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Geometrie finite. — 7ranslation 4-gonal configurations. Nota di
Josern AporpHE THas, presentata ® dal Socio B. SEGRE.

R1ASSUNTO. — Introdotte certe configurazioni 4-gonali di traslazione, in relazione alla
transitivita del gruppo G delle loro traslazioni, si mostra la loro equivalenza coll’esistenza
in G di taluni T-insiemi formati da sottogruppi, si definisce un campo F detto il loro nucleo
e si stabilisce che G pud venire considerato come il gruppo additivo di uno spazio vettoriale
sopra un sottocampo F’di F. In ogni caso [G: F’] = 37, con # intero positivo, e la configu-
razione ammette una certa struttura canonica. Se [G : F] = 3, la configurazione vien detta
desarguesiana ed essa pud venire caratterizzata dalla proprieta di risultare isomorfa ad una
configurazione 4-gonale di Tits.

I. INTRODUCTION AND REVIEW

A finite 4-gonal configuration of order s (> 1) [2] is an incidence structure S = (P,B,I),

with an incidence relation satisfying the following axioms:

(1) each point is incident with s 4 1 lines and two distinct points are incident with
at most one line;

(i) each line is incident with s 4 1 points and two distinct lines are incident with
at most one point;

(iii) if x is a point and L is a line not incident with #, then there are a unique point
x” and a unique line L’ such that zIL’ I+ IL.

If S=(P,B,I) is a 4-gonal configuration of order s (> 1), then |P|=|B|=
=34+ s2+ 54+ 1 [2]

Let S = (P, B, I) be a 4-gonal configuration of order s (> 1) and let x and ¥ be distinct
points of S. The trace of x and y is defined to be the set # (r, y) = {allzeP|zis collinear
with both x and y }. The pair (x,y) of distinct points is said to be regular provided each
pomt collinear with at least two points of # (x,¥) is actually collinear with all points of

#r (x, y) (if the points x and y (x == ) are collinear then evidently the pair (x, y) is regular).
If (x , ») is a regular pair, the span of x and y is defined unambiguously as the set sp (x, y) =

=tr(z,w) for any distinct points z,w in # (x, y) (for collinear points x and y (x 1[:)/ we
have sp (x,9) —z‘r( x,y)). When for a point x each pair (x,),x ==y, is regular, z is
said to be regular. These definitions are casily dualized for lines. A point (resp. line)
is called coregular provided each line (resp. point) incident with it is regular. And a point
or line which is both regular and coregular is said to be biregular (then necessarily s is even [5]).

Let x be a regular point of a 4-gonal configuration S of order s (>1). Let II, be the
incidence structure whose points are the points of S collinear with + and whose lines are the
spans of the (necessarily regular) pairs of distinct points of IL,. Then Il with the natural
incidence relation is a projective plane of order s [6]. This theorem is easily dualized for a
regular line L of S.

2. TRANSLATION 4-GONAL CONFIGURATIONS

2.1. TRANSLATIONS. Let S¥ = (P, B , I) be a 4-gonal configuration
of order s (> I) which possesses a coregular point x_ . The s 4 1 regular lines
Ly,--+, L which are incident with x,, are called the ideal lines of S¥= and

(*) Nella seduta del 9 marzo 1974.
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the s+ s 4 1 points which are collinear with x_ are called the ideal points
of S% We also introduce the following notations:

Lo,={Li,Ls,--+,L,;;} and P_=/{all ideal points of S"},

A collineation 6 of S® is called a translation if 0 is the identity or if
6 is a collineation satisfying LJ=1, VL,€ Z_ (this implies that xo= X))
and 2%=4=x Vxe P\ P

2.2. THEOREM. A translation 0 of SO induces a transiation 6 of the affine
plane HL (Lo, 2 the ideal line of this affine plane), i€ {1, s+ 1d

Proof. The points of the projective plane IIj; are the sz—l—s—]— I lines
of St which are concurrent with L,. Lines of II;, are (@) the line Z_ (4)
the sets Z; with elements the s 1 lines of S* incident with the point
X 7 %o, Where x; IL; (=1 ,--+,5) (¢) the sets with elements the s+ 1
lines of S which are concurrent with L; and a line L € B not concurrent
with L; (i.e. the sets # (L,, L), L € B and L;, L not concurrent).

