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RENDICONTI
DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fìsiche, m atem atiche e naturali

Seduta del g febbraio i g j 4  

Presiede il Presidente della Classe B e n ia m in o  S e g r e

SEZIONE I
(Matematica, meccanica, astronomia, geodesia e geofìsica)

Teoria dei numeri. —-A  Generalization of a paper by D. D. WalL 
N o ta  di P e t e r  B u n d s c h u h  e J a u - S h y o n g  S h i u e  (#), p r e s e n ta ta (**} 
dal  Socio  B. S e g r e .

RIASSUNTO. — Vengono studiate alcune successioni che generalizzano quelle di Fibo­
nacci modulo un intero m  >  2.

In  this Note we study  sequences {GM} of the following type. Let 
A  , B , a , b be fixed rational integers, let the equation x 2 — A x  +  B =  o 
have distinct nonzero roots, which m eans B =j= o and D =  A 2 — 4 B =f= o, 
and m oreover let a , b be not both equal to zero. Then let {Gw} be defined by

( 0  GQ =  a , G1 =  b , Gn+1 =  AG„ —  BGW_X (n =  1 , 2 , • • •)

and let { Kn} denote the special sequence of {Gn} with a — o , b =  1.
Let m'S>2 be a fixed natural num ber. In this note we are concerned 

with the periods of {G?2} modulo m  and we generalize results proved by 
D. D. W all [3] in case of Fibonacci sequences; these occur in (1) by taking 
A =  —  B =  I.

T h eo rem  i. {G n} is periodic mod m, i.e. there exists a rational integer 
h =  h (a , b , m) >  o such that Gn+Â — Gn (mod m) fo r  all n >  n0 (a , b , m) >  o. 
Especially i f  (B , m) =  1, then {Gn} is purely periodic mod m, which means 
that n0 {a , b , ni) — o.

Proof. Consider the m 1 +  2 least nonnegative residues G,- of G2- mod m 
for o <  i <  m? +  I and consider further the m 2 T  1 ordered pairs (Gy > E+x)j 
o < i <  ni2. T hen there exist j  , k w ith o < /  <  k <  m2 such tha t (Gy , Gy+1) =

(*) This paper was written while the second Author was a Humboldt Stiftung fellow 
visiting University of Göttingen.

(**) Nella seduta del 9 febbraio 1974.

10. — RENDICONTI 1974, Voi. LVI, fase. 2.
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<S» 'e*
=  (G^ , G*+1). From  the recursion formula in (1) one sees th a t Gk+t == Gy+/ 
(mod ni) for t  =  o , 1 , 2 , • • •, which gives

(2) Gk-j+n =  Gn (mod ni)

for n >  j ,  which completes the proof of the first part of Theorem  1 and 
shows th a t n0 (a , b , ni) <  j  <  m2, h | (k — j )  and so h <  m2.

If  (B , ni) =  I, then Gy =  G^ , Gy+i — Gk+1 (ni) im ply BGy_x =  BG*_i (m) 
and so G /_i =  G^_i (ni). T hus by induction we get (2) for each n >  o.

Remark. T ake A  =  1 , B =  2 , m =  4. We have th a t { R w (mod 4)} 
begins with o , i , i , 3 , i , 3 , - * *  This shows th a t h ( o , 1 , 4) — 2, 
?z0 (o , I , 4) =  2 for these A , B, and so it can in fact happen th a t the sequences
are not purely periodic if (B , ni) =(= 1. From now on we assume (B , m) =  1

fo r  the rest o f this paper, and so {Gn (mod ni)} is always purely  periodic.

COROLLARY i. I f  a =  o, then G^o, b,m)  =  O (mod ni) and in particular 
Rh(W) =  o (mod m )y where H (ni) =  h (o , 1 , ni) denotes the least period of 
{ R n (mod ni)}.

c

T h e o r e m  2. I f  m has the prime factorization m  =  H  Pk;  , then h (a , b , ni)
i —1 1

is the least common multiple of the h (a , b , p k.i) , 1 <  i <  c.

