}^{\prime}. If $h_{k}^{\prime-1} \notin \mathrm{H}_{i}^{\prime}$, then $h_{k}^{\prime-1} \in \mathrm{H}_{l}^{\prime}$ for some $l(l \neq i)$ and so $h_{k}^{\prime} \in \mathrm{H}_{l}^{\prime}$, a contradiction. Now we consider two elements $h_{k}^{\prime}, h_{l}^{\prime}$ of H_{i}^{\prime}. Suppose a moment that $h_{k}^{\prime} h_{l}^{\prime} \notin \mathrm{H}_{i}^{\prime}$. Then $h_{k}^{\prime}, h_{l}^{\prime} \in \mathrm{H}_{j}^{\prime}$ for some $j \neq i$. We have $h_{k}^{\prime}=u_{n}^{\prime} v_{n}^{\prime}$, with $u_{n}^{\prime} \in \mathrm{H}_{j}^{\prime} \backslash\left\{\mathrm{I}^{\prime}\right\}, v_{n}^{\prime} \in \mathrm{H}_{n}^{\prime} \backslash\left\{\mathrm{I}^{\prime}\right\}, n \in\{\mathrm{I}, 2, \cdots, s+\mathrm{I}\} \backslash\{i, j\}$. If $n \neq n^{\prime}\left(n^{\prime} \in\{\mathrm{I}, 2, \cdots, s+\mathrm{I}\} \backslash\{i, j\}\right)$, then evidently $u_{n}^{\prime} \neq u_{n^{\prime}}^{\prime}$. As $|\{\mathrm{I}, 2, \cdots, s+\mathrm{I}\} \backslash\{i, j\}|=s-\mathrm{I}$ there exists a $m \in\{\mathrm{I}, 2, \cdots, s+\mathrm{I}\} \backslash\{i, j\}$ such that $u_{m}^{\prime}=h_{k}^{\prime} h_{l}^{\prime}$. There results that $h_{k}^{\prime}=h_{k}^{\prime} h_{l}^{\prime} v_{m}^{\prime}$, with $v_{m}^{\prime} \in \mathrm{H}_{m}^{\prime} \backslash\left\{\mathrm{I}^{\prime}\right\}$. Hence $h_{l}^{\prime}=v_{m}^{\prime-1} \in \mathrm{H}_{m}^{\prime} \backslash\left\{\mathrm{I}^{\prime}\right\}$, a contradiction. Consequently $h_{k}^{\prime} h_{l}^{\prime} \in \mathrm{H}_{i}^{\prime}$, and so H_{i}^{\prime} is a subgroup of $\mathrm{G} / \mathrm{H}_{i}$.

We conclude that $\mathrm{H}_{i}^{\prime \sigma^{-1}}=\mathrm{H}_{i}^{*}$ is a subgroup (of order s^{2}) of G .
3.3. Remarks. 1) $\mathrm{H}_{i}^{*} \cap \mathrm{H}_{j}=\{\mathrm{I}\}$ and $\mathrm{H}_{i}^{*} \mathrm{H}_{j}=\mathrm{G}(i=j)$. 2) The subgroups $\mathrm{H}_{i}^{\prime}, \mathrm{H}_{j}^{\sigma_{i}}(j \neq i)$ constitute a congruence partition of the group $\mathrm{G} / \mathrm{H}_{i}$ (of order s^{2}). Consequently with each subgroup H_{i} of G there corresponds a translation plane of order s [2].
3.4. Theorem. If the abelian group G of order $s^{3}(s>1)$ has a T-set, then s is a prime power p^{h} and G is an elementary abelian group.

Proof. From 3.3. there follows immediately that $\mathrm{G} / \mathrm{H}_{i}$ is an elementary abelian group, and so s is a prime power p^{h}.

Now we consider the mapping $\Theta: \mathrm{G} \rightarrow \mathrm{G} / \mathrm{H}_{i} \times \mathrm{G} / \mathrm{H}_{j}, a \rightarrow\left(a^{{ }^{j}}, a^{\sigma_{j}}\right)$ $(i \neq j)$. Evidently Θ is a monomorphism of G into $\mathrm{G} / \mathrm{H}_{i} \times \mathrm{G} / \mathrm{H}_{j}$. As $\mathrm{G} / \mathrm{H}_{i}$ and $\mathrm{G} / \mathrm{H}_{j}$ are elementary abelian groups of order $s^{2}=p^{2 h}$, there follows immediately that G is an elementary abelian group of order $p^{3 h}$.
3.5. The 4-GONAL CONFIGURATION $\mathrm{G}(T)$ of order $s=p^{h}$. Define points as (i) the s^{3} elements of the group G (ii) the $s^{2}+s$ cosets of the subgroups $\mathrm{H}_{1}^{*}, \mathrm{H}_{2}^{*}, \cdots, \mathrm{H}_{s+1}^{*}$ (the cosets of H_{i}^{*} are denoted by $\mathrm{H}_{i}^{*}=\mathrm{H}_{i, 1}^{*}, \mathrm{H}_{i, 2}^{*}, \cdots, \mathrm{H}_{i, s}^{*}$ (iii) one new symbol x_{∞}. Define lines as (a) the $s^{3}+s^{2}$ cosets of the subgroups $\mathrm{H}_{1}, \mathrm{H}_{2}, \cdots, \mathrm{H}_{s+1}$ (b) the sets $\mathrm{L}_{i}=\left\{\mathrm{H}_{i, 1}^{*}, \mathrm{H}_{i, 2}^{*}, \cdots, \mathrm{H}_{i, s}^{*}\right\}, i=\mathrm{I}, 2, \cdots$ $\cdots, s+$ I. Incidence is defined as follows: Points of type (i) are incident only with lines of type (a); here the incidence relation is the natural incidence relation. A point $\mathrm{H}_{i, j}^{*}$ of type (ii) is incident with all the cosets of type (a) which are subsets of the coset $\mathrm{H}_{i, j}^{*}$ and with the line L_{i} of type (b). Finally, the unique point x_{∞} of type (iii) is incident with all lines of type (b).

