ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

PETER BUNDSCHUH, JAU-SHYONG SHIUE

A Generalization of a paper by D. D. Wall

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **56** (1974), n.2, p. 135–144. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1974_8_56_2_135_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1974.

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del 9 febbraio 1974 Presiede il Presidente della Classe Beniamino Segre

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Teoria dei numeri. — A Generalization of a paper by D. D. Wall. Nota di PETER BUNDSCHUH e JAU-SHYONG SHIUE^(*), presentata^(**) dal Socio B. SEGRE.

RIASSUNTO. — Vengono studiate alcune successioni che generalizzano quelle di Fibonacci modulo un intero $m \ge 2$.

In this Note we study sequences $\{G_n\}$ of the following type. Let A, B, a, b be fixed rational integers, let the equation $x^2 - Ax + B = o$ have distinct nonzero roots, which means $B \neq o$ and $D = A^2 - 4B \neq o$, and moreover let a, b be not both equal to zero. Then let $\{G_n\}$ be defined by

(1) $G_0 = a$, $G_1 = b$, $G_{n+1} = AG_n - BG_{n-1}$ $(n = 1, 2, \cdots)$

and let $\{R_n\}$ denote the special sequence of $\{G_n\}$ with a = 0, b = 1.

Let $m \ge 2$ be a fixed natural number. In this note we are concerned with the periods of $\{G_n\}$ modulo m and we generalize results proved by D. D. Wall [3] in case of Fibonacci sequences; these occur in (1) by taking A = -B = 1.

THEOREM I. $\{G_n\}$ is periodic mod m, i.e. there exists a rational integer h = h(a, b, m) > 0 such that $G_{n+h} \equiv G_n \pmod{m}$ for all $n \ge n_0(a, b, m) \ge 0$. Especially if (B, m) = I, then $\{G_n\}$ is purely periodic mod m, which means that $n_0(a, b, m) = 0$.

Proof. Consider the $m^2 + 2$ least nonnegative residues \tilde{G}_i of $G_i \mod m$ for $0 \le i \le m^2 + 1$ and consider further the $m^2 + 1$ ordered pairs $(\tilde{G}_i, \tilde{G}_{i+1})$, $0 \le i \le m^2$. Then there exist j, k with $0 \le j < k \le m^2$ such that $(\tilde{G}_j, \tilde{G}_{j+1}) =$

(*) This paper was written while the second Author was a Humboldt Stiftung fellow visiting University of Göttingen.

(**) Nella seduta del 9 febbraio 1974.

10. — RENDICONTI 1974, Vol. LVI, fasc. 2.

 $=(\tilde{G}_k, \tilde{G}_{k+1})$. From the recursion formula in (1) one sees that $G_{k+t} \equiv G_{j+t} \pmod{m}$ for $t = 0, 1, 2, \cdots$, which gives

$$(2) G_{k-j+n} \equiv G_n (mod m)$$

for $n \ge j$, which completes the proof of the first part of Theorem 1 and shows that $n_0(a, b, m) \le j < m^2$, $h \mid (k-j)$ and so $h \le m^2$.

If (B, m) = I, then $G_j \equiv G_k$, $G_{j+1} \equiv G_{k+1}(m)$ imply $BG_{j-1} \equiv BG_{k-1}(m)$ and so $G_{j-1} \equiv G_{k-1}(m)$. Thus by induction we get (2) for each $n \ge 0$.

Remark. Take A = I, B = 2, m = 4. We have that $\{R_n \pmod{4}\}$ begins with $0, I, I, 3, I, 3, \cdots$ This shows that h(0, I, 4) = 2, $n_0(0, I, 4) = 2$ for these A, B, and so it can in fact happen that the sequences are not purely periodic if $(B, m) \neq I$. From now on we assume (B, m) = I for the rest of this paper, and so $\{G_n \pmod{m}\}$ is always purely periodic.

COROLLARY I. If a = 0, then $G_{h(0,b,m)} \equiv 0 \pmod{m}$ and in particular $R_{H(m)} \equiv 0 \pmod{m}$, where H(m) = h(0, 1, m) denotes the least period of $\{R_n \pmod{m}\}$.

THEOREM 2. If m has the prime factorization $m = \prod_{i=1}^{n} p_i^{k_i}$, then h(a, b, m) is the least common multiple of the $h(a, b, p_i^{k_i})$, $1 \le i \le c$.

Proof. We refer to the proof of Theorem 2 of [3].

In virtue of this theorem, it is clear that we can assume *m* to be a prime power. We note that if $x_1 = (A + \sqrt{D})/2$, $x_2 = (A - \sqrt{D})/2$ are the (distinct nonzero) roots of $x^2 - Ax + B = 0$, then we have $R_n = (x_1^n - x_2^n) / (x_1 - x_2)$ and we define S_n by $S_n = x_1^n + x_2^n$ for $n = 0, 1, \cdots$.

The next eight theorems contain results on the least periods of the special sequences $\{R_n \pmod{m}\}$ under various conditions. For several proofs we need certain relations between the R_n 's and the S_n 's, which we collect in the following lemma whose proof is very simple if one uses the trivial formulas $x_1 + x_2 = A$, $x_1 x_2 = B$, $x_1 - x_2 = \sqrt{D}$.