Proof. W e refer to the proof of Theorem  2 of [3].
In  virtue of this theorem , it is clear tha t we can assume m  to be a prim e 

power. W e note th a t if x x =  (A +  } D)/2, x 2 =  (A —  ]/D)/2 are the (distinct 
nonzero) roots of x2 —  A x  +  B — o, then we have R„ =  (x[ —  x%) / (x± —  x 2) 
and we define Sn by  =  x \  +  x \  for n =  o , 1 , • • •.

T he next eight theorem s contain results on the least periods of the special 
sequences { R^ (mod n i)} under various conditions. For several proofs we 
need certain relations between the R n’s and the S f s ,  which we collect in the 
following lem m a whose proof is very simple if one uses the trivial formulas 
X]_ +  %2 =  A  , x 1 #2 =  B, x 1 -— x 2 =  ]/ D.

Lem m a. For n  , t , j  >  o  one has the relations

(3) R*+/ =  R n+i R / — B R „ R/_x , where R _x =  - -  B “ 1 R i ,

(4 ) R,„ =  2^~; r „ c / s r 1 +  k r :;,

(S) R y»+i=  (ßi ~f~/A.R„ SÌ 1 +  LR«)

(with certain rational integers K  , L),

(6 ) S , 2 R ŵ_x A R „ R^+ i B R k_ x ,

(7 ) s :  = d r :  +  4B -,

(8 ) R 2m=  R « S k , R 2«+i =  R«-fi ‘— BR« =  S « R k+i —  B” — R» SM+i +  B ;

(9 )
p  p  p 2 ,__ p » —1 c C q 2 __1VW_ 1  xvw_|_X XV̂ 13 , Ow_X ---- D B ”" 1 ,

(10) s 2n =  s l  —  2 B \
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Remark. T he proof of (4) is given in [1, Lem m a 2] and th a t of (5) runs 
in an analogous way.

T h eo rem  3. The terms of { R„} which are divisible by m, have subscripts 
which are exactly the multiples of a certain natural number f  depending only 
on m.

Proof. Assume R,- — Ry =  o (m) w ith i  >  j ,  say. Then from (3) we 
have R i+J- == o (ni). On the other hand take n 1 — i, n = j  in (3); we get 
m  I Ry+1R/_y from which we have R =  o (ni), since (Ry+i , m) =  1. N am ely 
if we had (Ry+i , m) =  M >  1, then M \ m \  Ry and M | Ry+1 and so M | R v 
for each v >  j . But we have .R*H(«)+i =  1 (mod ni) and so also (mod M) 
for all natu ral t. L ef /  be the sm allest natu ra l num ber with Kf  =  o (ni). 
Then, by the preceding rem ark  on R/+y, we have R rf — o (ni) for r  — 1 , 2 , • • •. 
On the other hand, if there exists n such th a t R„ — o (ni), then divide n by 
f  : n ■= r f  f i g  w ith o < g <  f  and the preceding result concerning R*_y shows 
R n - r f  =  R^ =  O (ni), from which we have g  =  o by the m inim al condition 
of / .

The following theorem  can be proved along the same lines.

T h e o r e m  4. I f  in the sequence { R^} there are terms (with n >  o) being 
zero, then these terms have subscripts which are exactly the multiples o f a certain 
natural number g, say.

In  the next theorem  all sequences { R„} in dependence of A  , B are deter­
m ined, in which zero-terms with subscripts >  o occur.

THEOREM 5. { R w} has zero-terms other than Ro i f  and only i f  exactly
one of the following conditions is satisfied', (i) A =  o; (ii) B =  A 2; (iii) 2B  =  A 2; 
(iv) 3 B — A 2 and the g  of Theorem 4. is then g  — 2 ,g  =  3 } g  =  4 , g  =  6 
respectively.