The configuration so defined is a tactical configuration $\mathrm{G}(T)=(\mathrm{P}, \mathrm{B}, \mathrm{I})$ satisfying the following: $|\mathrm{P}|=|\mathrm{B}|=s^{3}+s^{2}+s+\mathrm{I}$; each point is incident with $s+\mathrm{I}$ lines and two distinct points are incident with at most one line; each line is incident with $s+\mathrm{I}$ points and two distinct lines are incident with at most one point. Moreover it is not difficult to prove that $\mathrm{G}(T)$ does not possess triangles. Now a rather easy counting argument shows that $\mathrm{G}(T)=(\mathrm{P}, \mathrm{B}, \mathrm{I})$ is a 4-gonal configuration of order s.
4. The equivalence of the 4-gonal configurations $\mathrm{G}(T)$ and the translation 4-GONAL configurations $\mathrm{S}^{\left(x_{\infty}\right)}$
4.I. Theorem. The point x_{∞} is a coregular point of the 4-gonal configuration $\mathrm{G}(T)$. Moreover $\mathrm{G}(T)=\mathrm{G}(T)^{\left(x_{\infty}\right)}$ is a translation 4-gonal configuration for which the group of all translations is isomorphic to the group G .

Proof. First of all we prove that x_{∞} is a coregular point of $\mathrm{G}(T)$. For that purpose we consider the line $\mathrm{L}_{i}, i \in\{\mathrm{I}, 2, \cdots, s+\mathrm{I}\}$. A line which is not concurrent with L_{i} is of the form $\mathrm{H}_{j, k}, i \neq j$. The $s+\mathrm{I}$ lines which are concurrent with L_{i} and $\mathrm{H}_{j, k}$ are the line L_{j} and the s cosets $\mathrm{H}_{i, l_{1}}, \mathrm{H}_{i, l_{2}}, \ldots$ $\cdots, \mathrm{H}_{i, l_{s}}$ of H_{i} which have an element in common with the coset $\mathrm{H}_{j, k}$. We remark that $\mathrm{H}_{i, l_{1}} \cup \mathrm{H}_{i, l_{2}} \cup \cdots \cup \mathrm{H}_{i, l_{s}}$ is a coset R of the group $\mathrm{H}_{i} \mathrm{H}_{j}$. This coset R contains also s cosets $\mathrm{H}_{j, k_{1}}=\mathrm{H}_{j, k}, \mathrm{H}_{j, k_{2}}, \cdots, \mathrm{H}_{j, k_{s}}$ of the subgroup H_{j}. Now we remark that the lines $\mathrm{H}_{j, k_{t}}(t=\mathrm{I}, 2, \cdots, s), \mathrm{L}_{i}$ are concurrent with the lines $\mathrm{H}_{i, l_{1}}, \mathrm{H}_{i, l_{2}}, \cdots, \mathrm{H}_{i, l_{s}}, \mathrm{~L}_{j}$. There follows that the pair ($\mathrm{L}_{i}, \mathrm{H}_{j, k}$) is regular. Consequently the line L_{i} is regular, $i=\mathrm{I}, 2, \ldots, s+\mathrm{I}$. So we conclude that the point x_{∞} is coregular.

Now we consider the following bijection $\theta_{a}, a \in G$, of the pointset P of $\mathrm{G}(T)$ onto itself
(I) $x^{\theta} a=a x$ for each point x of type (i);
(2) $\left(\mathrm{H}_{i, j}^{*}\right)^{\theta_{a}}=a \mathrm{H}_{i, j}^{*}$ for each point $\mathrm{H}_{i, j}^{*}$ of type (ii);
(3) $x_{\infty}^{\theta_{a}}=x_{\infty}$.

Evidently θ_{a} is a translation of the 4-gonal configuration $\mathrm{G}(T)^{\left(x_{\infty}\right)}$. As the group $\left\{\right.$ all $\left.\theta_{a} \| a \in G\right\} \cong G$ is transitive on the points of type (i) we conclude that $\mathrm{G}(T)^{\left(x_{\infty}\right)}$ is a translation 4 -gonal configuration for which the group of all translations is isomorphic to G.
4.2. Remark. The translation plane of order s which corresponds with H_{i} (see 3.3.) evidently is isomorphic to the translation plane $\Pi_{\mathrm{L}_{i}}^{L_{\infty}}$, with $L_{\infty}=\left\{\mathrm{L}_{1}, \mathrm{~L}_{2}, \cdots, \mathrm{~L}_{s+1}\right\}$.
4.3. Theorem. Let $\mathrm{S}^{\left(x_{\infty}\right)}=(\mathrm{P}, \mathrm{B}, \mathrm{I})$ be a translation 4-gonal confguration with coregular point x_{∞}. If G is the group of all translations of $\mathrm{S}^{\left(x_{\infty}\right)}$, then $\mathrm{S}^{\left(x_{\infty}\right)}$ is isomorphic to a 4-gonal configuration $\mathrm{G}(T)$.

Proof. First of all we remark that we use the notations of 2.
Let o be a point of $S^{\left(x_{\infty}\right)}$ which is not collinear with x_{∞}. Now we define the following bijection ω of $\mathrm{P} \backslash \mathrm{P}_{\infty}$ onto G :

$$
\omega: \mathrm{P} \backslash \mathrm{P}_{\infty} \rightarrow \mathrm{G}, x \rightarrow \theta \Longleftrightarrow o^{\theta}=x .
$$

Next we consider a line L of $S^{\left(x_{\infty}\right)}$ which is incident with o and we suppose that L is concurrent with L_{i}. Then from 2.2. and 2.7. there follows that the set of points of $\mathrm{P} \backslash \mathrm{P}_{\infty}$ which are incident with L is mapped by ω onto the kernel H_{i} of the epimorphism Φ_{i}. In this way we obtain $s+\mathrm{I}$ subgroups $\mathrm{H}_{1}, \mathrm{H}_{2}, \cdots, \mathrm{H}_{s+1}$ of order s of the elementary abelian group G of order s^{3}
(remark that $\mathrm{H}_{i} \cap \mathrm{H}_{j}=\{\mathrm{I}\}, i \neq j(\mathrm{I})$). We shall prove that $\mathrm{H}_{i} \mathrm{H}_{j} \mathrm{H}_{k}=\mathrm{G}$, $\forall i, j, k$ with i, j, k distinct.