The translation 0 induces a permutation 6, of the pointset of the projec-

tive plane 1I;.. Moreover L =L,,j=1,--,54+ 1. Now we show that
0; is a collineation of the prOJectlve plane H .
First of all we remark that L =L, . Next we consider a line Z; of type

(6). Then (L) ‘= L}, where x, x, . Finally we consider a line Z of
type (¢) of Il; ;, where L = #r (L, , L) LeB and L,;, L not concurrent. Then
the elements M1, Mz, -+, M,, L;(z==) of L are mapped by 6 onto the lines
M} s M2 o, M2 Le = L whlch are concurrent with L! = = L, and L® (remark
that L’ is not concurrent with L). Consequently L% = = (M M- M
L}=1#Q,,L%is a line of type (¢) of H We conclude that 0, is a colli-
neation of the projective plane IT;,. As L f— =L,;,VL;e L_,0, can be consi-
dered as a dilatation of the affine plane HL . Next we prove that 0; is a tran-
slation of the affine plane HL .

For that purpose we suppose that 6 is not the identity and that =L
or L% = L, where L is a point of I} and L ¢ L . We remark that Xy = Xij
with Llx,,; IL;. Next let ¥ be a pomt of P\ P, Which is not collinear with x
Call M and 2 the elements defined by yIMI 2IL and M’ and 2’ the elements
defined by »*IM'Iz'IL (remark that z <=, ;). Then evidently M'= =M° and
g'= 2% (remark that 2% ==z and Meﬂ:M) If M is concurrent with L, (7 = £),
then also M’ = M® is concurrent with L, (we also remark that the points
and 7/, defined by MInlIl, and M' I’ IL, (m'= m%), are distinct). Next let
N and # be defined by yINI #IL, and N’ and %' be defined by »°IN’'Iz IL,
(remark that = € {x_, x;;}). Then evidently N'=N® and «' = «°. As L,
is regular there exists a point v which is incident with N and M’, and there
also exists a point o’ which is incident with N’ and M. Let us suppose a mo-
ment that 2z == 2° (then v==%% and y ==7') and consider the dilatation 6,
of the affine plane HLI , I==14. Let x,;IL; with x,,==x_, call @ and A the
elements defined by x; ;IAI 2IL, and call 2, ;» and A’ the elements defined
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by a°IA'lx, , ,IL,. Then evidently x; ;=29 ;. Now from a - a® there
follows that x; ;== %;,;. Consequently the only fixed points of the dilatation
B, are the ideal points Ly, La,- -+, L,,; of the affine plane HL . There results
that the dilatation 0, is a translation of the affine plane HLI . As A,A'=A"=
=A% | L, are collinear points of the projective plane I, the ideal point
L, is the center of the translation 0; of the affine plane Hfl Now we suppose
that /¢ {7,%}. ILet 6 and B be defined by yIBI&IL, and &' and B’ by
#*IB'18'IL,. Then B'= B’= B% and 4'=¢°. From the preceding there
follows that 4 ==4° and that B, B', L; are collinear points of the projective
plane HL;" There follows that there exists a point ¢ € P such that NI¢IB'.
So we obtain a triangle in S% (with vertices ¢, v, »® and sides M°, B® N),
a contradiction. So we conclude that # = #°. There follows immediately
that v = 9% and v’ =y and so N = N®=N% As N = N% and L=1L1%
(Lel, and N¢ L), the dilatation 6, of the affine plane HL is the identity.

From the preceding there follows that each translation 0 of St induces
a translation 6, of the affine plane H[“f.

2.3. THEOREM. Ve set G of all translations of S is a group.

Proof. 1If 8 is a translation of S“® then evidently 87! is also a transla-
tion of S

Next let 6, 6" be two translations of S%)  Then LI = L,,VL,eZ_
and 09’ 1nduces the translation 6; 0; of the affine plane HL , 7 E{I L2,

,s+ 1}, Now let us suppose that 2% =z, x€ PNP_ . Call x; and M;

the elements defined by xIM, Ix, IL,;, 7 =1, -, s+ 1. Then evidently
My = M - =M, i=1,2,---,5 —H Consequently the translation 0, 0;
of HLZ' is the 1dent1ty, i=1, ,s 4+ 1. If follows that L% =1,

VL € B, and so % =y, VyeP. Hence the collineation 00" of S®= js the
identity. We conclude that for any two translations 0, 6" of S®, the product
06 is also a translation of S

From the preceding there follows immediately that the set G of all tran-
slations of S¥ is a group.

2.4. REMARK. If G, is the group of all translations of the plane HL ,
then ®,: G—G;, 6 — 6, is a homomorphism of G into G, (/=1, 2,
8+ 1).