Proof. Assum e first th a t { R n} has zero-terms with subscripts >  o and 
let g  be the sm allest such subscript. R^ — o is equivalent to (x jx f )*  =  1, 
where x 1 and x 2 denote the roots of x 2— A x  +  B — o m entioned above.
Now

1 =  T L ^ a (x ) ,
h\g

where the denote the cyclotomie polynomials, which are known to be 
irreducible over the rational field and of exact degree 9 '(h), 9 Eulers totient 
function. y  ‘=  x j x 2 is algebraic of degree two at most and a zero of ^ —  1. 
Therefore at least one of the num bers with h | g  is zero. But if (y) =  o
for a certain g f \ g, 1 <  g r <  g, then obviously O') =  y gt —  1 = 0 .  This

h\g'
implies R ^ =  o against the m inim ality  condition of g. Therefore we have 
® r(* ifez) =  0 and so 0 ^(x)  m ust be of degree 9 (g) <  2. I t is easily checked 
th a t g  =  I , 2 , 3 , 4 , 6  are the only natu ral num bers satisfying this condition.

Since ®i ( x f x f )  =  (x1— x 2)/x2 o the value g  — 1 is impossible, 
o =  0 2 ( x j x 2) =  (xx +  x 2)/x2 — A \ x 2 implies A  =  o and the rem aining cases 
3, 4, 6 for g  are treated  in an analogous m anner using the form of (x).
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By R2 =  A , R3 =  A2— B , R4 =  A (A2— 2 B ), R6 =  A (A2— B) (A2— 3 B),
we know th a t the converse is also true.

COROLLARY 2. I f  A =j=o and  B <  o, then R„=j='o fo r  all n > o .  I f  
72 ~  A  1 (mod 6), then R w =[= o fo r  all admissible A  , B.

Now we begin to study  H (ni). The simplest result is contained in

THEOREM 6. The order of B m od m divides H  (ni).

Proof. W riting H for H (ni) the congruences RH = 0 ,  Rh+i ^  1 (ni) 
s h o w  I =  —  B R h _i (772), such th a t we have

(11) Kx — — B*RH_* (mod ni)

for x  =  o , I. Assum e th a t (11) is proved for o <  x  < y  where y  <  H, then

—  B*+1 R H_(^+ i)=  B^Rh _(^_i)— AB* R h - . ï"  —  B R r_! +  A R x=  R*+i (mod ni).

Thus (11) is proved for all x  w ith o <  x  <  H. T aking x  =  H ■— y  in (11), 
one gets R H~V =  —  BH-J/ R^ (mod ni) and so —  By R H_ r =  BH R y — R^ (mod ni), 
y  =  I (for example) shows BH == 1 (ni) giving the result.

C o r o l l a r y  3. I f  ttz >  2 is such that B — —  1 (m), then H (m) is even. 
Especially H (ni) is even fo r  each 772 >  2, i f  B =  —  1.

Note th a t H (ni) can be odd in both cases (D , ni) =  1 and (D , ni) =(= 1. 
If  A  =  3, B =  2, m — 7, then D =  1, (D , ni) =  1, the order of B mod m
is 3 and H (ni) =  3. If  A  =  1, B =  2, m  =  7, then D =  —  7, (D , ni) =  7,
the order of B mod m  is once more 3 and H (ni) =  21.

T h e o r e m  7. I f  p  | D, p  >  2, then one has H (p) =  2 dp i f  H (p)
is even. I f  H (p ) is odd, then H )p) =  dp. Here d denotes the exact order of 
B mod p.

Proof. By p  \ D we have for v =  0 , 1 , • • •

(12) R2v = vA B v-1 , R2v-fi =  (2 v +  1) Bv (mod p)

the proof of which can be found in [1] in the beginning of §3. T aking v — dp 
in (12), one sees th a t R 2d̂  =  o, R2d/+i =  1 (m o d /) , such th a t H ( / )  | 2 dp.