For that purpose we have to show that $\mathrm{H}_{i} \mathrm{H}_{j} \cap \mathrm{H}_{k}=\{\mathrm{I}\}(i, j, k$ distinct $)$. Taking account of (I) it is sufficient to prove that $\theta \theta^{\prime} \notin \mathrm{H}_{k}, \forall \theta \in \mathrm{H}_{i} \backslash\{\mathrm{I}\}$ and $\forall \theta^{\prime} \in \mathrm{H}_{j} \backslash\{\mathrm{I}\}$. Suppose a moment that $\theta \theta^{\prime} \in \mathrm{H}_{k}, \theta \in \mathrm{H}_{i} \backslash\{\mathrm{I}\}$ and $\theta^{\prime} \in \mathrm{H}_{j} \backslash\{\mathrm{I}\}$ (evidently $\theta \theta^{\prime} \neq \mathrm{I}$). If $o^{\theta}=x$ then o, x are collinear, and the line defined by o and x is concurrent with L_{i}; if $x^{\theta^{\prime}}=x^{\prime}$ then x, x^{\prime} are collinear, and the line defined by x and x^{\prime} is concurrent with L_{j} (this follows from the fact that θ^{\prime} belongs to the kernel of Φ_{j}). Now from. $o^{\theta \theta^{\prime}}=x^{\prime}$ and $\theta \theta^{\prime} \in \mathrm{H}_{k}$ there follows that also o, x^{\prime} are collinear and that the line defined by o and x^{\prime} is collinear with L_{k}. So we obtain a triangle (with vertices $\left.o, x, x^{\prime}\right)$ in $\mathrm{S}^{(x \infty)}$, a contradiction. Consequently $\mathrm{H}_{i} \mathrm{H}_{j} \mathrm{H}_{k}=\mathrm{G}, \forall i, j, k$ with i, j, k distinct. We conclude that $T=\left\{\mathrm{H}_{1}, \mathrm{H}_{2}, \cdots, \mathrm{H}_{s+1}\right\}$ is a T-set of the abelian group G .

If $\mathrm{L} \notin L_{\infty}$ is a line of $\mathrm{S}^{\left(x_{\infty}\right)}$ which is concurrent with L_{i}, then the s points of $\mathrm{P} \backslash \mathrm{P}_{\infty}$ which are incident with L are mapped by ω onto the points of a coset of H_{i}. In this way we obtain the $s^{3}+s^{2}$ cosets of the subgroups $\mathrm{H}_{1}, \mathrm{H}_{2}, \cdots, \mathrm{H}_{s+1}$ of G .

Now we consider the point $x_{i} \mathrm{IL}_{i}$ which is collinear with $o(i=\mathrm{I}, 2, \ldots$ $\cdots, s+\mathrm{I}$). Notations are chosen in such a way that $x_{i}=x_{i, 1}$. The s^{2} points of $\mathrm{P} \backslash \mathrm{P}_{\infty}$ which are collinear with x_{i} are mapped by ω onto the points of the subgroup $\mathrm{H}_{i}^{*}=\mathrm{H}_{i, 1}^{*}$ of G (see 3.I. and 3.2.). We remark that H_{i}^{*} is the stabilizer $\mathrm{G}_{x_{i}}$. In this way we obtain the $s+\mathrm{I}$ subgroups $\mathrm{H}_{1}^{*}, \mathrm{H}_{2}^{*}, \cdots, \mathrm{H}_{s+1}^{*}$ of G . Next let $x_{i, j} \neq x_{\infty}$ be an arbitrary point which is incident with L_{i}. It is not difficult to show that the s^{2} points of $\mathrm{P} \backslash \mathrm{P}_{\infty}$ which are collinear with $x_{i, j}$ are mapped by ω onto the points of a coset $\mathrm{H}_{i, j}^{*}$ of H_{i}^{*} (we remark that $\mathrm{H}_{i, j}^{*}=\left\{\right.$ all $\left.\left.\theta \in \mathrm{G} \| x_{i}^{\theta}=x_{i, j}\right\}\right)$. In this way we obtain the $s^{2}+s$ cosets of the subgroups $\mathrm{H}_{1}^{*}, \mathrm{H}_{2}^{*}, \cdots, \mathrm{H}_{s+1}^{*}$ of G .

Finally we define the following bijection ω^{*} of the pointset P of $\mathrm{S}^{\left(x_{\infty}\right)}$ onto the pointset of the 4 -gonal configuration $\mathrm{G}(T)$:

$$
\begin{aligned}
& \text { (a) } x_{\omega_{j}^{*}}^{\omega^{*}}=x_{\infty} ; \\
& \text { (b) } x_{i, j}^{\omega_{i}^{*}}=\mathrm{H}_{i, j}^{*}, \quad i=\mathrm{I}, 2, \cdots, s+\mathrm{I} \quad, j=\mathrm{I}, 2, \cdots, s ; \\
& \text { (c) } x^{\omega^{*}}=x^{\omega} \quad \forall x \in \mathrm{P} \backslash \mathrm{P}_{\infty} .
\end{aligned}
$$

As ω^{*} defines an isomorphism of the translation 4 -gonal configuration $S^{\left(x_{\infty}\right)}$ onto the 4 -gonal configuration $\mathrm{G}(T)$, our theorem is completely proved.

