ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

CHRISTIAN FABRY

A fixed point theorem based on the use of an auxiliary functional

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **56** (1974), n.2, p. 175–179. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1974_8_56_2_175_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Equazioni funzionali. — A fixed point theorem based on the use of an auxiliary functional (*). Nota di Christian Fabry, presentata (**) dal Socio G. Sansone.

RIASSUNTO. — Si presentano teoremi di punti fissi per funzioni non necessariamente continue definite su spazi topologici compatti o su sottoinsiemi debolmente compatti di spazi vettoriali topologici. I risultati generalizzano teoremi ottenuti da W. A. Kirk per applicazioni nonespansive.

I. The aim of this Note is to present a fixed point theorem which provides a generalization for the following results of W. A. Kirk [1, 2].

Theorem 1. Suppose X is a nonempty, weakly compact, convex subset of a Banach space E, and suppose that X has normal structure. Then, for every nonexpansive mapping $T: X \to X$, there is a point x in X such that x = Tx.

Theorem 2. Suppose X is a nonempty, weakly compact subset of a Banach space E. If $T: X \to X$ is a nonexpansive mapping which has diminishing orbital diameters, then there is a point x in X such that x = Tx.

Let us recall that a mapping $T: X \to X$ is nonexpansive if $||Tx - Ty|| \le \le ||x - y||$ for all x, y in X and that it has diminishing orbital diameters if, for each $x \in X$, x = Tx,

$$\delta\left(\mathbf{Q}\left(x\right)\right)<\infty\qquad\text{and}\quad\lim_{n\to\infty}\delta\left(\mathbf{Q}\left(\mathbf{T}^{n}x\right)\right)<\delta\left(\mathbf{Q}\left(x\right)\right)$$

where $\delta(Q(x))$ is the diameter of the set $Q(x) = \{T^n x; n = 0, 1, 2, \dots\}$. On the other hand, a bounded convex subset X in a Banach space E is said to have normal structure if, for every convex subset H of X which contains more than one point, there is a point $x \in H$ which is nondiametral, that is, for which

$$\sup \{ \|x - y\| : y \in H \} < \delta(H) = \sup \{ \|x - y\| : x, y \in H \}.$$

2. Our first result provides a fixed point existence criterion in the general framework of a compact topological space X; it involves the use of a function $\psi: X \times X \to \mathbf{R}$ (with adequate continuity and boundedness properties) such that $\psi(Tx, Ty) \leq \psi(x, y)$. Other fixed point theorems based on the use of an auxiliary functional have been given by M. Furi and A. Vi-

^(*) Lavoro eseguito durante un soggiorno dell'Autore presso l'Istituto di Matematica Applicata. Facoltà d'Ingegneria. Università di Firenze.

^(**) Nella seduta del 9 febbraio 1974.

gnoli [3] and by J. H. George, V. M. Sehgal and R. F. Smithson [4] (see also J. W. Thomas [5]); the main difference with the present approach is that the auxiliary functional was defined on X rather than on the product $X \times X$.

Theorem 3. Let X be a nonempty compact topological space and let $T: X \to X$ (not necessarily continuous). Let us assume that a function $\psi: X \times X \to \mathbf{R}$ exists such that

- (i) $(\forall x \in X)$, $\psi(x, \cdot)$ is lower semi-continuous (l.s.c., in short),
- (ii) $(\forall y \in X)$, $\psi(\cdot, y)$ is 1.s.c.,
- (iii) $(\forall x \in X) (\forall y \in X)$, the set $\{\psi(x, T^n y); n = 0, 1, 2, \cdots\}$ is bounded in **R**,
- (iv) $(\forall y \in X)$, the function $Q(\cdot, y) = \limsup_{n \to \infty} \psi(\cdot, T^n y)$ is 1.s.c.,
- (v) $(\forall x \in X) (\forall y \in X), \psi (Tx, Ty) \leq \psi (x, y),$
- (vi) $(\forall H \subset X : H \text{ closed}, T(H) \subset H, H \text{ containing more than one point})$ $(\exists x \in H, y \in H), \limsup_{n \to \infty} \psi(x, T^n y) < \sup \{\psi(x, y) : x \in H, y \in H\}.$

Then there is a point $x \in X$ such that x = Tx.