In  virtue of p  \ A  (since /  | D, /  I 2 B) one has from (12) th a t p  | H (p). 
Namely, if H ( / )  =  2 S, then o == Rh(^) =  SABs_1 ( / )  and so /  | S and if 
H ( / )  == 2 S +  I ,  so o =  Rh(2>) =  H (p) BS ( / )  and so once m ore p  | H ( /) .  
Since d \ ( p —  1), we have (d , p) — 1 and so from Theorem  6 we know
dp I H (p). In  case H (p) is odd the assertion follows from this and H ( / )  | 2 dp.
In  case H ( / )  is even, 2 S say, we have from (12)

I == Rhoo+1 =  (H ( / )  +  1) Bs =  Bs (mod / ) ,

giving d I S and so 2d | H ( /) ,  from which the other assertion of Theorem  7 
can be derived.
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T h e o r e m  8. I f ^ p > 2  and  H (p2) 4 = H (p), then H (jfi) =  H (p) p k~1 
fo r  k =  I ? 2 ) • • •.

Proof. T he theorem  is obviously true for k =  i and we m ake induction 
on k. Assum e th a t the theorem  is yet proved up to (and including) a 
certain k >  i. Denote for shortness H (pk) — Hk . Since R Hyè+1 =  o, 
R h^+1+i =  I (pk+1) these congruences are also true mod p k such th a t | Hk+1 . 
On the other hand we have by (4) and (5), inserting j = p  , n =  Hk and 
observing p  4= 2

By (6) we have SHk =  2 (pk) and so (Suj 2 ) p== 1 (pk+1), showing th a t p H k 
is a period of { R^ (mod p k+1) }, which m eans Ht,+i \ p H k . So we have 
Hk+1 =  tH k w ith t either p  or 1. If  k =  1, then t — p  by the assum ption of 
Theorem  8. Now let k 2. If  we had t =  1 or equivalently H^+i =  =

Since p  I p  I Rh^_1 and / I 2 B  we have from (7) tha t p  \ SĤ _1, such 
th a t we can conclude

Inserting this! in (14) one sees th a t (SHk_ j2 ) p =  1 ( p k+1). Now from Eulers 
criterion [2, Satz 46] we conclude th a t SH/̂ _1 =  2 (pk) and so, by (6) and 
C15)> Rh^_!+i — 1 (fi*)- This together with (15) shows th a t H k \ Hk-i,  or equi­
valently pHk^i  I H^_! (by =  pH&_ì), and this is impossible. Therefore 
we have t  =  p  and H^+1 =  p H k =  p k H x and so the proof is complete.

Remark. It should be noted th a t Theorem  8 is in general non correct 
in case p  =  2, as it is shown by the following example. Take A  =  B =  1, 
then R„ is o  ̂ I , I , o , —  1 , — 1 , o , 1 , • • • such th a t H (2) =  3 4  H (4) =  6 
and also H (2P) — 6 for each k  >  2.

C o r o l l a r y  4. I f  (X)p | D ,p  >  2, then H (pk) = p k~± H (p ) /ork  =  1 , 2 , • • •. 
In  case p  =  3, this is only true under the extra condition H (9) 4 = H (3).

(1) It should be noted that on account of the remark after Theorem 1 we assume also 
(B ip)  =  I, such that instead of p  >  2 we could have written p \  2B.

R /H  ̂=  °  , R > h*+ i= (S hJ 2Y  (mod p k+v).

=  p k 1 H x =  pHk-i  (using the induction hypothesis), then from

. * W 1+i -  I ( / +1)

one would get by (4) and (5) (taking j  — p  , n =  H*_0

( H )

(u) 0 ^  R h* - i ( / S ^ 1+  K R ^ )  ( / +1) ,

(ßHt -ll2)* +  M R « * . ,  +  2 ^  L R |i _1 ( /  + 1) .■ — 1 °Hy&_l

From  (13) we have p k \ Rj SĤ  —1 > Since / +1 p Zk '3 I R Hi-l for 2 ■

(IS) R H,_! =  O ( f )  .
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C o r o l l a r y  5* f f  ^  p  I D , p  >> 2, then we have H  (jfi) =  2 dp k for
k  =  I , 2 , • • • i f  H  (p) is even, and  H  (p*) =  dp k i f  H  (p) is odd. Here d 
denotes the exact order of B mod p.