2.5. THEOREM If x and y are elements of PNP then there is at most
one transiation 0 of S for which »® = y.

Pmof. If 2% = y and 2 =y, then 2% = x. Hence 06’ is the iden-
tity, and so 6 = 6'.

2.6. DEFINITION. If the group G of all translations of S® is transi-
tive on P\P_, then we say that S“® is a translation 4-gonal conﬁguratlon
(from 2.5. there follows that the translation group G of a translation 4-gonal
configuration S¥ s sharply transitive on P\P_).
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2.7. THEOREM. Zet S be a transiation - -gonal configuration. Then

(@) the order s of S¥ is a prime power p (6) the group G of all translations
of S5 45 an elementary abelian group.

Proof If S% jis a translation 4- gonal conﬁguratmn then the group
GY = Gz is transitive on the points of the affine plane HL°° =1,2,

S, s+1). Consequently HL is a translat1on plane and G; is the group G;
of a]l translations of HL°° =1, ,$ =+ 1) [2]. Hence the order s of
HL°° (i.e. the order of S(x°°)) isa prlme power 2% and G; = G® is an elementary
abelian group [2].

Next we consider the mapping ©: G —G;XG;, 6 —(0;,0,) (7-=/).
It is easy to show that ® is a monomorphism of G into G;XG;. AsG; and
G; are elementary abelian groups of order s2 = p2#, there follows immediately
that G is an elementary abelian group (of order s3 = p3%),

3. THE 4-GONAL CONFIGURATIONS G (7)

3.1. 7-sets. Let G be an abelian group of order s3(s > 1). Suppose
that 7= {Hi,Hsz,---,H,;(} is a set of s+ 1 subgroups of order s of G,
and that H; H, H, = G V7, /, £ with 7,7, £ distinct. Such a set 7 is called
a 7-set of the abelian group G.

First of all we remark that H;"H;= {1},7=F;. The cosets of the
subgroup H;, #=1,2,---,5 41, are denoted by H; =H,,, H,,,- - -,H;
(so we obtain s34 s2 cosets). Each coset contains s elements of G and
through each element of G there pass s- 1 cosets. From H; N H;, = {1},
¢ =7, there follows immediately that two different cosets have at
most one element in common. As H,H,H,=G (Vi,;,4 with 7,7, 4
distinct), there do not exist three cosets H,,I,H,r 'y Hy jn with me
NHy ;= {a"}, Hyj nHy ju="{a}, Hu,wnH,;={a'} and a,d,a"
distinct elements of G. So the tactical configuration with as points the 53
elements of G, with as lines the s3 + s2 cosets H, ;, and with the natural inci-
dence relation, does not possess triangles.

Now we consider the cosets of H;,z€{1,2,---, s+ 1}, having an ele-
ment in common with the set H1U HaU -+ - U H,1y. From the preceding there
follows that in this way we obtain s2— s+ 1 cosets (one of these cosets is
the group H;). So there remain s —1 cosets H.; ,Hijp, o+ Hs of H;.

”j:—l

The set H; U H;,;;u---UH,,; | is denoted by H¥(G=1,2, -+, s+ 1).

ih5

3.2. THEOREM. The set H; is a subgroup (of order s2) of G (¢ =1, 2,
s+ 1)
Progf. Consider the natural homomorphism o;: G—>G/H;, ¢ >a'.
We iﬁtroduce the following notations: Hy' = {1}, H;i =H,(j ==, H:”fjl =
= {m} Hiyy={M}, - H = (o}, Hi= {1 ki J, o, ha}. We
remark - that H;nH;= {1'} (k==7), that H{UH, U -- UH.;1 = G/H,,
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that H; (/ =i=7) is a subgroup of order s of the group G/H; (of order s2), and
that H; H,; = G/H, (k==7, - -=4,/-=4). Now we prove that H; is a sub-
group (of order s) of G/H;.

Let /z; be an element of H,' If /z;“le H;-, then /z,;_l € H; for some / (/==1¢)
and so /z; € H;I , a contradiction. Now we consider two elements ﬁ;, ﬁ} of H,’
Suppose a moment that /%, ¢ H;. Then /;, 4 € H; for some Jj==i. We
have Ju = w,2,, with u, € HN{1'}, v, e H\{1'}, n €{1,2,---, sF11{7,/}.
If naEn' (e{1,2, -, s+ 110\{7,/}), then evidently u,==uzu,. As
1,2, - s+IN\{7,/}=s—1 there exists a m € {1,2,---, s - 11\{7, 5}
such that u, = %, 4;. There results that /4; — %, kv, with o, eH,\{1'}.
Hence /%; = v, '€ H,\{1'}, a contradiction. Consequently /;/4; € H:, and
so H: is a subgroup of G/H;.