- *Proof.* I) Let Φ be the family of closed and nonempty subsets H of X such that $T(H) \subset H$ (invariant sets). The family Φ is nonempty, since $X \in \Phi$, and can obviously be (partially) ordered by inclusion. It then results from the compactness of X and from Zorn's lemma that Φ contains a minimal element, say K.
- 2) For $y \in X$, let $K_0(y) = \{x \in K : Q(x,y) = \inf_{u \in K} Q(u,y)\}$; as $Q(\cdot,y)$ is l.s.c., the set $K_0(y)$ is nonempty and closed. Moreover, it is invariant since $Q(Tx,y) \leq Q(x,y)$ for $x \in X$, $y \in X$. By the minimality of K, it then results that, $\forall y \in X$, $K_0(y) = K$ and that Q(x,y) is independent of $x \in K$. Let us then introduce the function $r: X \to \mathbf{R}$ defined by r(y) = Q(x,y), x being any element of K.
 - 3) Let $r_0 = \inf \{r(y) : y \in K\}$; it is clear that

$$(\forall \epsilon > 0) (\exists y \in K) (\forall x \in K) (\exists N \ge 0) (\forall n \ge N), \psi(x, T^n y) \le r_0 + \epsilon.$$

The set $S(x, \varepsilon) = \{y \in K : \psi(x, y) \le r_0 + \varepsilon\}$ is nonempty and closed; as K is compact and as the family $\{S(x, \varepsilon) : x \in K, \varepsilon > 0\}$ has the finite intersection property, the intersection $S = \bigcap_{\varepsilon > 0} \bigcap_{x \in K} S(x, \varepsilon)$ is nonempty and closed.

4) It will be shown now that $T(S) \subset S$ which will imply, by the minimality of K, that S = K. Indeed, $\forall x \in K$, $\forall y \in S$, the following relations hold:

$$\psi\left(\mathrm{T}x\,,\,\mathrm{T}y\right)\leq\psi\left(x\,,\,y\right)\leq r_{0}$$

and, therefore, $\sup \{\psi(x, Ty) : x \in T(K)\} \le r_0$, for all $y \in S$. But, the closure $\operatorname{cl} T(K)$ of T(K) is invariant because $T(K) \subset \operatorname{cl} T(K) \subset K$, which implies that $\operatorname{cl} T(K) = K$. As $\psi(\cdot, y)$ is l.s.c., it then follows that $\sup \{\psi(x, Ty) : x \in K\} \le r_0$ or that $Ty \in S$, for all $y \in S$.

5) For all $x \in K$, $y \in K$, the following relation then holds:

$$\psi(x,y) \leq r_0 = \inf \left\{ \limsup_{n \to \infty} \psi(x, T^n y) : x, y \in K \right\};$$

this relation, together with hypothesis (vi), shows that K must consist of a single point.

3. A similar result can be given when X is a weakly compact subset of a locally convex topological vector space (LCTVS) E. In that case, it is possible, as shown by the following lemma, to make appropriate hypotheses about the function $\psi(\cdot,y):X\to\mathbf{R}$ in order to get the required properties of semi-continuity for the function $Q(\cdot,y)=\limsup_{n\to\infty}\psi(\cdot,T^ny)$. Let us recall that a function $\psi:E\to\mathbf{R}$ is called quasi-convex if the sets $P(r)=\{y\in E:\psi(y)\leq r\},\ r\in\mathbf{R},\ \text{are convex}.$

LEMMA. Let E be a locally convex topological vector space. If a family $\{\psi_n: n=0, 1, 2, \cdots\}$ of real quasi-convex functions defined on E is bounded at each point of E and is equicontinuous, then the function $Q: E \to \mathbf{R}: x \to 0$ limsup $\psi_n(x)$ is quasi-convex and l.s.c., and thus weakly l.s.c.

