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Fisica matematica.

On the formal structure of the relativistic
gravitational theory ®. Nota di Enzo Tonti, presentata ®? dal Socio
B. Finzi.

RIASSUNTO. — La teoria dell’omologia dei complessi di celle nello spazio—tempo conduce
ad uno schema di classificazione delle grandezze e delle equazioni della teoria relativistica
della gravitazione. Lo schema conduce ad una peculiare decomposizione delle equazioni
di campo: le equazioni ottenute hanno la stessa struttura delle equazioni di Maxwell, salvo
il diverso carattere tensoriale.

1. INTRODUCTION

It is commonly known that in every physical theory there are physical
quantities that are naturally referred to the basic geometrical objects, like
points, lines, surfaces, volumes, hypervolumes, etc. The purpose of this
paper is to show this connection and to deduce some consequences for the
relativistic gravitational theory and for electromagnetism ().

Let us consider a four-dimensional region of the space-time; in order
to evidentiate the basic geometrical entities it is expedient to cover the region
by a cell-complex @. This space-time cell-complex, which we denote by
K, exhibits o-cells, 1-cells, 2-cells, 3-cells and 4-cells, i.e. five geometrical
entities. The o, 1, 2, 3, 4-cells will be denoted by P(point), L(line), S(surface),
V(volume) and H(hypervolume) respectively. We shall suppose that the
space-time region considered has the structure of a smooth manifold and then
we choose as cell-complex K the one formed by a discrete set of three-dimen-
sional coordinate manifolds x* = constant. Every p-cell of K will be oriented
according to the natural orientation of the corresponding p-dimensional
coordinate manifold. Since the number of p-dimensional coordinate manifolds
passing from a point of R*is (*) we can group the p-cells in i families.
The number of families will be written before the symbol of the p-cell:

the resulting notation is the following
(1.1) 1P 4L 6S 4V 1H.

It will be useful to consider also the dual cell-complex, that we denote K,
whose o-cells are the baricentric points of the 4-cells of K. The p-cells of K
will be denoted with the corresponding symbol of the cell of K with a tilde

(¥) This work has been sponsored by the CNR.

(**) Nella seduta del 9 febbraio 1974.

(1) For the implications of such connection between physics and geometry see the author’s
paper [1].

(2) The study of cell complexes is the subject of algebraic topology [2], [16].
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upon the letter. Since to every p-cell of K there corresponds a (z— p)-cell of K
we can denote this pairing with the scheme

K: 1P 4L 6S 4V 1H

(1.2) - - - . N
K: 1H 4V 6S 4L 1P.

In this way we have obtained a rational classification of the basic geome-
trical entities of the space-time. We shall suppose that the p-cells of K be

numbered according to some criterion and that the (% — p)-cell of K has
the same number of the corresponding p-cell of K. If to every p-cell we
put into correspondence an element of an additive abelian group ¢ we
have constructed a p-chain with coefficients in & [16, p. 225]. We now
propose to show how physical quantities give rise to chains of various orders
on K and K. Let us consider, for ex., the energy-momentum vector P, given
by [8, p. 112]

(1.3) Pazfﬂ"raudLu

where T,* denotes the stress-energy-momentum pseudo-tensor @), dL, denotes
the supplementary vector of the 3-vector dV* i.e.

(1.4) dL, = -3."— Loy AV

Cuspy is the Levi-Civita covariant tensor-capacity. With every 3-cell Vi of
the cell-complex K we may associate the corresponding vector P, : in this
way the energy-momentum vector gives rise to a 3-chain whose coefficient
group is the linear space $=R*. As a second example let us consider the
electromagnetic potential A, and the circulation

(1.5) C=an dLe.
7

With every 1-cell L ;) we may associate the corresponding circulation Cu
and then we have defined an 1-chain whose coefficient group is the linear
space $=R. As a third example let us consider the Klein-Gordon wave
function ¢ for:a charged particle: if with every o-cell P;, we associate the
complex number ¢ (P(;) we define a o-chain whose coefficient group is the
linear space 8 =C. The main process on a p-chain is that of constructing

