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Idrodinamica. —- On a semigroup approach to oceanography: 
the treatment o f the linearized equations for non viscous sea. Nota di 
V incenzo M alvestuto, E ttore S alusti e F rancesco Z ir il l i, pre­
sentata (,) dal Socio B. S egre.

RIASSUNTO. — Si studiano le equazioni linearizzate di un noto problema di idrodi­
namica, riguardante un « mare » non viscoso con densità dipendente dalla profondità. Usu­
fruendo della teoria dei semigruppi, si deriva e discute un’equazione generale inerente a 
detto problema, e si analizza una soluzione che può essere descritta mediante funzioni ele­
mentari.

We w ant to discuss in this Note the equations which describe the m otion of 
an inhomogeneous ro tating fluid. For sake of sim plicity we neglect the viscosity.

The im portance of these problem s can be recognized in the effects of 
a variation of the atm ospheric pressure on the currents, in the variation of 
the sea level near the shore, in the effects of the storms and in the im portance 
of the salinity and heating in the currents. These argum ents have interested 
m any researchers. Eckm an [1] started in 1905 from the linearized Navier- 
Stokes equations. H e used ra ther complex and direct calculations. The 
same problem s have been analyzed by Nom itsu [1] by using the Fourier 
series expansion. For the same problem  Crease [1] used the Green functions 
and Lauw eirier [1 ] and Crepon [1] the Laplace transform  techniques. M ore 
recently H ansen [1] applied the com puter possibilities to these problems. 
In this situation we feel th a t the semigroup theory—-which is a very general 
tool— can be fruitfully  applied to these problems.

In order to describe our idea, we m ust say tha t in this paper we are more 
interested in the rigorous developm ents of the theory  than  in its phenom e­
nological applications. In  practice we study  the linear version of the equations 
of the m otion for a non viscous fluid, initially stratified and at rest [1 ]. This 
is the case of a sea of variable density  p(x , y  , z , £)i developing from a situa­
tion in which the density  is a function of the vertical coordinate only 
p |/=0 =  P0CS')- Ih  the hypothesis th a t our systems is at t  =  o in a condition 
of stable equilibrium , and th a t the external perturbations can produce only 
small changes, our equations are in the first order approxim ation [2] :

I. Introduction

Po { w  u +  V** ~  Xz/) =  ~  i t p

(I)

(*) Nella seduta del 9 febbraio 1974.
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The m eaning of the symbols adopted above is as follows:

ü  =  (u , v , w) is the eulerian velocity perturbation  of first order;

Pipe , y  , £ , / )  is the pressure perturbation from initial pressure d istri­
bution; we will refer to it as to the pressure;

S =  p (x , y  , z  , t) —  p0 is the instantaneous variation of the initial 
density;

X , [x are the param eters of the vertical and horizontal Coriolis acce­
leration respectively. If  the ^r-axis has the direction of the parallel and the 
y-axis th a t of the m eridian, and the ^-axis is directed upwards, Q =  1 (o , pi, X) 
is the angular velocity of the E arth . If  0 is the latitude angle, we have:

X =  2O sin 0 , [x =  2 Ü, cos 0;

£ =  ( 0 , 0 ,  — g) is the grav ity  force;

F =  (F (x) , Fiy) , F{z)) is the total resultant of all other forces.

In  w hat follows we trea t the general problem  and we obtain the equation 
for the pressure p  in a very simple way, by using simple results of the sem i­
group theory. M oreover we will put in the present Note fx =  o: the case 
(x =)= o will be discussed in a subsequent paper.

In  the next § 2 we shall describe the m ain theorem s and applications 
of the semigroup theory  (in a simplified form). Then, in § 3, we arrive at an 
integral equation for the pressure p. An elem entary treatm ent in the case 
of constant depth h and p0 =  Aeaz is analyzed in the last § 4.

2. Semigroup theory

We now quote the m ain results of the theory of semigroup. F urther 
results and all the proofs m ay be found in the related literature [3].

W e start with an intuitive introduction of the argum ent; then we list 
some foreseeable results and lastly we give them  an exact form by stating 
the rigorously established theorem s of the theory.