Proof of the corollaries. From  [1, Lem m a 5] one knows th a t p 2 | R Ĥ  
implies p 2 I H (p2) in case p  =|= 3- I f  we had H (p2) =  H (p), then p 2 | H (p) =  
— f d p  (with /  either 1 or 2) in virtue of Theorem  7. B ut p  | d is impossible, 
and so H (p2) =f= H (7)) if p  =f= 3 and in case p  =  3 this is true by an assum ption 
of Corollary 4. Now Theorem  8 gives all. Note th a t in the exam ple of the 
rem ark  after Theorem  8 we have D =  —  3 and ta k in g ^  =  3 we get H (3*) == 6 
for k =  I , 2 , • • •, which shows th a t the ex tra  condition H (9) =j= H (3) of 
Corollary 4 cannot be om itted. Corollary 5 follows now im m ediately from 
Theorem  7. The first part of it was stated w ithout proof in [1] after the for­
m ulation of the m ain theorem .

THEOREM 9. L e t p  >  2, p  ID  and the Legendre-symbol (D/p) =  1. 
Then H (J>) | (p — 1).

Proof. If  x 2 —  A x  -f- B has a double root r  mod p y i.e. if x 2 —  A x  -f- B == 
= (x — r)2 (p), then A  == 2 r, B =  r2 (mod p) and so p  | D against an assum p­
tion. Now we have

4(x2— A x  +  B) =  (2^  —  A )2 —  Deeeo(t>) if and only if (zx-— A)2 ™ D (p)

and since (D Ip) =  1, p  >  2 we have in virtue of the preceding rem ark  two 
mod p  different rational integers y 1 , y 2 which are solutions of x 2 —  A x  -f- B =  
=  o (p). Obviously we have

(ï6 ) R„ =  R» =  ( y l — yl) l (y1— y 2) (mod p)

for n =  o and n =  1. Now we have mod p

R»+i =  A R » —  BR»-1 =  ((Ay, — By”- 1) —  (Ay” —  B■y%-1))l(y1 — y 2) =  
=  (y*+l — y ”+i)l(y i  y 2) =  R ;+ i ,

proving (16) for all n^>o.  Now by Ferm ats theorem

y f ~ x =  I , y*===y (mod p) for i  =  1 , 2,

since p  \ y .  by p  \ B. So we have from (16)

R^-i =  o , Rj, s= I (mod p), 
which gives the result.

T h e o r e m  io . Let p  >  2 and (Dip) =  —  1. Then H (p) | d (p +  1), 
where d is the exact order of B mod p.

P r o o f Note first th a t here we have autom atically  p  IB  and p \  D. By 
Eulers' criterion [2, Satz 5 7] we have —  1 =  (D/p) — D(p~1)l2 (p) and so
we get

(17) Rjj =  I > Rjm-1 =  0  > R̂>+2 =  B (P)'
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Nam ely we have mod p

t e - i ) / 2 .

s
giving the first congruence in (17). The second we get from

G z f W ,  A , (j6—3)/2

^  2^-1 =  V  ( ■* J ÿ  =  D (.‘-i)/2 _  J
fTo \2J +  l '

2' R- ‘ “  S  ( ï V . ï ^ v  -  g  '(<*)+ ( , / + , A^” 2yDy =  o (^ )

and the th ird  follows from the recursion formula.
A pplying (4) and (5) w ith j  =  d, n =  p  +  1 gives by (17)

(18) Rd(*+i) ^  0 , Rd(^+1)+1 =  (S^+i/2)d (mod 7>).