(3) The pseudo-tensor nature [5, p. 195] [7, p. 225] of the so called stress-energy-
momentum ‘ tensor ”’ is often left in the dark: the reason is that we are not accustomed to con-
sider inversions of the space-time axes. For the pseudo-tensor nature of the corresponding
spatial stress “ tensor”” see [5, p. 195], [3, p. 281]. The first index is written in latin to distin-
guish it from the remaining ones, written in greek character, for a reason that will be explained
at the end of this section. Both kinds of index assume the values o, 1, 2, 3.
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a (p + 1)-chain by the coboundary process [16, p. 209]. This is a two-step
process defined as follows: let us consider a p-chain

1) we transfer the mathematical entity g, € § referred to the j-th p-cell
to its cofaces, i.e. to the (p +1)-cells incident in it, with the same or opposite
sign according if the orientation of the coface agrees or not with that of the
p-cell;

2) for every (p + 1)-cell we sum the mathematical entities associated
with it by the operation illustrated in 1).

In this way we obtain a (p + 1)-chain 4,,; that is called the codoundary
of the given p-chain a, and we write

(1.6) bpi1 = Sa,

the operator & that describes this process is called the coboundary operator
[2], [16]. It is a remarkable fact that many basic physical equations asserts
that a given (p +- 1)-chain is the coboundary of another p-chain. Of this kind
are the balance equations, the circuital equations, those that define the gra-
dients of field potentials, compatibility equations and those giving the general
solutions of a balance equation in field theories [1]. To transfer these matters
in the language of the field theories we must consider infinitesimal p-cells:
one can see that a p-chain becomes a differential exterior form of degree p
with values in the abelian group §, or briefly, a p-form with values in §
[12, p. 42]. Moreover it can be shown [1] that the coboundary of a chain
becomes the exterior differential of the form. So let

_ 1T afy
(1‘7) pa_?!_TaO(By dv
be the infinitesimal amount of energy-momentum associated with every
3-cell of a cell-complex. Since the 3-vector dV can be written as 4

(1.8) dV=du A dv A\ dw
where du, dv, dw are three vectors, we can write eq. (1.7) as follows
(1.9) o= T, du* do® de?.

This is just a 3-form with values in R*. The presentation we have given
shows that the differential form gives the infinitesimal amount of the physical
quantity associated with the p-vector formed by the p wvectors du,dv,---.
Using the supplementary 1-vector of dV given by eq. (1.4) the infinitesimal

(4) We use boldfaces characters for vectors, multivectors and elements of the coefficient
space 9. The symbol A denotes the exterior product of multivectors: the multivector calculus

is the essential tool to pass from algebraic topology to the theory of exterior differential
forms [1].
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amount p, can be written
(1.10) p.=THdL, .

This is the adjoint 1-form ®). We emphasize the fact that the adjoint form
gives the same infinitesimal amount of the physical quantity associated with
the 3-vector dV. More in general if @ denotes the infinitesimal amount of a
physical quantity referred to an infinitesimal p-cell dp we may write

(1.11) wo=4adp

where & denotes a linear operator from the space of p-vectors to the linear
space 8. Using the components of dp in a local coordinate system we may
write

(1.12) wzﬁaag...(x)dp“ﬂ'“ = g, .. () dee® doP

and moreover using a base in the coefficient space &
(1.13) Gt = Gup o (%) AP = apy g (x) dos* doB

We introduce the name of passive indices for the indexes that are relative
to the mathematical nature of w (scalar vector, tensor, spinor, matrix, ope-

rator, etc.) and use for them latin characters: @, 4 ,---. Moreover we shall
call active indices those that are relative to the p-vector dp and use for them
greek indexes: a,B,---. The set of functions @....s... (x) has a tensor

behaviour with respect to the active indexes and has an a priori unprecised
nature with respect to the passive indices: we say that they form a zensor-
object. The functions a,....p... (x) is, in a sense, a kind of density of the phy-
sical quantity w. On account of the skew-symmetry of the tensor character
of dp®® - there is not loss of generality to consider the .. ... (x) as
forming a skew-symmetric tensor ficld with respect to the active indices
[3, p. 281].