5. The kernel of a translation 4-Gonal configuration

5.I. Definition. Consider the translation 4-gonal configuration $S^{\left(x_{\infty}\right)}$ of order $s(\geq 2)$ and the corresponding 4-gonal configuration $G(T)$. If $T=\left\{\mathrm{H}_{1}, \mathrm{H}_{2}, \cdots, \mathrm{H}_{s+1}\right\}$ and $s>2$, then the kernel of $\mathrm{S}^{\left(x_{\infty}\right)}$ is the set F of all endomorphisms α of the group G with $H_{i}^{\alpha} \subseteq H_{i}, i=1,2, \cdots, s+\mathrm{I}$; if $s=2$, then the kernel of $\mathrm{S}^{\left(x_{\infty}\right)}$ is the set $\mathrm{F}=\{$ identity automorphism of G, null endomorphism of $G\}$. With the usual addition and multiplication of endomorphisms F evidently is a ring.
5.2. Theorem. The kernel F of the translation 4 -gonal configuration $\mathrm{S}^{\left(x_{\infty}\right)}$ is a field.

Proof. (a) If $s=2$ then F evidently is a field.
(b) $s>2$. Let α be an endomorphism of the group G of all translations of $\mathrm{S}^{\left(x_{\infty}\right)}$ with $\mathrm{H}_{i}^{\alpha} \subseteq \mathrm{H}_{i}, i=\mathrm{I}, 2, \cdots, s+\mathrm{I}$. Then α induces an endomorphism α_{i} of the group $\mathrm{G} / \mathrm{H}_{i}$, with $\left(\mathrm{H}_{j}^{\sigma_{i}}\right)^{\alpha_{i}}=\mathrm{H}_{j}^{\mathrm{\prime}_{i}} \subseteq \mathrm{H}_{j}^{\prime}, i \in\{\mathrm{I}, 2, \cdots, s+\mathrm{I}\}$ and $j \neq i$ (we use the notations of 3.2.). Now we shall prove that $\mathrm{H}_{i}^{\prime \alpha_{i}} \subseteq \mathrm{H}_{i}^{\prime}$.

First of all we remark that $\mathrm{H}_{j}^{\prime \alpha_{i}} \cap \mathrm{H}_{k}^{\prime \alpha_{i}}=\left\{\mathrm{I}^{\prime}\right\}, k \neq i, j \neq i, k \neq j$. Let us suppose a moment that ${a^{\prime \alpha}}_{i} / \mathrm{H}_{i}^{\prime}$, with $a^{\prime} \in \mathrm{H}_{i}^{\prime} \backslash\left\{\mathrm{I}^{\prime}\right\}$. Then $a^{\alpha^{\alpha}{ }_{i}}=$ $=b^{\prime} \in \mathrm{H}_{j}^{\prime} \backslash\left\{\mathrm{I}^{\prime}\right\}$, with $j \neq i$. Now we choose an arbitrary element $b^{\prime \prime} \in \mathrm{H}_{j}^{\prime} \backslash\left\{\mathrm{I}^{\prime}\right\}$. Then there exist a $k \in\{\mathrm{I}, 2, \cdots, s+\mathrm{I}\} \backslash\{i, j\}$ and an element $c^{\prime} \in \mathrm{H}_{k}^{\prime} \backslash\left\{\mathrm{I}^{\prime}\right\}$, such that $a^{\prime}=b^{\prime \prime} c^{\prime}$ \{ see proof of 3.2.). Consequently $b^{\prime}=a^{\prime \alpha_{i}}=b^{\prime \prime}{ }^{\alpha_{i}} c^{\prime \alpha^{\alpha_{i}}}$ or $b^{\prime}\left(b^{\prime \prime}\right)^{\alpha_{i}}={c^{\alpha_{i}}}^{\alpha}$. As $\left.b^{\prime}\left(b^{\prime \prime}\right)^{-1}\right)^{\alpha_{i}} \in \mathrm{H}_{j}^{\prime}$ and $c^{\alpha_{i}} \in \mathrm{H}_{k}^{\prime}$, there follows that $c^{\alpha_{i}}=\mathrm{I}^{\prime}$ and $b^{\prime}\left(b^{\prime \prime-1}\right)^{\alpha_{i}}=\mathrm{I}^{\prime}$. So $b^{\prime}=b^{\prime \prime \alpha_{i}} \forall b^{\prime \prime} \in \mathrm{H}_{j}^{\prime} \backslash\left\{\mathrm{I}^{\prime}\right\}$. Since α_{i} induces an endomorphism of the group H_{j}^{\prime}, we have necessarily $\left|\mathrm{H}_{j}^{\prime} \backslash\left\{\mathrm{I}^{\prime}\right\}\right|=\mathrm{I}$ or $\left|\mathrm{H}_{j}^{\prime}\right|=$ $=s=2$, a contradiction. So we conclude that $\mathrm{H}_{i}^{\prime \alpha_{i}} \subseteq \mathrm{H}_{i}^{\prime}$.

From $\mathrm{H}_{i}^{\prime \alpha_{i}} \subseteq \mathrm{H}_{i}^{\prime}$ and $\left(\mathrm{H}_{j}^{\sigma_{i}}\right)^{\alpha_{i}} \subseteq \mathrm{H}_{j}^{\sigma_{i}}, j \neq i$, there follows that α_{i} belongs to the kernel of the translation plane defined by H_{i}, and so α_{i} is the null endomorphism of $\mathrm{G} / \mathrm{H}_{i}$ or an automorphism of $\mathrm{G} / \mathrm{H}_{i}$ [2]. If F_{i} is the kernel of the translation plane defined by H_{i} (i.e. the translation plane $\Pi_{\mathrm{L}_{i}}^{L_{\infty}}$ (see 4.2.)), then $\Delta_{i}: \mathrm{F} \rightarrow \mathrm{F}_{i}, \alpha \rightarrow \alpha_{i}$ evidently is a homomorphism of the ring F into the ring $\mathrm{F}_{i}(i=\mathrm{I}, 2, \cdots, s+\mathrm{I})$. Now we shall prove that Δ_{i} is a monomorphism ($i=\mathrm{I}, 2, \cdots, s+\mathrm{I}$).