Proof. It must be shown that the sets $P(r) = \{x \in E : Q(x) \le r\}$, $r \in \mathbb{R}$, are convex and closed, and thus weakly closed.

I) Let us prove first that, $\forall r \in \mathbf{R}$, the set P(r) is closed. Let $x \in \operatorname{cl} P(r)$; the equicontinuity of $\{\psi_n : n = 0, 1, 2, \cdots\}$ implies that

$$(\forall \varepsilon > 0) (\exists u \in P(r)) (\forall n \ge 0), |\psi_n(x) - \psi_n(u)| \le \varepsilon/2.$$

On the other hand, it results from the definition of O that

$$(\forall \varepsilon > 0) (\forall u \in E) (\exists N \ge 0) (\forall n \ge N), \psi_n(u) - Q(u) \le \varepsilon/2.$$

Therefore, it is clear that

$$(\forall \varepsilon > 0) (\exists N' \ge 0) (\forall n \ge N'), \ \psi_n(x) \le r + \varepsilon,$$

which shows that $Q(x) \le r$ and that P(r) is closed.

2) Let x_1 , $x_2 \in P(r)$ and let us show that any point x belonging to the segment $[x_1, x_2]$ is also in P(r). By hypothesis, $Q(x_i) \le r$ for i = 1, 2 and, therefore,

$$(\forall \varepsilon > 0) (\exists N_i \ge 0) (\forall n \ge N_i), \psi_n(x_i) \le r + \varepsilon,$$
 $(i = 1, 2);$

taking $N = max\left\{N_1\,,\,N_2\right\}$ and using the quasi-convexity of $\psi,$ one obtains

$$(\forall \epsilon > \mathrm{o}) \, (\exists \mathrm{N} \geq \mathrm{o}) \, (\forall n \geq \mathrm{N})$$
 , $\psi_n(x) \leq r + \epsilon$

or $Q(x) \le r$ for $x \in [x_1, x_2]$.

We are now able to state our main result. In the theorem, X is a weakly compact subset of a LCTVS E and Φ denotes the family of nonempty invariant subsets of X which are intersections of X with closed convex subsets of E.

Theorem 4. Let X be a nonempty weakly compact subset of a LCTVS E and let $T: X \to X$ (not necessarily continuous). Let us assume that a function $\psi: E \times E \to \mathbf{R}$ exists such that

- (i) $(\forall x \in X), \psi(x, \cdot)$ is quasi-convex and (strongly) l.s.c. on E,
- (ii) $(\forall y \in X)$, $\psi(\cdot, y)$ is quasi-convex on E,
- (iii) the family of functions $\{\psi(\cdot, y) : y \in X\}$ is (strongly) equicontinuous on E,
- (iv) $(\forall x \in E) (\forall y \in X)$, the set $\{ \psi(x, T^n y) : n = 0, 1, 2, \cdots \}$ is bounded in **R**.
- (v) $(\forall x \in X) (\forall y \in X), \psi(Tx, Ty) \leq \psi(x, y),$
- (vi) $(\forall K \in \Phi, K \text{ containing more than one point}) (\exists x \in K, y \in K),$ $\limsup_{n \to \infty} \psi(x, T^n y) < \sup \{ \psi(x, y) : x, y \in K \}.$

Then, there is a point $x \in X$ such that x = Tx.

Proof. The proof follows very closely that of Theorem 3 and will be given only in its broad lines; the notation will be similar to that of Theorem 3.