Let us first consider the following differential equation in the real variable 
t for the deal function f  (t):

(2) -^-/O O  =  af ( f )  , / ( o) =  F  ( a , F  real num bers),

having the obvious solution

(3) - f ( f )  — eta F.

The corresponding inhomogeneous problem

(4) =  ¥ (* ) + W m  =  f
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has the solution:
t

(5) f ( t )  =  eta F  +  I ds et*r-s)a b {s) ;
0

this is known as the D uham el principle.
O ur purpose is to generalize these results in a Banach space X [9]. This 

generalization requires a theory  able to extend the notion of exponential 
function to the operator space. In  fact, we w ant to solve in a Banach space X 
the differential equation:

(20 —  * (/)  =  A *(/) , X (o) =  x 0 ( x ( t ) e X , V t > o ) ,

where x(t)  is an elem ent of X, continuous function of the real non-negative 
variable t, and A  is a linear operator upon X.

T he equation (2') m ay be solved only if the operator A  has some “ nice ” 
properties, which are precisely the effective object of the study  in the sem i­
group theory. The formal solution of equation (2') would be

(3') x(t) =  etAx ü,

where a possible definition of the operator etA is:

(6)
OO z.V  (tA)k 

T\

However, a priori we are not sure th a t the series (6) has any meaning. In 
fact, one could easily construct some examples where etA does not m ake 
sense at all. The sem igroup theory  shows th a t the operator eiA on the Banach 
space exists, if at least one of the following three properties holds:

i) the A  operator is bounded— in which case etA exists and is a conti­
nuous function of /, called the semigroup generated by A;

ii) if the Banach space X is a H ilbert space, too, and if A  is antiher- 
m itean (that is: A +=  ~— A); then, not only etA exists but it forms also a one- 
param eter group;

iü) (H ille-Yosida Theorem ) if the A  operator has its dom ain dense 
in X and is closed on it, and if it possesses the further property  that, for two 
real num bers M and 6>, we have:

il (XI — A) Ä|| <  M ( X ~ c o )  w (X >  co , n =  I , 2 ,• • •),

where || || denotes the norm  in the X-space, I the identity  operator, X a real 
param eter; then exp (jA) does not exist properly: but we can find a semigroup 
(see the exact; definition in the following), which we call etA in a formal way 
and which yields the solution of our equation according to (iii). The last 
statem ent is ra th er com plex to verify, but it is the most useful one in practical 
cases.
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W e give now the rigorous m athem atical form ulation of the above m en­
tioned theorem s [3].

L et X be a B anach space, which is a complete linear space with a norm . 
W e study  a set of linear bounded operators on X which are labelled by a 
real non negative param eter t. Such a fam ily of operators, to be denoted 
by  {U(/)}^>0, is said to be a strongly “ continuous sem ig ro u p ” if

i) U  (o) =  I ,

ii) U ( / + j ) = U ( / ) U . ( j ) (Vj , * > o) ,
iii) U  (t) x  is continuous in t in the strong topology for any  x. If  U (f) 

is continuous in t in the uniform  operator topology, the semigroup too is 
called “ uniform ly continuous ” .

These definitions are sim ilar to those of the group theory, but only for 
nonnegative t, since the inverse of an element could not exist in the semigroup.

As in group theory, it is useful to introduce the concept of “ infinitesimal 
generator ” , to be denoted by  A:

A  =  lim - •  'fV -' '' , V ^ e D ( A ) ,
0 J

where D (A), the dom ain of A, is just the set of those j g X such th a t the 
lim it exists.

If  the sem igroup is uniform ly continuous, the generator A  m ay be 
defined directly by m eans of the following limit:

A  =  lim \\J(s) —  I]ls.
s-> 0

It is possible to show, if the semigroup U  (t) is

strongly continuous uniformly continuous

a) D (A ) is dense in X and A is
closed on D(A);

b) if r e D  (A) , U ( / ) r e D  (A), for any
* > o ;

c) —  [U (t) x] =  A U (/)*= =  U  00 Ax,
for every x  eD  (A);

d) U  (t) x  =  lim exp \t -----1 x, for
0 L J J 

every x  e X .

a') A is a bounded operator with 
D(A );

O  A u ( / )  =  A U (/) =  U (0 A;

d') U (0  =  eih
OO

m k
kl

The m ain results which we shall use here and elsewhere are:

Theorem I . A  semigroup U  (t) possesses an infinitesimal generator A 
bounded on, i f  and only i f  it is uniformly continuous.