Suppose that α_{i} is the null endomorphism of $\mathrm{G} / \mathrm{H}_{i}$ and that $\Delta_{i}(\alpha)=\alpha_{i}$. Then we have $a^{\alpha} \in \mathrm{H}_{i} \forall a \in G$, and so $a^{\alpha}=\mathrm{I} \quad \forall a \in \mathrm{H}_{1} \cup \cdots \cup \mathrm{H}_{i-1} \cup \mathrm{H}_{i+1} \cup \cdots$ $\cdots \cup \mathrm{H}_{s+1}$. Now we consider $\alpha_{j}=\Delta_{j}(\alpha), j \neq i$. If $a \in \mathrm{H}_{k} \backslash\{\mathrm{I}\}, k \notin\{i, j\}$, then $a^{\alpha}=\mathrm{I}$ and so $\left(a \mathrm{H}_{j}\right)^{\alpha}=\mathrm{H}_{j}$. Consequently $\alpha_{j}, j \neq i$, is the null endomorphism of $\mathrm{G} / \mathrm{H}_{j}$. There follows that $a^{\alpha} \in \mathrm{H}_{j}, \forall a \in \mathrm{G}$ and $\forall j \in\{\mathrm{I}, 2, \ldots$ $\cdots, s+\mathrm{I}\}$. Hence $a^{\alpha}=\mathrm{I} \forall a \in \mathrm{G}$, and this means that α is the null endomorphism of G. So we conclude that Δ_{i} is a monomorphism. Finally we prove that α is the null endomorphism of G or an automorphism of G.

We suppose that $a^{\alpha}=\mathrm{I}, a \in \mathrm{G} \backslash\{\mathrm{I}\}$. When $a \notin \mathrm{H}_{i}$, then $\left(a \mathrm{H}_{i}\right)^{\alpha_{i}}=\mathrm{H}_{i}$ and consequently α_{i} is the null endomorphism of $\mathrm{G} / \mathrm{H}_{i}$. From the preceding there follows immediately that α is the null endomorphism of G. We conclude that any element $\alpha \in \mathrm{F}$ is the null endomorphism of G or an automorphism of G, and so the ring F is a field.
5.3. Theorem. The kernel F of the translation 4 -gonal configuration $\mathrm{S}^{\left(x_{\infty}\right)}$ of order $s=p^{h}$ is a subfield of the kernel F_{i} of the translation plane $\Pi_{\mathrm{L}_{i}}^{L_{\infty}}$ (of order $s=p^{h}$), $i=1,2, \cdots, s+\mathrm{I}$. Consequently $|\mathrm{F}| \leq s$ and $|\mathrm{F}|=p^{h^{h^{\prime}}}$ ($\mathrm{I} \leq h^{\prime} \leq h$) [2].

Proof. (a) If $s=2$, then $\mathrm{F}=\mathrm{F}_{i}=\mathrm{GF}$ (2).
(b) $s>2$. In this case the theorem follows immediately from the fact that Δ_{i} is a monomorphism of the field F into the field F_{i}.
5.4. The vector space G. The group G may be regarded as the additive group of a vector space over any subfield F^{\prime} of the kernel F of $\mathrm{S}^{\left(x_{\infty}\right)}$. This vector space is also denoted by G and its dimension is denoted by [$G: F^{\prime}$]. We remark that $\left[G: F^{\prime}\right] \geq 3$ (if $\left[G: F^{\prime}\right]=3$ then necessarily $F=F^{\prime}$).

5.5. Theorem. We have $\left[\mathrm{G}: \mathrm{F}^{\prime}\right]=3 n, n \geq \mathrm{I}$.

Proof. The subgroups $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}$ of the group G may be regarded as subspaces of the vector space G over F^{\prime}. As $\left|\mathrm{H}_{1}\right|=\left|\mathrm{H}_{2}\right|=\left|\mathrm{H}_{3}\right|=s$, we have $\left[\mathrm{H}_{1}: \mathrm{F}^{\prime}\right]=\left[\mathrm{H}_{2}: \mathrm{F}^{\prime}\right]=\left[\mathrm{H}_{3}: \mathrm{F}^{\prime}\right]=n(n \geq \mathrm{I})$. From $\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3}=\mathrm{G}$ and $\left|\mathrm{H}_{1}\right|\left|\mathrm{H}_{2}\right|\left|\mathrm{H}_{3}\right|=|\mathrm{G}|$, there follows immediately that $\left[\mathrm{G}: \mathrm{F}^{\prime}\right]=$ $=\left[\mathrm{H}_{1}: \mathrm{F}^{\prime}\right]+\left[\mathrm{H}_{2}: \mathrm{F}^{\prime}\right]+\left[\mathrm{H}_{3}: \mathrm{F}^{\prime}\right]=3 n$.
5.6. Desarguesian translation 4-Gonal configurations. The translation 4-gonal configuration $S^{\left(x_{\infty}\right)}$ is called desarguesian if [G:F] $=3$ (i.e. if $|\mathrm{F}|=s$). If $\mathrm{S}^{\left(x_{\infty}\right)}$ is desarguesian then $\left|\mathrm{F}_{i}\right|=s$, and consequently the translation plane $\Pi_{\mathrm{L}_{i}}^{L_{\infty}}$ is desarguesian ($i=\mathrm{I}, 2, \cdots, s+\mathrm{I}$) [2].