- I) It is clear that Φ has a minimal element K, a set $H \in \Phi$ being closed for the topology induced on X by the weak topology of E.
- 2) For $y \in X$, let again $K_0(y) = \{x \in K : Q(x,y) = \inf_{\substack{u \in K \\ u \in K}} Q(u,y)\}$; as $Q(\cdot,y)$ is l.s.c. and quasi-convex (lemma), the set $K_0(y)$ is nonempty and is the intersection of X with a closed convex subset of E. Moreover, $K_0(y)$ is invariant, and therefore $K_0(y) = K$. As in theorem 3, a function $r: X \to \mathbf{R}$ can be introduced by the definition r(y) = Q(x,y), x being any element of K.
- 3) If $r_0 = \inf \{r(y) : y \in K\}$, the sets $S(x, \varepsilon) = \{y \in K : \psi(x, y) \le \le r_0 + \varepsilon\}$ where $x \in K$, $\varepsilon > 0$ are nonempty and are intersections of X with closed convex subsets of E. The same will be true for $S = \bigcap S(x, \varepsilon)$.
- 4) It can be shown that S is invariant and thus that S = K. Indeed, it is clear that $\sup \{\psi(x,Ty): x \in T(K)\} \le r_0$. But, the intersection of K with the convex closure $\operatorname{cocl} T(K)$ of T(K) is invariant; it then results that $K = K \cap \operatorname{cocl} T(K)$ and that $\sup \{\psi(x,Ty): x \in K\} \le r_0$.
 - 5) The conclusion then follows as in Theorem 3.

In fact, the function ψ need not be defined on the whole product $E \times E$, but only on cocl $X \times \operatorname{cocl} X$, the hypotheses being then modified accordingly. On the other hand, it can be seen that, when E is a Banach space and ψ is defined by $\psi(x,y) = \|x-y\|$, Theorems I and 2 are special cases of Theorem 4, as hypothesis (vi) may be replaced by either one of the following two conditions:

(vi')
$$(\forall K \in \Phi, K \text{ containing more than one point}) (\exists x \in K),$$

 $\sup \{ \psi(x, y) : y \in K \} < \sup \{ \psi(x, y) : x, y \in K \},$

$$\begin{array}{ll} (\mathrm{vi''}) & (\forall x \in \mathbf{X} \;,\, x = Tx) \;, \\ & \underset{N \to \infty}{\lim} \; \left[\sup \left\{ \psi(\mathbf{T}^m x \;,\, \mathbf{T}^n x) : m \;,\, n \geq \mathbf{N} \right\} \right] < \\ & < \sup \left\{ \psi\left(\mathbf{T}^m x \;,\, \mathbf{T}^n x\right) : m \;,\, n \geq \mathbf{o} \right\}. \end{array}$$

Indeed, the first condition obviously implies (vi) whereas the second one implies that, for any invariant subset K of X, either K contains a fixed point or there exists $x \in K$, $N \ge 0$ such that

$$\sup \{ \psi(\mathbf{T}^{N}x, \mathbf{T}^{n}x) : n \geq \mathbf{N} \} = \sup \{ \psi(\mathbf{T}^{m}x, \mathbf{T}^{n}x) : m, n \geq \mathbf{N} \} <$$

$$< \sup \{ \psi(x, y) : x, y \in \mathbf{K} \}.$$

REFERENCES

- [1] W. A. KIRK, A fixed point theorem for mappings which do not increase distances, «Amer. Math. Monthly », 72, 1004–1006 (1965).
- [2] W. A. KIRK, Fixed point theorems for nonexpansive mappings, « Proc. A.M. S. Symp. Pure Math. », 18, 162–168 (1970).
- [3] M. Furi and A. Vignoli, A remark about some fixed point theorems, «Boll. U.M. I.», 2, 197-200 (1970).
- [4] J. H. GEORGE, V. M. SEHGAL and R. F. SMITHSON, Application of Liapunov's direct method to fixed point theorems, « Proc. A.M.S. », 28, 613-620 (1971).
- [5] J. W. THOMAS, On the Liapunov type fixed point theorem, «Fund. Math.», 78, 141-143 (1973).