We conclude that H;Gi_l: HY is a subgroup (of order s?) of G.

33 REMARKS. 1) H;nH, = {1} and Hf H, =G (i<=/). 2) The subgroups
Hz s H “(j ==14) constitute a congruence partition of the group G/H; (of order s2). Conse-
quently Wlth each subgroup H; of G there corresponds a translation plane of order s [2].

3.4. THEOREM. [If the abelian group G of order s*(s > 1) has a T-set,
then s is a prime power p* and G is an elementary abelian group.

Proof. From 3.3. there follows immediately that G/H;is an elementary
abelian group, and so s is a prime power g%

Now we consider the mapping ©: G —G/H; X G/H, , a - (2%, a%)
(¢==7). Evidently ©® is a monomorphism of G into G/H;xG/H,. As G/H;
and G/H; are elementary abelian groups of order s2 = p%, there follows
immediately that G is an elementary abelian group of order p3%:.

3.5. THE 4-GONAL CONFIGURATION G(7) OF ORDER s = p%  Define
pomts as (i) the s3 elements of the group G (ii) the s2+ s cosets of the subgroups
HY ,Hy - . JJrl (the cosets of H} are denoted by H = H,,l, Hz’g, .-, Hiy
(iii) one new symbol x_. Define lines as (a) the s3—l— s2 cosets of the subgroups
Hi,He, -+, H,4q () the sets L; —-{H 1, ,2, . ,Hf,y}, 1=1,2,

, s+ 1. Incidence is defined as follows: Points of type (i) are incident
only with lines of type (@); here the incidence relation is the natural incidence
relation. A point H; ; of type (11) is incident with all the cosets of type ()
which are subsets of the coset H, ,; and with the line L; of type (4). Finally,
the unique point x_, of type (iii) is incident with all lines of type (8).

The conﬁguratmn so defined is a tactical configuration G (7)) = (P, B, I)
satisfying the following: |P|=|B|=s3+s2 4 s+1; each point is incident with
s+1 lines and two distinct points are incident with at most one line; each
line is incident with s+1 points and two distinct lines are incident with at most
one point. Moreover it is not difficult to prove that G (7") does not possess
triangles. Now a rather easy counting argument shows that G (7) = (P, B, I)
is a 4-gonal configuration of order s. :
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4. THE EQUIVALENCE OF THE 4-GONAL CONFIGURATIONS G (7))
AND THE TRANSLATION 4-GONAL CONFIGURATIONS S®eo

4.1. THEOREM. The point x, is a coregular point of the 4-gonal configu-
ration G (T"). Moreover G (") = G (T’ Y s a translation 4-gonal configura-
tion for which the group of all translations is isomorphic to the group G.

Proof. First of all we prove that % is a coregular point of G(7°). For
that purpose we consider the line L,,7€{1,2,--+,5+1}. A line which
is not concurrent with L; is of the form H; ,,7==;. The s - 1 lines which
are concurrent with L, and H; , are the line L; and the s cosets H;, 4o Hizyyo oo

-+, H,,;, of H; which have an element in common with the coset H;,. We
remark that H;,; UH; ,u - - UH,;,, is a coset R of the group H; H,. This
coset R contains also s cosets H,, = H;,, H, 2+ Hj, of the subgroup
H;. Now we remark that the lines H, (¢=1,2,-+5), L, are concur-
rent with the lines Hi »Hiyy -+ Hyy , L;. There follows that the pair
(L;, H,,,) is regular. Consequently the line L; is regular, 7 =1,2,---, s L 1.
So we conclude that the point x_ is coregular. :

Now we consider the following bijection 0,, a € G, of the pointset P of
G (7") onto itself

1) 2% = ax for each point z of type (i ;
P yp
(2) (H} j)e“= aH;; for each point HY ; of type (ii);

(3) ot = oo

Evidently 6, is a translation of the 4-gonal configuration G (7)"*, As the
group {all 6, || 2 € G} = G is transitive on the points of type (i) we conclude

that G(7)" is a translation 4-gonal configuration for which the group of
all translations is isomorphic to G.