6. The 4-gonal configurations $\mathrm{T}(n, q)$

6.i. The 4-gonal configurations $\mathrm{T}(n, q)$. In $\mathrm{PG}(3 n-\mathrm{I}, q), q$ a prime power and $n \geq 1$, we consider $q^{n}+\mathrm{I}(n-1)$-dimensional subspaces $\mathrm{PG}^{(1)}(n-\mathrm{I}, q), \mathrm{PG}^{(2)}(n-\mathrm{I}, q), \cdots, \mathrm{PG}^{\left(q^{n}+1\right)}(n-\mathrm{I}, q)$, every three of them being joined by $\mathrm{PG}(3 n-\mathrm{I}, q)$ (with such a set of subspaces there corresponds a $\left(q^{n}+1\right)$-arc K of the projective plane over the total matrix algebra of the $n \times n$-matrices with elements in $\operatorname{GF}(q)$ [8]). In [8] we have proved that through $\mathrm{PG}^{(i)}(n-\mathrm{I}, q), i=\mathrm{I}, 2, \cdots, q^{n}+\mathrm{I}$, there passes one and only one subspace $\mathrm{PG}^{(i)}(2 n-\mathrm{I}, q)$ of $\mathrm{PG}(3 n-\mathrm{I}, q)$ which has no point in common with the set $\mathrm{PG}^{(1)}(n-\mathrm{I}, q) \cup \cdots \cup \mathrm{PG}^{(i-1)}(n-\mathrm{I}, q) \cup \mathrm{PG}^{(i+1)}$ $(n-\mathrm{I}, q) \cup \cdots \cup \mathrm{PG}^{\left(q^{n}+1\right)}(n-\mathrm{I}, q)$ (with the $q^{n}+\mathrm{I}$ spaces $\mathrm{PG}^{(i)}(2 n-$ - I,q) there correspond the $q^{n}+\mathrm{I}$ tangent lines of the ($q^{n}+\mathrm{I}$)-arc K [8]).

Let $\operatorname{PG}(3 n-\mathrm{I}, q)$ be embedded as a hyperplane H_{∞} in $\mathrm{PG}(3 n, q)=\mathrm{P}$. Define points of the incidence structure $\mathrm{T}(n, q)$ as (i) the points of $\mathrm{P} \backslash \mathrm{H}_{\infty}$ (ii) the $2 n$-dimensional subspaces X of P for which $\mathrm{X} \cap \mathrm{H}_{\infty}=\mathrm{PG}^{(i)}(2 n-$ - I,$q), i \in\left\{\mathrm{I}, 2, \cdots, q^{n}+\mathrm{I}\right\}$ (iii) one new symbol x_{∞}. Lines of the configuration are (a) the n-dimensional subspaces of P which are not contained in H_{∞} and pass through one of the spaces $\mathrm{PG}^{(1)}(n-\mathrm{I}, q)$, $\mathrm{PG}^{(2)}(n-\mathrm{I}, q), \cdots, \mathrm{PG}^{\left(q^{n}+1\right)}(n-\mathrm{I}, q)$, and (b) the spaces $\mathrm{PG}^{(1)}(n-\mathrm{I}, q)$, $\mathrm{PG}^{(2)}(n-\mathrm{I}, q), \cdots, \mathrm{PG}^{\left(q^{n}+1\right)}(n-\mathrm{I}, q)$. Incidence is defined as follows: Points of type (i) are incident only with lines of type (a); here the incidence is that of P. A point X of type (ii) is incident with all lines $C X$ of type (a) and with precisely one line of type (b), namely the one represented by the
unique space $\mathrm{PG}^{(i)}(n-\mathrm{I}, q)$ in X . Finally, the unique point x_{∞} of type (iii) is incident with no line of type (a) and all lines of type (b).

The incidence structure $\mathrm{T}(n, q)$ so defined is a 4-gonal configuration of order q^{n} [9].
6.2. The 4-Gonal configurations $\mathrm{T}(\mathrm{I}, q)$ of J. Tits. For $n=\mathrm{I}$ we obtain 4-gonal configurations $\mathrm{T}(\mathrm{I}, q)$, of order q, arising from $(q+\mathrm{I})$-arcs in $\operatorname{PG}(2, q)$. Consequently the configurations $\mathrm{T}(\mathrm{I}, q)$ are the 4 -gonal configurations (of order q) constructed by J. Tits [2]:

7. The equivalence of the 4-Gonal configurations $\mathrm{T}(n, q)$ and the translation 4-gonal configurations $S^{(x \infty)}$

7.I. Theorem. The point x_{∞} is a coregular point of the 4 -gonal configuration $\mathrm{T}(n, q)$. Moreover $\mathrm{T}(n, q)=\mathrm{T}(n, q)^{\left(x_{\infty}\right)}$ is a translation 4-gonal configuration for which the group G of all translations is isomorphic to the group of all translations of the affine space $\mathrm{AG}(3 n, q)=\mathrm{PG}(3 n, q)^{\mathrm{H}_{\infty}}$. Finally the field $\mathrm{GF}(q)=\mathrm{F}^{\prime}$ is a subfield of the kernel F of $\mathrm{T}(n, q)^{\left(x_{\infty}\right)}$, and $\left[\mathrm{G}: \mathrm{F}^{\prime}\right]=3 n$.