As an example let us consider tha parallel transport of a vector along
an infinitesimal circuit described by a bivector db. The rotation of the
vector can be described by an infinitesimal bivector w: the linear relation
between them is represented by the equation

(1.14) 0 = -1 Rumg 487 .

The operator R, is the Riemann tensor. This clearly exhibits that the
Riemann tensor has two passive indices and two active indices. Using the

(5) Also called conjugated or polar or starred form and denoted by a star before the
symbol: so if y denotes a form, %y denotes its dual [13, p. 68].

16. — RENDICONTTI 1974, Vol. LVI, fasc. 2.
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supplementary (z — p)-vector whith components ®)

I
(I'IS) dqu,v..,=ﬁeuv..4aﬂ...dpuﬂ“.
we can write
(1.16) ... = mAm.‘“”“@ dgw . = Aw P () dry ds, - -

where dg=dr A ds A ---.

If we use the criterion to refer the density field ... .43... (x) or its
dual Ag..*v (x) to the same geometrical element (P,L,S,V,6 H) to
which the corresponding physical quantity w is referred, then we may con-

struct a classification scheme for the variables and the equations of a field
theory (Table I).

2.  RELATIVISTIC GRAVITATION THEORY (LINEAR APPROXIMATION)

We propose to show that the scheme given in Table I classify at the same
time the variables and the equations of the relativistic gravitation theory
and of the electromagnetic field. The only difference lies in the kind of space
of coefficients ¢ we choose: more precisely

1) electromagnetism: ¢ =R;

2) relativ. grav. theory: §=R"
In terms of indices the relativistic gravitational theory differs from the
electromagnetism for the presence of a passive index. Let g, , be the riemannian

metric tensor and 59043 be the metric tensor of a flat space referred to the same
set of coordinates. Putting as usual [4, p. 315]

(z.1) £ =S8t "o
and
(2.2) Pup = Pog — = H 5
we obtain

I o
(2:3) fpy = a5 P apy-
Now we can consider ¢,; as the symmetric part of a second rank tensor
(I)ae i.‘e.

I

(2.4) P = 5 ((I)aa + (Dga> .

(6) The supplementary of a multivector must be made which the Levi-Civita tensorial
capacity ¢,q . or with the corresponding tensorial density €*¥""* and not with the Ricci tensor

€4p...= Vig] Cyp... OF su\'“':V[_g_[ ewv---,  This is needed to maintain the nonmetrical
nature to the notion of supplementary of a multivector.
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TABLE I
A classification scheme for electromagnetism and relativistic gravitation theory

1P
(6,y)

|
X
*

’&’ao(y’ 6‘9,«7-/«

wave equatiorn

4L V
(7,9
Fos =0 Ps -0 Pu T“=02yG™
(G,F)
Hv-g—i é_v}c(/s 9} Fxﬂ G,av=€,avp2 Z)p[)
147 47
* <£.f/>—@)
B =?y //y ER = 93 C

7H
(C,8)

?~

The star denotes controvariant tensor densities. The number of distinct components
of every tensor-object is equal to the number of families of the corresponding coordinate
manifolds.