4.2. REMARK. The translation plane of order s which corresponds with H; (see 3.3.)
evidently is isomorphic to the translation plane Hf?°, with Loo = {L1, Lg, -+, Ls41}.
z

4.3. THEOREM. Zet S = (P | B, 1) be a translation 4-gonal confi-
guration with coregular point x. If G is the group of all translations of ST,
then S¥ is isomorphic to a 4-gonal configuration G (7).

Proof. First of all we remark that we use the notations of 2.
Let 0 be a point of S* which is not collinear with %, Now we define
the following bijection w of PN\ P_ onto G:

w:P\P_—>G,xr > 0ec=0° =z

Next we consider a line L of $% which is incident with 0 and we suppose
that L is concurrent with L;. Then from 2.2. and 2.7. there follows that the
“set of points of P\P_ which are incident with L is mapped by w onto the
kernel H; of the epimorphism ®,. In this way we obtain s+ 1 subgroups
Hi,Hs,---, Hi1y of order s of the elementary abelian group G of order 53
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(remark that H;NH; = {1}, 7==/(1)). We shall prove that H, H;H, = G,
Vi,j7,% with 7,7, /£ distinct.

For that purpose we have to show that H; H;nH, = {1} (7, 7, 4 distinct).
Taking account of (1) it is sufficient to prove that 66'e¢H,, V0 e H\ {1}
and VO'e HN\{1}. Suppose a moment that 66'€¢ H,, 0 e HN\ {1} and
0'e HN\ {1} (evidently 06'==1). If 0® = x then 0,x are collinear, and the
line defined by 0 and x is concurrent with L,; if 2% = x' then «x, 2’ are col-
linear, and the line defined by x and x’ is concurrent with L, (this follows from
the fact that 6" belongs to the kernel of ®;). Now from. 0% = ' and 00’ € H,
there follows that also 0, ' are collinear and that the line defined by o and
x' is collinear with L,. So we obtain a triangle (with vertices 0, x , ") in S¥
a contradiction. Consequently H, H;H, = G, V7,/,%4 with 7,/ £ distinct.
We conclude that 7" = { Hi, Hz,- -+, H,1} is a 7=set of the abelian group G.

If LeL_ is a line of S¥ VVthh is concurrent with L;, then the s points
of PN\P_ Wthh are incident with 1. are mapped by o onto the points of
a coset of H;. In this way we obtain the s34 s2 cosets of the subgroups
Hy,Hz,---,H,y; of G.

Now we consider the point x; IL; which is collinear with 0 ( = 1,2 ,---

, § £ 1). Notations are chosen in such a way that x; = x, ;. The s2 points
of P\P which are collinear with x; are mapped by « onto the pomts of the
subgroup H; = Hj; of G (see 3.1. and 3.2.). We remark that Hj is the sta-
bilizer G, In this way we obtain the s 4 1 subgroups HY , HZ, -, Hiq
of G. Next let x;,;=F x,, be an arbitrary point which is incident with L,. It
is not difficult to show that the s2 points of P\P_ which are collinear with x;,
are mapped by onto the points of .a coset H;; of H} (we remark that

H;;={all 0 eG Hx = x,,,}). In this way we obtain the s2 -+ s cosets of
the subgroups Hi, Hj,---, Hi,; of G.

Finally we define the following bijection w* of the pointset P of S¥ onto

the pointset of the 4-gonal configuration G (7):

(@) xff: =X, ;
(8) #8;=H},, i
(6) " =x° Ve P\ P
As " defines an isomorphism of the translation 4-gonal configuration S
onto the 4-gonal configuration G (7), our theorem is completely proved.

I

,2,"‘,S+I y jZI’Z}"'yS;

5. THE KERNEL OF A TRANSLATION 4-GONAL CONFIGURATION

5.1. DEFINITION. Consider the translation 4-gonal configuration S%e
of order s(=2) and the corresponding 4-gonal configuration G (1. 1If
T'={Hi,Hs,---,H,;;} and s > 2, then the kernel of S*® is the set F of
all endomorphisms « of the group G with H¥CH;, ;=1,2,---, 5 1;
if s = 2, then the kernel of S"® is the set F = {1dent1ty automorphlsm of
G, null endomorphism of G} With the usual addition and multiplication
of endomorphisms F evidently is a ring.
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5.2. THEOREM. T7he kernel F of the translation 4-gonal configuration S%
is a freld.
Proof. (a) If s =2 then F evidently is a field.