Theorem II. A  closed operator A, with domain dense in  X, is the gene­
rator of a strongly continuous semigroup, i f  and only i f  there exist two real
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numbers M and  co such that, fo r  every X >  co, the operator (XI —  A )“ 1 exists 
and satisfies the following estimates'.

Il (XI A) n II <  M (X — cùfin (n =  I , 2 , 3 , • • •).

Theorem III .  I f  the Banach space is also a Hilbert space and the infi­
nitesimal generator is antihermitean (that is A  +  A + == o), the semigroup is 
extensible to an entire group by letting t be negative.

THEOREM IV. I f  the operators A  and  B are the infinitesimal generators 
of two semigroups and moreover AB =  BA, then A  +  B is the generator o f a 
semigroup and et{A+^ is given by the product semigroup etA etB.

Theorem V. I f  A  is the generator of a semigroup and  B is a linear bounded 
operator, A  +  B is the infinitesimal generator of a semigroup (even i f  A  and  B 
do not commute).

We thus have powerful m ethods for finding quickly the solution of the 
following equation in X:

f x ( t )  =  A x (t)  , x(o) =  x 0 (x0 , x ( t ) e D ( A ) ) .

The solution is im m ediate and given by

t  (t) ~  etA x 0

if A  is the infinitesimal generator of a semigroup. In the same way, the 
corresponding inhom ogeneous equation

(40 4 t x ®  =  A x +  B CO . *(o) =  *0 (x(t) e D CA) , B (/) e X)

has a solution which, as can be easily shown, is obtained by generalizing 
the D uham el principle, given by

t
(S') * 00 =  x 0 +  j  d s B ( j ) .

0

3. Ocean w ithou t cu rren ts  

In  the present assum ption our system  of equations becomes

i ’— i - i i i u + n
9 dpo
x * ==- d g - w >
d - d . d— w =  o .dx dy 1 dz



242 Lincei -  Rend. Se. fis. m at. e nat. -  Vol. LVI -  febbraio 1974

It is easy to recognize that, if we assume tha t the pressure p  is a known func­
tion, the first two equations are independent from the others. So are the 
th ird  and fourth equations. W e can then solve these two pairs of equations 
separately, in order to obtain u , v , w  and § as functions of the given func­
tion p.  A fter that, we m ay use the last equation (ie), i.e., the continuity  equa­
tion, to determ ine p  and so explicitly all other unknowns.

To sim plify the com putations we introduce the “ velocity ”

W  = g_ A
V B0 ’

where v is a frequency defined by:

(2) v «  =
g_ _̂ Po 
Po

/rem em ber that: <  o
)•

In term s of the new velocity W, the equations ( i a ) , -  
rewritten:

-, (ie) m ay be

( i 'a )

(I ' b)

( i 'c)

(I'd)

( i 'e )

3/

91

dlU 
~dt

3W
- w  = vw ’

- * u - - k ( w ? + F  w ) .

- v W - - L  p +  F w) ,
Po \ 3z

3 I 3 I 3U +  -  - -  v +  —  w =  o .3y dz9 x

Since the two pairs of equations (Fa) (Tb) and (Tc) (Td) have clearly the 
same structure, we m ay study and solve them  at the same time. For example, 
the first two m ay be w ritten in the form

(4') x(t)  =  A x (t)  +  B(*) , x(o)  =  x  ,

w ith x(t)  =  vector of a (not yet precised) Banach space, x 0 =  j our 
ocean having been assum ed to be at rest at t  — o, and:

(3)
- / + F M\

we are therefore led to study  the semigroup:

tA t
e — e

0 X\
-X  0 )
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It is easy to see th a t

(4) ( cos \ t  sin XA
—  sin \ t  cos \ t )

since it satisfies

—  etA == AetA =  etA A  at

The fact th a t the sem igroup exists was foreseeable, by looking at the 
structure of the operator A; for A  is obviously limited, and so it generates 
a uniform ly continuous semigroup, extensible to a group.