By (6) and (17) we have S^+1 == 2 B (7)), and so (Sp+1/2)d =  Bd == 1 (mod p ), 
which together with (18) gives the result.

The Theorem s 3 up to 10 gave inform ation on the periods H (m) of the 
special sequence { R n (mod m)  } under various conditions. In  the next three 
theorem s we study  the connections between H (m) and the periods h (a , b , m) 
of the general sequences {G „(m od m)},

THEOREM i i . Let E =  b2 —  abA +  a 1 B and  (E  , ni) — 1, then h (a , b , m) =  
=  H (m). I n particular, i f  (D , m) =■ 1, then (S„ (mod m )} has period H (m).

Proof. By G„ =  bRn — ^ B R ^  (see for exam ple [1, form ula (2)]) it 
is clear th a t h (a , b , m) | H (m). To prove the converse, let h denote 
h (a , b , m) and consider the system  mod m

G^ - a =  bRh a (1 BR^—1) =  o

G ,+1 — b =  (bA —  dB) R h —  b ( i  +  B R ^ j)  s  o ,

in R’̂ , I +  B R m  , whose determ inant is — E. In  virtue of (E  , m) =  1 this 
system  has only the triv ial solution

R// =  0 > =  —  1 (m),

or equivalently  R Â ~  o , R^+1 -  1 (m), giving H (m) | h. For { S J  we have 
<3 =  S0 — 2, b =  Sx =  A  and so E  =  —  D, from which the special case 
follows.

Remark . Note that, if ( E , w ) = j = i ,  both cases h (a , b , m) =  H (m)
and h (a , b , ni) | H  (m)y but h (a , b , m) =j= H (m) can occur as the following 
exam ple shows: T ake A  =  3, B =  —  1, m =  9; then H (9) =  6 and 
^  ( T > 1 » 9) =  bu t (1 , 7 > 9) =  3 (in both cases 3 | E).

C o r o l la r y  6. I f  0-) p  | D, p  >  2 , p  \ (bA — 2 ^B), h (a 9 b , p k) =
=  H
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Proof. This is Lem m a 1 of [1]. Note th a t 4 B E =  (2 dB —  bA)2-— Db2, 
and so under the conditions p  | D, p  \ 2 B we have the equivalence 
(m — p k , E) =  I if and only if p  \ (2 dB —  bA); and now the corollary is 
im m ediate from Theorem  11.

C o ro lla ry  7. I f  p  >  2, (D Ip) =  —  1, then h (a , b , p k) =  H (pk) in 
case {a , b , p) — 1.

Proof. We have 4E  — (2 b — a A )2 — a2 D . Take m — p k. If  we had 
(E  , p k) =(= I , then p  | E  and so

(19) (2b —  aA)2 == a* D (mod p) .

If  P \ a, then by p  | E  we have p  | b and so p  | (a , b , p). So p  1 a and from 
(19) we see th a t D is a quadratic residue mod p  against (Pip) =  — 1. 
Hence (E  , p k) =  1 and Theorem  11 gives the assertion.

THEOREM 12. I f  m is odd and a , b are such that (a , b , m) =  1, h =  
=  h (a , b , m) is odd and Bh =  — 1 (mod m), then H (m) — 2 h in case 
H (m) is even and  H (m) =  h in case H (m) is odd.

Proof. R egarding now

k — a =  R h b —  {\ +  B R ^ ,)  a =
(20) (mod m

GM — b = ( R M — i ) b  —  B R Aa =

as a system  in a , b, one has from (a , b , m) =  1 mod m

o =  (R ,+1 -  I) (B R W  +  r) -  B R | =  B (R/i+1 R ^  -  RJ) +  

+  (R i+1 -  B R ,.,)  _  ! =  _  B  ̂+  S , -  I

in virtue of (6) and (9). So =  o (mod ni) by assum ption and R 2/, =  o (m) 
by (8). Furtherm ore, we have by (6) and (10)

2 R ‘2ä+i — AR2Ä +  (R2A+1 —■ B R 2̂ _i) =  S2̂  =  —  2 Bh — 2 (mod m)

and sb R2ä =  o, R 2̂ +i =  1 (mod m), which gives H (m) | 2 h. From  h | H (m) 
(see the beginning of the proof of Theorem  11) the result follows im mediately. 