(b) s> 2. Let a be an endomorphism of the group G of all translations
of S* with HIC H;, i =1, 2, .S + 1. Then o induces an endomorphism

«; of the group G/H,, with (H ) ‘= H; . CHj,i€{1,2,--,s+1} and
J=F17 (we use the notations of 3.2.). Now we shall prove that H,"a"; H;.

First of all we remark that Hla"ﬂ H, = {1}, ,é:f=z' J==1 é:}:j.
Let us suppose a moment that «'™|H,, with &' € H N{1'}. Then &=
= b€ H]\{I 1, with j==47. Now we choose an arbitrary element &'’¢ H; N1}

Then there exist a € {1,2,---,s+1}\{7,7} and an element c'€ Hé\{l }
such that &' = 4''¢c" {see proof of 3.2.). Consequently b =a =y
or & (b”_l)a" =" As & @' ) € Hj and ¢/ “ € H;, there follows that ¢’ — 1’

and &' (&”-1)0"'— 1. So #'=4"" V&' eH \{1'}. Since «, induces an endo-

morphism of the group H;, we have necessarily IH N1} =1 or H; | =
= s = 2, a contradiction. So we conclude that H ‘CH;.

From H;* C H; and (Hy")* C H}, j==1, there follows that a, belongs to
the kernel of the translation plane defined by H,, and so «; is the null endo-
morphism of G/H; or an automorphism of G/H; [2]. If F, is the kernel of
the translation plane defined by H, (i.e. the translation plane HL°° (see 4.2.)),
then A;: F—F;, @ —a, evidently is a homomorphism of the ring F into
the ring F,(/=1,2,---,5+ 1). Now we shall prove that A, is a mono-
morphism (7=1,2, -, s+ I).

Suppose that a, is the null endomorphism of G/H; and that A;(x) = ;.
Then we have a*€H; Va€G, and so ¢*=1 VaeHyu ---UH,_;UH, ;U -

-+uUH,,;. Now we con31der w,=A), jo=4 If ae H\{1}, be{i,/},
then a* = 1 and so (¢H )f H;. Consequently o, j==7, is the null endo-
morphism of G/H,. There follows that ¢*€ H;, Va€ G and Vje{1, 2

s +1}. Hence a*= 1 Va € G, and this means that « is the null endo-
motphism of G. So we conclude that A, is a monomorphism. Finally we
prove that « is the null endomorphism of G or an automorphism of G.

We suppose that a*=1, a € G\{1}. When a € H;, then (aHZ-)ai = H; and
consequently o, is the null endomorphism of G/H;. From the preceding there
follows immediately that o is the null endomorphism of G. We conclude that
any element o € F is the null endomorphism of G or an automorphism of
G, and so the ring F is a field.-

5.3. THEOREM. The kernel ¥ of the translation 4-gonal configuration
S¥ of order s = p* is a suéﬁeld of the kernel F; of the translation plane HL°°
(of order s = p», i=1, s+ 1. Consequently |F | < s and | F|= j)"'
Q<A< [2].

Progf. () If s= 2, then F = F; = GF (2).



JosEPH ADOLPHE THAS, Translation 4-gonal configurations 311

(b) s > 2. In this case the theorem follows immediately from the fact
that A; is a monomorphism of the field F into the field F;.

5.4. THE VECTOR SPACE G. The group G may be regarded as the addi-
tive group of a vector spaceover any subfield F’ of the kernel F of S This
vector space is also denoted by G and its dimension is denoted by [G : F'].
We remark that [G:F'] >3 (if [G:F'] = 3 then necessarily F = F').

5.5. THEOREM. We /have [G:F' = 3n, n >1.

Proof. The subgroups Hi, He, H3 of the group G may be regarded as
subspaces of the vector space G over F'. As |Hi|=|H:|=|H;|=s,
we have [Hy: F1=[He:F]= [H3:F]=#(>1). From HiH.Hs; =G
and |Hi||Hz||Hs|= |G|, there follows immediately that [G:F']=
=[H1:F]+[He:F ]+ [H3: F]= 3.

5.6. DESARGUESIAN TRANSLATION 4-GONAL CONFIGURATIONS. The
translation 4-gonal configuration S® is called desarguesian if [G: F] = 3
(ie. if |F|=1ys). If S" is desarguesian then |F,| = s, and consequently
the translation plane Hff" is desarguesian (Z==1,2,---, 54 1) [2].