Before we continue through, we need to define in w hat space (in any 
way, a Banach space) our considerations are to be taken  as valid. From  a 
physical view-point, if the ocean is bounded held in space, we m ay suppose 
th a t its kinetic energy is bounded and this would suggest as space X the

4
orthogonal sum of L2 w ith itself: X =  © L ^ . But this choice has the m athe-

k=*i
m atical defect th a t the derivative of a function of L2 is not necessarily in L2 
and this would com plicate our task  very much. So, starting  on physical 
ground from the fact th a t the derivatives of u , v , w  have to be fairly regular 
functions of t, having the m eaning of eulerian accelerations, we shall restrict 
ourselves to those functions of L2 which have their derivatives of first order 
in L 2 , which is perfectly equivalent to choosing as our space the Sobolev [3] 
space H 1’2. All the preceding considerations can be repeated in order to find:

( 5) (cos v/ •— sin vA 
sin vt cos vt/

Obviously, even if the Coriolis param eter X were constant in the space variables, 
our form ulae would have been the same.

The sohition of eqs. (C) now, according to the generalized Duham el 
principle (5'), are:

(6a)

(6b)

cos X {t —  s) 
—  sin X (t —  s)

t

0

/ cos v (t —  s) 
\  sin v (t —  s)

sin

cos X (/ —  *)/ +  poo

— sin v(t —  s)\ l ^ P  +  F w '
cos v (/ ■— s)J \

In  this vray we have been able to write in most cases the general solution 
of our m athefnatical problem , as a function of pressure p. We rem ark  that, 
up to this point, no approxim ation has been m ade at all.

From  the explicit form of the u , v ,w  function we can write the conti­
nu ity  equation as an equation in the pressure p. Let us perform  the deriva-
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tives of ù  , v , w  in eq. (6) under the integral sign, assum ing for sim plicity 
th a t F =  grad Then, putting  p ' =  T ’’ +  p, we have

t
du , v I fi , I , 32 32
—  =  d ^ c o s  X ( / - » ) l 5 r /  +  Sm

0

“È  sin +  (*■~  s) -S ' cos ^  -  -L• f - 1  (* , T , * , r ) ,

*

Ò

if

L ■ « ,(*  , 4 / , ,  , *) =  -  J  d* -J -  j-i- cos vO; (*~  f) j - j  ( *  , T , * , s) .
0

From  the continuity  equation, we then obtain for p  the equation
t

j  ^  [| -  cos ( L  +  ^  + 1  [ 1  cos v ( ,) ( /  -  s ) ~ p ^ { +
0

+  I (t—  s) sin X(* —  .s) (—  ~  -g -) +  (/ —  *) cos X (f —  j) •

( dX dp dX d p \ ) l
• L t  -37 —  - d  =  0 •

If  we now assume X to be constant, we obtain more treatable equations;

t

^ i U =  ~ T ^ J ds [cos +  sin X(* —  s) ( x , y , z , s ) ,
0

t

i ' V =  ~ ~ k f  d fl ~  Sin X (/~  j) S w  +  COS X^ ~  f) f f ]  (* > T, * , *),
0

t

4 f W==~ J  d s ^ l j - c o s ^ V V - j ï ^ i x . y . z , * ) .
0

From  the continuity  equation we deduce

/  cosX^ ~ J) ( i  +  +
Ò

+  h V c o s  v < ^  ^  “ 3 ^ ] |  ^  ’  *  - j ) =  ° -
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This equation is fairly general, if one wants to study a non-viscous 
sea. T he only hypotheses are, as described above, th a t X is a constant, the 
system  is at rest at /  == o and p!^=0 =  PoĈ )- M oreover we confine ourselves 
to studying small departures from the equilibrium , by using linearized equa­
tions of motion. W e would like to stress, now, th a t the effect of using the semi­
group approach can be seen in the structure o f this equation. In  fact, the 
integral equations obtained for the velocities allow th a t the final equation 
for the pressure is a 2nd order differential equation [4]. D ifferent form ula­
tions give in m any cases differential equations of higher order, which are 
more difficult to trea t and which need m any more inform ation about the 
boundary  conditions.