Proof. First of all we prove that x_{∞} is a coregular point of $\mathrm{T}(n, q)$. For that purpose we consider the line $\mathrm{PG}^{(i)}(n-\mathrm{I}, q)=\mathrm{L}_{i}, i \in\left\{\mathrm{I}, 2, \cdots, q^{n}+\mathrm{I}\right\}$. A line which is not concurrent with L_{i} is of the form $\operatorname{PG}(n, q)$ with $\operatorname{PG}(n, q) \notin \mathrm{H}_{\infty}$ and $\mathrm{PG}^{(j)}(n-\mathrm{I}, q) \subset \operatorname{PG}(n, q) \quad(i \neq j)$. Let $\operatorname{PG}(2 n, q)$ denote the $2 n$-dimensional projective space joining $\mathrm{PG}^{(i)}(n-\mathrm{I}, q)$ and $\operatorname{PG}(n, q)$. The $q^{n}+\mathrm{I}$ lines which are concurrent with L_{i} and $\operatorname{PG}(n, q)$ are the line $\mathrm{L}_{j}=\mathrm{PG}^{(j)}(n-\mathrm{I}, q)$ and the q^{n} lines $\mathrm{PG}^{\left(l_{1}\right)}(n, q), \mathrm{PG}^{\left(l_{2}\right)}(n, q), \cdots$ $\cdots, \mathrm{PG}^{\left(1 q^{(n)}\right.}(n, q)$ (of type $\left.(a)\right)$, for which $\mathrm{PG}^{\left({ }^{(l)}\right)}(n, q) \subset \operatorname{PG}(2 n, q)$ and $\mathrm{PG}^{(i)}(n-\mathrm{I}, q) \subset \mathrm{PG}^{\left({ }^{l}\right)}(n, q)\left(t=\mathrm{I}, 2, \cdots, q^{n}\right)$. Next let $\mathrm{PG}^{\left(k_{1}\right)}(n, q)=$ $=\mathrm{PG}(n, q), \mathrm{PG}^{\left(k_{2}\right)}(n, q), \cdots, \mathrm{PG}^{\left(k_{q}\right)}(n, q)$ be the q^{n} lines (of type (a)) for which $\mathrm{PG}^{(j)}(n-\mathrm{I}, q) \subset \mathrm{PG}^{\left(k_{t}\right)}(n, q)$ and $\mathrm{PG}^{\left(k_{t}\right)}(n, q) \subset \operatorname{PG}(2 n, q)$ $\left(t=\mathrm{I}, 2, \cdots, q^{n}\right)$. Now we remark that the lines $\mathrm{PG}^{\left(k_{t}\right)}(n, q)\left(t=\mathrm{I}, 2, \cdots, q^{n}\right)$ and L_{i} are concurrent with the lines $\mathrm{PG}^{\left(l_{1}\right)}(n, q), \mathrm{PG}^{\left(l_{2}\right)}(n, q), \ldots$ $\cdots, \mathrm{PG}^{\left(l^{(q)}\right.}(n, q), \mathrm{L}_{j}$. There follows immediately that the pair $\left(\mathrm{L}_{i}, \mathrm{PG}(n, q)\right)$ is regular. Consequently the line L_{i} is regular, $i=\mathrm{I}, 2, \cdots, q^{n}+\mathrm{I}$. So we conclude that the point x_{∞} is coregular.

Next we remark that each translation of the affine space $\operatorname{AG}(3 n, q)=$ $=\mathrm{PG}(3 n, q)^{\mathrm{H}_{\infty}}$ induces a translation of the 4 -gonal configuration $\mathrm{T}(n, q)^{\left(x_{\infty}\right)}$. As the group of all translations of $\operatorname{AG}(3 n, q)$ is transitive on the points of $\mathrm{AG}(3 n, q)$ (i.e. on the points of $\mathrm{T}(n, q)^{\left(x_{\infty}\right)}$ which are not collinear with x_{∞}), there follows immediately that $\mathrm{T}(n, q)^{\left(x_{\infty}\right)}$ is a translation 4-gonal configuration for which the group G of all translations is isomorphic to the translation group of the affine space $\operatorname{AG}(3 n, q)$.

Now we observe that it is easy to prove that the field $\mathrm{GF}(q)=\mathrm{F}^{\prime}$ is a subfield of the kernel F of $\mathrm{T}(n, q)^{\left(x_{\infty}\right)}$ (the multiplicative group $\mathrm{F}^{\prime} \backslash\{$ null
endomorphism of $G\}$ corresponds with (and is isomorphic to) the group of all dilatations of $\mathrm{AG}(3 n, q)$ with center $o \notin \mathrm{H}_{\infty}$ (see 4.3.)). As $|\mathrm{G}|=q^{3 n}$ and $\left|\mathrm{F}^{\prime}\right|=q$, we have $\left[\mathrm{G}: \mathrm{F}^{\prime}\right]=3 n$, and so the theorem is completely proved.
7.2. Theorem. Let $\mathrm{S}^{\left(x_{\infty}\right)}$ be a translation 4-gonal configuration (of order s) with coregular point x_{∞} and translation group G . If $\mathrm{GF}(q)=\mathrm{F}^{\prime}$ is a subfield of the kernel F of $\mathrm{S}^{\left(x_{\infty}\right)}$, where $\left[\mathrm{G}: \mathrm{F}^{\prime}\right]=3 n$, then $\mathrm{S}^{\left(x_{\infty}\right)}$ is isomorphic to a 4-gonal configuration $\mathrm{T}(n, q)$.

Proof. We consider the 4-gonal configuration $\mathrm{G}(T), T=\left\{\mathrm{H}_{1}, \mathrm{H}_{2}, \cdots\right.$ $\left.\cdots, \mathrm{H}_{s+1}\right\}\left(s=q^{n}\right)$, defined by $\mathrm{S}^{\left(x_{\infty}\right)}$. With the vector space G over $\mathrm{GF}(q)=\mathrm{F}^{\prime}$ there corresponds a $3 n$-dimensional affine space $\mathrm{AG}(3 n, q)$ (the subspaces of $\mathrm{AG}(3 n, q)$ are the cosets of the subgroups of the group G$)$. If H_{∞} is the ideal hyperplane of $\operatorname{AG}(3 n, q)$, then $\operatorname{AG}(3 n, q)=\operatorname{PG}(3 n, q)^{\mathrm{H}_{\infty}}$, with $\operatorname{PG}(3 n, q)$ the $3 n$-dimensional projective space over $\operatorname{GF}(q)$ defined by $\operatorname{AG}(3 n, q)$.

With the s^{2} cosets of the group H_{i} there correspond the $q^{2 n} n$-dimensional subspaces of $\mathrm{PG}(3 n, q)$ which are not contained in H_{∞} and which pass through a certain $\mathrm{PG}^{(i)}(n-\mathrm{I}, q) \subset \mathrm{H}_{\infty}\left(i=\mathrm{I}, 2, \cdots, s+\mathrm{I}=q^{n}+\mathrm{I}\right)$. As the n-dimensional subspaces $\mathrm{H}_{i}, \mathrm{H}_{j}, \mathrm{H}_{k}$ (i, j, k distinct) of the affine space $\mathrm{AG}(3 n, q)$ are joined by $\mathrm{AG}(3 n, q)$, the projective spaces $\mathrm{PG}^{(i)}(n-\mathrm{I}, q)$, $\mathrm{PG}^{(j)}(n-\mathrm{I}, q), \mathrm{PG}^{(k)}(n-\mathrm{I}, q)$ are joined by the ($3 n-\mathrm{I}$)-dimensional projective space H_{∞}.