In this way we are led to consider a space-time field whose field potential
is a nonsymmetrical second rank tensor @, This amounts to a generalization
of the linear gravitational theory that is useful for the case in which the
stress-energy-momentum “ tensor "’ is nonsymmetric [15]. This does not
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mean that the skew-symmetrical part of @, be alone sufficient to describe
the dynamical features connected with the nonsymmetrical character of the
““tensor ” T . We are here faced with a situation analogous to the classical
continuum mechanics that is described by a symmetric strain tensor while
‘the more realistic notion of oriented continuum (also called polar or Cosserat
continuum) need a nonsymmetrical strain tensor and, moreover, another
so called curvature-twist tensor that is a third-rank tensor [14].

The field potential @+ will be linked to the (nonsymmetrical) pseudo-
tensor T, by means of the two equations

(2.5) Fop=Va % — Ve @  V,G =T

and of the constitutive equation

v__ 1 v o e
(2.6) Ggu - 7 Xbu @ F B
with @)
4
(2.7) 1= — V1818, (Bl —gus o)

that are similar to the equations of the electromagnetic field (see Table II).
The direct link between @2 and T, is obtained inserting one equation in the
other according to the order indicated by the arrows of Table I. One obtain

I

o [¢] o
(=8) T =V, [? 157 (V ®—Vy q)”a>] ’
If we introduce the metrical [5, p. 136] gauge condition
(2.9) Vi@, =0
the wave equation (2.8) becomes

v /181 ¢ e u
(2.10) Tf=—V 18| g O P/

If we take the symmetrical part of the tensors of both members putting

def
(2.11) T _—e_%(T,;“ +T%)
we obtain

: A o

(7) The corresponding constitutive tensor for the electromagnetism is [5, p. 179]
(using the metric tensor g,q)

wod TV 1g1 (g pp—ge0 ).

XL
2,
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that is the wave equation of the relativistic gravitational theory for weak
fields. We remark that the gauge condition (2.9) is slightly different from
Hilbert condition [4, p. 314] that asserts the varushmg of the divergence of
the symmetric part of ® .

An important property of the formal differential operators of the left
and right columns of Table I is the following: let us define the bilinear func-

tionals
(6,1p>diffffa-1pdﬂ @m‘ifﬂ E,-H’dQ

(2.13) <T,<1)>d§f UT“ @, 40 «, B)deijJfC.BdQ
wn ]

where the dot denotes tensor composition with respect to the passive indices;

dQ= l/ |§|dx0 dat da? dx®. Then we show that the differential operators
of the left cma’ rz;g}n‘ columns are either formally adjoint or skew-adjoint one of
the other. .

(2.14) UﬂT“(a V) dQ = fm (—3, T ¥ dQ + {b.t}

where {b.t.} denotes the boundary terms. Moreover

L . F,,dQ

21

J‘prf % G (au(Dv— 3, <I)u) dQ = JJJf e va) ) (I)MdQ 4 (bt}
(2.13) ¢ &

Jf” E,- (% 213, Fyg) dQ = JM f S (78, B Fog dQ + {b.t.}
@ Q

and so on. This property together with the symmetry of the constitutive
pseudo-tensor

(2.16) X = A+

permits us to give a rational derivation of the variational formulation of the
wave equation of a field theory that enters the scheme of Table I [6]. If we
apply the systematic procedure explained in [6] we find the action

sie]= || f G”'[Fug (0,)] - F, () dQ —

_ﬂf UT*‘@ o) - 'I'L;” dl]dQ.

(2.17)
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The reason for the integration on the parameter A in the second integral is
given in [9]. As an example for a free field (T,* = 0) we obtain the action

(2.18) S/[d] = /U/Y V18| v @ v qsv;%“ .V, 0,]dQ

that is valid for the electromagnetism putting Y=FI“ and for the relati-

4 0
vistic gravitational theory putting y= _TGTCEC_

Summarizing we have shown that the natural association of the physical
quantities of the relativistic gravitational field, as well as those of the electro-
magnetic field, with the basic geometrical entities of space-time leads to a
classification scheme of the ficld tensors and of their connecting equations.

Such a classification permits a systematic deduction of many mathematical
properties [1].
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