In  our case, the boundary  conditions can be quickly described. On the 
rigid boundary  one can pu t ü*n — o if there is no friction between the rigid 
boundary  and the sea water; otherwise we have ü =  o. In  term s of p,  these 
conditions are more complex and can be obtained by using the expressions 
u , v , w  as functions of p> as derived above.

The air-w ater interface, however, is more complex to describe. This 
is in fact a moving boundary, which could considerably complicate our pro­
blem. We can then schematize on physical ground this “ dangerous ” aspect. 
If  we suppose all the air system  is m oving under an external force acting 
on the sea surface, we can assum e th a t p ( x  , y  , o  , f )  is a given function 
Po(x >y>t)'  In the other case, where we study the free oscillations of a 
basin, we can assume th a t the w ater profile is given by z  =  Ç(x , y  , t). The 
physical hypothesis is

p ( x  , y  , o , t) =  gç>0 l ( x  , y  , t) ,

th a t is, a reasonable version of the hydrostatic approxim ation for the z  =  o 
plane. In  this way, because

9 V   I
~W  ̂ ~  W l *  =  5 ~ o  ’

we have
, =  _  I

a/2 P £  dz **=o *

In  the present Note, however, we shall not trea t the boundary  problem  in 
a complete v^ay, but only apply  the preceding considerations to a simple 
exam ple.

4. A  SIMPLE CASE

W e w ant to study  the explicit solution in the case th a t p0 (z) =  e~az. 
This case is well known in the literature: if the depth  is constant, the problem  
can be easily solved [2], [5].

Let us suppose th a t the system  is at rest at t — o. Then an external force . 
is applied to the air-w ater interface and the system reacts to this force. In
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particular, we shall suppose th a t this external force acts in such a w ay as to fix 
the shape \  of the free air-w ater surface. We can then calculate the pressure 
at the z  =  o surface by using the relation

P =  Po g l  L o .

In practice, by m aking the Laplace transform  of the equation of m otion and 
of the boundary  condition, we obtain

( £<** ___I_________ s )  4- eaz 1 ( ■ d -I_£ =  o
3z \ (ù2 4- gu dz ** J co2 +  X2 \ 3.r2 ' dy2 /  ̂  ’

p ( x  , y  , z =  o , co) = ^ p 0(o) %(x , y  , &>),

\ f ~ ( x  , J  , z  =  —  h ,10) =  o  .

The last condition comes from the requirem ent ze/(— A) =  o, by  using the 
sem igroup relation between w  and - • We can now sim plify our problem  
further by assum ing

\  (x , y  , co) =  di (co) sin K x  ,

where & (co) is an analytic function. It is easy to see th a t the solution of this 
system is

a

p ( x  , y  , z  , co) =  p0 (o )^  & (co) sin kx e 2 “ cosh [yz] {1 +  tgh. [yA+ß] tgh [yz]},

Y =
ca2 +  <xg 
co2 +  X2 ß =  sett sinh a j /  ca2 +  X2 ]

2 k  \ CO2 4-.gCL J
I f  now one wants to invert this Laplace transform , one can easily find the 
zero’s of cosh (Ay).. Then one finds th a t the poles are the solutions of this 
equation

tgh fy/z] = Y
a
2

and these are the frequencies of the natural response of our system  to any 
external effect.

The same problem , as well as the calculation of free modes of this systems, 
can be found in an article of Saint Guily [5].

We now rem ark  th a t this solution is more general than  it looks. In  fact, 
we could sum  various solutions for different boundary  conditions. We then 
have the solution for the fairly general boundary condition

\ ( x  , y  , co) =  2  ^kk’i sen kx  sen k'y& ^tù) ,
k,k',i

where obviously V>kk’i are real num bers and the { &7 } are a com plete set 
of states.
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