The next corollary comes easily from Theorem  12 and Corollary 3.

C o r o l l a r y  8. I f  m is odd and B such that B — —  1 (m od m), i f  further
a  , b are such that (a , b , m) =  1 and h (a , b , ni) is odd) then H (m) =
=  2 h (a , b , m).

T h e o r e m  13. I f  (D , m) =  1 , B == —  1 (m od m) and a , b are such that
(a , b , ni) =  I and h =  h (a , b., ni) is eveni then H (m) — h.
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Proof. We now write the system  (20) of congruences as equations and 
since B == — 1 (mod ni) we obtain

 ̂ R/T  ̂+  (R^-i—■ 1) a =  K m

(R/s+i —■ i) b +  Rha =  \ m

with certain rational integers x , X.
F irst let h \2 be odd. T hen by (8) we have

R ^ + 1  =  S h /2 R /,/2 ! 1 +  1 > R a - i  =  R ///2 - 1  S ^/2 +  I (mod ni).

Inserting this and R Â =  R*/2 S*/2 in (21) we get with certain rational integers 
x ' , X'

(22)
R /̂2  ̂ +- R /̂2—1 a =  x' m Ŝ /2

Rä/2+1’̂  +  Rä/2 a =  X'm  Ŝ /2 •

Now by (9) we have R 2/2 —  R^/2-1 Ra/2+i =  B^2-1 =  1 (mod ni). So from 
(22) we see th a t m  | a S /̂2 and m  | b S ^ .  If  m \ S^/2, then m  has a prim e 
factor q w ith q \ S^/2, but q | a and q | b against our condition (a , b ,ni) =  1. 
So S/2/2 = 0  (mod ni) and by (8)

R  ̂ =  Rhi. S'm =  o ■ , R^+i =  Sa/2 Ra/2+i ■— B /̂2 — 1 (mod ni)

and so H (ni) | h.
Now let h\2 be even; then by (8) we have

Ra+i =  R /̂2 Sa/2+i +  I , R^_i =  R /̂2 Sä/2_i +  I (mod ni).

From  (21) we get w ith rational integers x" , X"

Ŝ /2 b -f- S /̂2—1 a =  x" m R^/2 

Sä/2+i b +  S^/2 a =  ~k" m Rhji

and by (9) we have Sf/2 —  S/,/2_i S/,/2+i =  D (mod ni). Therefore we have 
m I æDR/;/2 and m | ® R ^ /2, and so m | aRj^  , m | b R ^  by (D , ni) — 1. 
Now we have R ^  =  o (mod m), by an analogous reasoning as above, and 
so by (8);

R h — R /̂2 Sa/2 =  O , R Ä+1 =  R â/2 Sk/2+i +  BÄ/2 =  I (mod ni),

giving H (ni) | h also in case hj2 is even. Since h \ H (ni), our proof is 
complete.

Remark. I t should be noted th a t our Theorem  13 is a generalization of 
Theorem  12 in [3], whose proof is however not clear to us. Furtherm ore, 
we do not need the condition th a t m  is odd as in [3]. One m ay ask w hether in
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our Theorem  13 one can replace the condition B =  —  1 (mod m) by the 
weaker condition (B , m) =  1. The following exam ple shows th a t this is not 
possible in general: Take m  =  9, A  =  3, B =  — 4, then D =  4 and (D , m) =  
=  1 » (B , m) == I is satisfied. For a =  1, b =  2 we have (a , b , m) =  1 
and h =  h (a , b t m) =  2. But H (m) =  6.
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