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Equazioni differenziali. — Remarks on some boundedness theorems
of FEzeilo and Tejumola. Nota di H. O. TEjumMoLa, presentata ©
dal Socio G. SANSONE.

RIASSUNTO. — L’Autore estende un risultato di definitiva limitatezza delle soluzioni
di un’equazione differenziale del quarto ordine non lineare da lui precedentemente ottenuto
in. collaborazione con J.O.C. Ezeilo.

In the paper [2] we considered the differential equation
(1) VAt af+aito@)ttar=pE,x,2,%,%),

where @, , a,, a, are constants and the functions ¢ and p are continuous.
It was shown that all solutions of (1) are ultimately bounded if a; > 0, ay > o,
@, > 0 and if

(2) PA)>0 , @ae®)—@(x)—dia>8 for |x|>1,
(3) Ip(t,x,y,z,u)lng for all ¢,x,y,2,u,

where 8 > 0, A, >0 are constants.

The object of this note is to point out that this result extends readily
to an equation (1) with the constant ap replaced by a function of # which is
not necessarily nearly constant. ®A similar consideration applies to the equa-
tions studied in [3].

Consider the equation

(4) xIV—l—czl'55+&{)(X)ﬁf—l—(p(x)ﬁ?—i—@x:;&(l‘,x,i’,55,32'),

in which ¢ is a continuous function, , , , are, as before, constants and @,
are continuous. The following result holds.

THEOREM 1. Let
® ()= [ 4 ds
0

and suppose there is a constant ay > 0 such that
©) (Y —ay}=o0() as |y|—>oo.
Let @, p satisfy conditions (2) and (3). Then there is a constant D > o whose

magnitude depends only on ay ,ay,a,,8,A; and V such that every solution

(*) Nella seduta del 9 febbraio 1974.
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x(tj of (4) witimately satisfies
(7 lx®l<D , [#®I<D , [£(#|<D , |¥@|<D.

Ezeilo’s example [1; §1] of a function n];(y) defined by
$(y) =a,+ % Te? sin (—; ne")

and for which condition (6) holds shows that (6) does not necessarily imply
that W (y) is nearly constant or ultimately positive. A consequence of this
condition is the estimate’

®) | |W(9) —ay| <M for all y,

for some finite constant M.
The proof of Theorem 1 is essentially the same as that of [2] except
for some modifications which we now point out. Take (4) in the system form

;\;‘:y ’ y==z ) Zz%_alz_(D(x)_{lIf(y)'—aZ.y}s
(9) h=-—agg—uayx+p{,x,y,2,0),

x

<I><x>=f<p<s>ds L vma—a s — O () — (V(3) — ayy}
0

and use the function V=V; 4V, 4-V; defined by (4.3)-(4.6) of [2] but
with a; , @y, a, playing the roles of @, and ¢ respectively. For precisely
the same reasons in [2, §5] V satisfies

(10) Vx,y,2,u)—+oo as 22412422+ 22> 0o,

Because of the term — {¥'(y) —a, ¥} in (9) above, which is absent in (4.1)
of [2], the expression (6.2) of [2] for Up will have to be augmented by

—{mxrt+ay+ 2} ¥ () —al
so that, in view of (8), the estimate (6.6) of [2] would now read

(1) Ur<—Ds (@ +2)+ Do (x| +|y| + 12| +]u|+ 1),

for some constant Dy > o which depends also on M. The other relevant
details which lead to the proof of:(4.8) of [2]:

(12) V¥ <—1 provided 24 324 224 22> Dg

are as in [2; §7]; the term Dy | 2| in (11) being compensated for by — Dg 22.
Corresponding to the equation (1.4) of [3] we consider

(13) WVt a Y@ F+g@ +ar=p,x, %, %, %),

where @, ,a, are constants and the functions ¢, ¢ and p are continuous.
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THEOREM 2. Let ¥V be defined by (5) and suppose there is a constant ay > 0
such that conditions (6) holds. Suppose further that a; >0, ay > 0 and that

(i) there are comstants ny > 0, dy > 0 suck that
gly>o0  (yl=mn0,

2
4142%2_(%21)‘“?442'11 Iyl =m0,

(i) p@,x,y,2,u) satisfies (3). Then there is a constant D > o
depending -only on ay,as,ay,My,d1, Ay, Y and g such that every solution
x () of (1.3) wultimately satisfies (7).

In the special case ¢ (%)= a,, Theorem 2 reduces to [3, Theorem 1].
Let Vo=V, (x,y,2,u) be the function (4.1) of [3] and consider (13)
in the system form

=y , y=z , z=u—{YV()—ay}

h=—au—ayz—{g()—a(V(¥)—@my}—art+pt xv,2,v),
v=u—{¥()—ay}

Then, in this case, the expression (4.5) of [3] for V, Willkhave to be augmented by
—2yxtaz—au] {V(y) —ayl

so that, by (8), the estimate (4.3) of [3] now reads

(14) Vo< —Ds(92+u®) +Da(lx|+ 1y + 2l +lul+ 1)

for an appropriate choice of D4 > o which also depends on M. In order to
take care of the term D4 |x| in (14) (but which is absent in (4.3) of [3]),
redefine the functions Vi = Vi (x, %), Va = Va (¥, £) given by (5.2) and (5.3)
of [3] as follows.

(Ausgnx, | x| > 2|
1=

. p=—t -1
lxsgnu,|u!2|x|>’ r=apiDytr,

v _<—<2D4+m2>ysgnz,|z1 zm)
2T\ (2Ds+ A zsgny, | y| =] 2|

Then, as in [3, §5], one shows that V =V, 4 Vi + Vo satisfies (10) and
(12) for a suitable choice of the constant Ds.
Our last result concerns the equation

(15) AR EFH V@ EF it ar=pF,x, £, 5),

in which a3, @, are constants and f, ¢ and p are continuous functions
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THEOREM 3. Let ay> 0 be a constant such that the function V' defined
by (5) satisfies (6) and suppose that

(1) there are constants £9 > o, d2 > 0 such that
f@ >0 (lz]=¢&),
waf@)—ag—af ()=d (z]=§),

() p(¢t,x,y,2,un) satisfres (3). Then there is a constant D > o whose
magnitude depends only om ay,ay,ay,% ,d,, Ay, f and V' suck that every
solution x (t) of (15) wultimately satisfies (7).

Take (15) in the system form

t=y , y=z , i=u—{¥Y(9)—ayy},
a=—f@)u—{Y()—ay}]l —ams—aytaxr+pit,x,y,2,v),
v=u—{VY(y)—ayy},

and consider the function V =TUp+ Uy + Us given by (10.1) of [3] but
with 7 playing the role of {. Here the expression (9.2) of [3] for U has to be
augmented by

‘[“2”4”+4z“3y+<“§-2“4)3+43”—f<3){2“43"1‘“2%}]{?(3’)—“23’}
and the estimate (9.6) of [3]:
Uo<—Da(32+ )+ Ds (x| + || +1z|+u|+1)

still holds for Uy (for a suitable choice of D5 > 0) since | f(2)] is bounded
and W satisfies (8). The remainder of the arguments employed in § 10 and 11
of [3] to show that V=TUg + U; + Uz satisfies (10) and (12) carry over
to the present case.

Remark. Theorem 3 extends to an equation
V4 f@E DI+ YD E+agitar=p0,x,2,%, %),

in which f depends on ¥ as well as on # provided the corresponding restrictions
on ¢ (%, x) in [3, Theorem 3] are placed on f(#, %) and ¥, p satisfies (8)
and (3) respectively.
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