With the s cosets of the group H_{i}^{*} (see 3.) there correspond the $q^{n} 2 n$ dimensional subspaces of $\operatorname{PG}(3 n, q)$ which are not contained in H_{∞} and which pass through a certain $\mathrm{PG}^{(i)}(2 n-\mathrm{I}, q) \subset \mathrm{H}_{\infty}\left(i=\mathrm{I}, 2, \cdots, q^{n}+\mathrm{I}\right)$. First of all we remark that $\mathrm{PG}^{(i)}(n-\mathrm{I}, q)$ is a subspace of $\mathrm{PG}^{(i)}(2 n-\mathrm{I}, q)$ (this follows from $\left.\mathrm{H}_{i} \subset \mathrm{H}_{i}^{*}\right)$. As the subspaces $\mathrm{H}_{i}^{*}, \mathrm{H}_{j}(i \neq j)$ of the affine space $\mathrm{AG}(3 n, q)$ are joined by $\mathrm{AG}(3 n, q)$, the projective spaces $\mathrm{PG}^{(i)}(2 n-\mathrm{I}, q), \mathrm{PG}^{(j)}(n-\mathrm{I}, q)(i \neq j)$ are joined by H_{∞}. Consequently $\mathrm{PG}^{(i)}(2 n-\mathrm{I}, q) \cap \mathrm{PG}^{(j)}(n-\mathrm{I}, q)=\varnothing(i \neq j)$. So the space $\mathrm{PG}^{(i)}(2 n-\mathrm{I}, q)$ has no point in common with the set $\mathrm{PG}^{(1)}(n-\mathrm{I}, q) \cup \cdots \cup \mathrm{PG}^{(i-1)}(n-\mathrm{I}, q) \cup$ $\cup \mathrm{PG}^{(i+1)}(n-\mathrm{I}, q) \cup \cdots \cup \mathrm{PG}^{\left(q^{n}+1\right)}(n-\mathrm{I}, q)$.

Now we see immediately that the 4-gonal configuration $\mathrm{T}(n, q)$, defined by the subspaces $\mathrm{PG}^{(1)}(n-\mathrm{I}, q), \mathrm{PG}^{(2)}(n-\mathrm{I}, q), \cdots, \mathrm{PG}^{\left(q^{n}+1\right)}(n-\mathrm{I}, q)$ of the ($3 n-\mathrm{I}$)-dimensional projective space H_{∞}, is isomorphic to the 4-gonal configuration $\mathrm{G}(T)$. We conclude that $\mathrm{S}^{\left(x_{\infty}\right)}$ is isomorphic to $\mathrm{T}(n, q)$.
7.3. THEOREM. The translation 4-gonal configuration $\mathrm{S}^{\left(x_{\infty}\right)}$ is desarguesian if and only if it is isomorphic to a 4-gonal configuration $\mathrm{T}(\mathrm{I}, q)$ of Tits.

Proof. Let $S^{\left(x_{\infty}\right)}$ be a desarguesian translation 4-gonal configuration of order $p^{h}=q$. Then $[\mathrm{G}: \mathrm{F}]=3$ (i.e. $n=\mathrm{I}$) and $\mathrm{F}=\mathrm{GF}(q)$. From 7.2. there follows immediately that $\mathrm{S}^{\left(x_{\infty}\right)}$ is isomorphic to a 4-gonal configuration $\mathrm{T}(\mathrm{I}, q)$ of Tits.

Conversely, let us suppose that the translation 4-gonal configuration $\mathrm{S}^{\left(x_{\infty}\right)}$ is isomorphic to a 4-gonal configuration $\mathrm{T}(\mathrm{I}, q)$ of Tits. Then $|\mathrm{G}|=q^{3}$ and $|\mathrm{F}| \geq q$ (see 7.1.). As q is the order of $\mathrm{S}^{\left(x_{\infty}\right)}$ there holds $|\mathrm{F}| \leq q$ (5.3.), and so $|\mathrm{F}|=q$. Consequently $[\mathrm{G}: \mathrm{F}]=3$, i.e. $\mathrm{S}^{\left(x_{\infty}\right)}$ is desarguesian.

References

[I] J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, «Math. Zeitschr.», 60, 156-186 (1954).
[2] P. Dembowski, Finite geometries, Springer-Verlag, 1968, 375 pp.
[3] S. E. Payne, Affine representations of generalized quadrangles, "J. Algebra», 16, 473485 (1970).
[4] S. E. Payne, Generalized quadrangles as amalgamations of projective planes, "J. Algebra», 22, 120-136 (1972).
[5] S. E. Payne, Generalized quadrangles of even order, 35 pp . (to appear).
[6] R. R. Singleton, Minimal regular graphs of maximal even girth, "J. Comb. Theory», I, 306-332 (1966).
[7] J. A. Thas, Een studie betreffende de projectieve rechte over de totale matrix algebra M_{3} (K) der 3×3-matrices met elementen in een algebraïsch afgesloten veld K , «Verh. Kon. Vl. Acad. Wet., Lett. Sch. K. van België, Kl. der Wet.», $3 I$ (II2), I5I pp. (1969).
[8] J. A. Thas, The m-dimensional projective space $\mathrm{S}_{m}\left(\mathrm{M}_{n}(\mathrm{GF}(q))\right)$ over the total matrix algebra $\mathrm{M}_{n}(\mathrm{GF}(q))$ of the $n \times n$-matrices with elements in the Galois field $\mathrm{GF}(q)$, «Rend. di Mat.», (6) 4, 459-532 (197I).
[9] J. A. Thas, On 4-gonal configurations, "Geometriae Dedicata», I 5 pp. (to appear).
[Io] J. A. Thas, 4-gonal configurations, C.I.M.E. Session Bressanone, 249-263 (1972).

[^0]: (*) Nella seduta del 9 marzo 1974.