6. THE 4-GONAL CONFIGURATIONS T (7, g)

6.1. THE 4-GONAL CONFIGURATIONS T(z,¢). In PG(3n—1,q), ¢ a
prime power'and z > 1, we consider ¢” 4 1 (z — 1)-dimensional subspaces
PGP (n—1,9), PGP(n—1,9), -+, PGYV(n—1,4), every three of them
being joined by PG (37— 1,¢) (with such'a set of subspaces there corre-
sponds a (¢” -+ 1)-arc K of the projective plane over the total matrix algebra
of the 7 X z-matrices with elements in GF(g) [8]). In [8] we have proved that
through PG® (m—1,9),=1,2,---,¢"+ 1, there passes one and only
one subspace PG”(2%#—1,¢) of PG(37—1,q) which has no point in
common with the set PG"(n—1,9)u---uPG"P(n—1,q9) uPGYP
m—1,9)u- v PG+ (n—1,q) (with the ¢" 4 1 spaces PGP (27—
— 1, ¢) there correspond the ¢” + 1 tangent lines of the (g* + 1)-arc K [8]).

Let PG (37— 1, ¢) be embedded as a hyperplane H_ in PG (37, ¢)=P.
Define points of the incidence structure T (z,¢) as (i) the points of PNH_
(i) the 2#z-dimensional subspaces X of P for which X "H_ = PG(’.)(Z%»—
—1,q), 1€{1,2,---,¢"+ 1} (i) one new symbol x_. Lines of the
configuration are (a) the n-dimensional subspaces of P which are not
contained in H_ and pass through one of the spaces PG®(n—1,¢),
PGPn—1,q),---, PGY Y (y — 1, g), and () the spaces PGP (n—1,¢),
PG® (n— 1 ,g) ,- -+, PG D (n—1,q9). Incidence is defined as follows:
Points of type (i) are incident only with lines of type (a); here the incidence
is that of P. A point X of type (ii) is incident with all lines C X of type (@)
and with precisely one line of type (4), namely the one represented by the
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unique space PG (7 — 1 »¢) in X. Finally, the unique point x_ of type
(iii) is incident with no line of type () and all lines of type ().

The incidence structure T (7, ¢) so defined is a 4-gonal configuration of
order ¢” [9].

6.2. THE 4-GONAL CONFIGURATIONS T(1,¢) oF J. Trrs. For » =1
we obtain 4-gonal configurations T (1 , ¢), of order ¢, arising from (g + 1)-arcs
in PG(2,¢). Consequently the configurations T(1,¢) are the 4-gonal con-
figurations (of order ¢) constructed by J. Tits [2].

7. THE EQUIVALENCE OF THE 4-GONAL CONFIGURATIONS T (%, q)
AND THE TRANSLATION 4-GONAL CONFIGURATIONS S0

7.1. THEOREM. The point x, is a coregular point of the 4-gonal configu-
ration 'T(n,q). Moreover T (n, q) T, )" is a transiation 4-gonal
configuration for whick the group G of all translations is isomorphic to the group
of all transiations of the affine space AG (3 ,g)= PG (3 ”n, q)H"". Finally the
field GF (¢) = F' is a subfield of the kernel F of T (n , g)", and [G : F'] = 3.

Progf. First of all we prove that x_ is a coregular point of T(% ,¢). For
that purpose we consider the line PG”(z—1,¢9)=1;, 7 € {1,2,--,¢"+1}.
A line which is not concurrent with L; is of the form PG (2, q) with
PG(n,q) ¢ H, and PGV (n—1,9)CPG(n,q) (i==;). Let PG(z2#,q)
denote the 2 z-dimensional projective space joining PG” (#-—1,¢) and
PG (n ¢). The ¢"+ 1 lines which are concurrent with L; and PG (%, ¢)

are the hneL = PG(])(n——I ¢) and the ¢” lines PG (% 7), PG”(n 7, -
PG 7" (n 9) (of type (a)), for which PG (n,9)CPG(2n,q9) and
PG(’)(n—»»I,g)CPG(Z)(n,q) (t=1,2,--,¢). Next let PG“( 7) =
—PG(n,q), PG, q),- . pGY" (n ¢) be the g lines (of type (@)
for which PGP (n— 1, q)C PG (n,g) and PG (n,q) CPG (2%, )
(¢t=1,2,---,¢"). Now we remark that the lines PG(“(n @ (t=1,2,-- g”)

and L are concurrent with the lines PG (n 9), PG(Z)(n 9,
G(an) (n,9), L;. There follows immediately that the pair L;, PG (%, g))

is regular Consequently the line L, is regular, 7 =1,2,---,¢"+1. So we
conclude that the point x_, is coregular. ’

Next we remark that each translation of the affine space AG(3%,¢) =
= PG (37, ¢)" induces a translation of the 4-gona] configuration T (7 , g)"")
As the group of all translations of AG(3 7, ¢) is transitive on the points of
AG (37, ¢) (i.e. on the points of T (7, ¢)™ which are not collinear with » o)t
there follows immediately that T (7, g)( © is a translation 4- gonal configu-
ratlon for which the group G of all translations is isomorphic to the translatlon
group of the affine space AG (37, ¢).

Now we observe that it is easy to prove that the field GF(¢) = F' is
a subfield of the kernel F of T (%, ¢)" (the multiplicative group F'\{null
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endomorphism of G} corresponds with (and is isomorphic to) the group of
all’ dilatations of AG(37,¢) with center o € H_ (see 4.3.)). As | G| =g
and |F'|=¢, we have [G:F]= 3%, and so the theorem is completely
proved.

7.2, THEOREM. Let S® be a transiation 4-gonal configuration (of order
s) with coregular point x, and translation group G. If GF(¢)=TF' is a sub-
Sfield of the kernel F of S, where [G : F'| = 3n, then S is isomorphic to
a 4-gonal configuration T (n , q).

Proof. We consider the 4-gonal configuration G(77),7 = {H;,Hs,---

o, Hop1} (s =g7), defined by S%.  With the vector space G over

GF(g) = F' there corresponds a 3#%-dimensional affine space AG (37n,q)

(the subspaces of AG (37, ¢) are the cosets of the subgroups of the group G).

If H, is the ideal hyperplane of AG (37, ¢), then AG (37, ¢) = PG (37, q)H°°,

with PG(37,¢) the 3z-dimensional projective space over GF(g) defined
by AG (37, ¢).

With the s% cosets of the group H; there correspond the 42 %-dimensional
subspaces of PG (37, ¢) which are not contained in H_ and which pass through
a certain PGY(n —1 y¢)CH, (G=1,2,---,s+1=¢"+1). As the
n-dimensional subspaces H,, H;,H, (,/, £ distinct) of the affine space
AG(37,q) are joined by AG(37%,¢), the projective spaces PG (n— 1, ¢),
PGV —1,49), PG? (n—1,q) are joined by the (3#— 1)-dimensional
projective space H_.

With the s cosets of the group Hj (see 3.) there correspond the ¢” 2 7-
dimensional subspaces of PG(37,¢) which are not contained in H_ and
which pass through a certain PG(’.)(z n—1,9)CH_ (G=1,2,-,¢"F+ 1)
First of all we remark that PG (n—1,4) is a subspace of PGV (2% —1,¢)
(this follows from H,CH;). As the subspaces H/, H, (:=F/) of the affine
space  AG (37 ,¢) are joined by AG (37,g), the projective spaces
PGP2n—1,¢), PGV (n—1,q) ({==j) are joined by H_. Consequently
PGP (2n—1, NNPGY(n—1,9)=o (i=F7). So the space PG (2 —1,¢)
has no point in common with the set PGP (z —1,¢)u- - - U PGV ™Y (n—1,9)u
PGV —1 Py U PGEHD (n—1,9).

Now we see immediately that the 4-gonal configuration T (7, ¢), defined
by the subspaces PGV (n—1,9), PGP(r—1,q), -, PGY' Y (n—1,¢q)
of the (37— 1)-dimensional projective space H_, is isomorphic to the
4-gonal configuration G (7"). We conclude that S% is isomorphic to T (%, ¢).

7.3. THEOREM. T7he transiation 4-gonal configuration S is desarguesian
tf and only if it is isomorphic to a 4-gonal configuration T (1 ,q) of Tits.

Proof. Let S®) be a desarguesian translation 4-gonal configuration of
order p*=g¢. Then [G:F]=3 (i.e. #=1) and F= GF (). From 7.2.
there follows immediately that S is isomorphic to a 4-gonal configuration
T(1,g) of Tits.



314 Lincei — Rend. Sc. fis. mat. e nat. — Vol. LVI. ~ marzo 1974

Conversely, let us suppose that the translation 4-gonal configuration S
is isomorphic toa 4-gonal configuration T (1, g) of Tits. Then |G |= ¢3 and
| F| =g (see 7.1.). As g is the order of S" there holds | F | < g (5.3.), and
so |F|=g4. Consequently [G:F]= 3, ie. S* is desarguesian.
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