LEMMA. For $n, t, j \ge 0$ one has the relations

(3)
$$R_{n+t} = R_{n+1} R_t - BR_n R_{t-1}$$
, where $R_{-1} = -B^{-1} R_1$

(4)
$$R_{jn} = 2^{1-j} R_n (j S_n^{j-1} + K R_n^2),$$

(5)
$$\mathbf{R}_{jn+1} = 2^{-j} \left(\mathbf{S}_n^j + j \mathbf{A} \mathbf{R}_n \, \mathbf{S}_n^{j-1} + \mathbf{L} \mathbf{R}_n^2 \right)$$

(with certain rational integers K, L),

(6)
$$S_n = 2 R_{n+1} - AR_n = R_{n+1} - BR_{n-1}$$
,

$$S_n^2 = DR_n^2 + 4B^n,$$

(8)
$$R_{2n} = R_n S_n$$
, $R_{2n+1} = R_{n+1}^2 - BR_n^2 = S_n R_{n+1} - B^n = R_n S_{n+1} + B^n$,

(9)
$$R_{n-1} R_{n+1} - R_n^2 = -B^{n-1}$$
, $S_{n-1} S_{n+1} - S_n^2 = DB^{n-1}$,

(10) $S_{2n} = S_n^2 - 2 B^n$.

Remark. The proof of (4) is given in [1, Lemma 2] and that of (5) runs in an analogous way.

THEOREM 3. The terms of $\{R_n\}$ which are divisible by m, have subscripts which are exactly the multiples of a certain natural number f depending only on m.

Proof. Assume $R_i \equiv R_j \equiv o(m)$ with $i \ge j$, say. Then from (3) we have $R_{i+j} \equiv o(m)$. On the other hand take n + t = i, n = j in (3); we get $m \mid R_{j+1}R_{i-j}$ from which we have $R_{i-j} \equiv o(m)$, since $(R_{j+1}, m) = I$. Namely if we had $(R_{j+1}, m) = M > I$, then $M \mid m \mid R_j$ and $M \mid R_{j+1}$ and so $M \mid R_v$ for each $v \ge j$. But we have $R_{i+I(m)+1} \equiv I \pmod{m}$ and so also (mod M) for all natural t. Lef f be the smallest natural number with $R_f \equiv o(m)$. Then, by the preceding remark on R_{i+j} , we have $R_{rf} \equiv o(m)$ for r = I, $2, \cdots$. On the other hand, if there exists n such that $R_n \equiv o(m)$, then divide n by f: n = rf + g with $o \le g < f$ and the preceding result concerning R_{i-j} shows $R_{n-rf} = R_g \equiv o(m)$, from which we have g = o by the minimal condition of f.

The following theorem can be proved along the same lines.

THEOREM 4. If in the sequence $\{R_n\}$ there are terms (with n > 0) being zero, then these terms have subscripts which are exactly the multiples of a certain natural number g, say.

In the next theorem all sequences $\{R_n\}$ in dependence of A, B are determined, in which zero-terms with subscripts > 0 occur.

THEOREM 5. $\{R_n\}$ has zero-terms other than R_0 if and only if exactly one of the following conditions is satisfied: (i) A = 0; (ii) $B = A^2$; (iii) $2B = A^2$; (iv) $3B = A^2$ and the g of Theorem 4 is then g = 2, g = 3, g = 4, g = 6respectively.

Proof. Assume first that $\{R_n\}$ has zero-terms with subscripts > 0 and let g be the smallest such subscript. $R_g = 0$ is equivalent to $(x_1/x_2)^g = 1$, where x_1 and x_2 denote the roots of $x^2 - Ax + B = 0$ mentioned above. Now

$$x^{g}-\mathbf{I}=\prod_{h\mid g}\Phi_{h}(x),$$

where the Φ_k denote the cyclotomic polynomials, which are known to be irreducible over the rational field and of exact degree $\varphi(h)$, φ Eulers totient function. $y = x_1/x_2$ is algebraic of degree two at most and a zero of $x^{g} - I$. Therefore at least one of the numbers $\Phi_k(y)$ with $k \mid g$ is zero. But if $\Phi_{g'}(y) = 0$ for a certain $g' \mid g$, $I \leq g' < g$, then obviously $\prod_{k \mid g'} \Phi_k(y) = y^{g'} - I = 0$. This implies $R_{g'} = 0$ against the minimality condition of g. Therefore we have $\Phi_g(x_1/x_2) = 0$ and so $\Phi_g(x)$ must be of degree $\varphi(g) \leq 2$. It is easily checked that g = I, 2, 3, 4, 6 are the only natural numbers satisfying this condition.

Since $\Phi_1(x_1/x_2) = (x_1 - x_2)/x_2 \neq 0$ the value g = 1 is impossible. $o = \Phi_2(x_1/x_2) = (x_1 + x_2)/x_2 = A/x_2$ implies A = o and the remaining cases 3, 4, 6 for g are treated in an analogous manner using the form of $\Phi_g(x)$. By $R_2\!=\!A$, $R_3\!=\!A^2\!-\!B$, $R_4\!=\!A\,(A^2\!-\!2\,B)$, $R_6\!=\!A\,(A^2\!-\!B)\,(A^2\!-\!3\,B)$, we know that the converse is also true.

COROLLARY 2. If $A \neq 0$ and B < 0, then $R_n \neq 0$ for all n > 0. If $n \equiv \pm 1 \pmod{6}$, then $R_n \neq 0$ for all admissible A, B.

Now we begin to study H(m). The simplest result is contained in

THEOREM 6. The order of B mod m divides H (m).

Proof. Writing H for H(m) the congruences $R_{\rm H} \equiv 0$, $R_{\rm H+1} \equiv I(m)$ show $I \equiv -BR_{\rm H-1}(m)$, such that we have

$$(II) R_x \equiv -B^x R_{H-x} \pmod{m}$$

for x = 0, I. Assume that (II) is proved for $0 \le x \le y$ where y < H, then

$$-B^{x+1}R_{H-(x+1)} = B^{x}R_{H-(x-1)} - AB^{x}R_{H-x} \equiv -BR_{x-1} + AR_{x} = R_{x+1} \pmod{m}.$$

Thus (II) is proved for all x with $0 \le x \le H$. Taking x = H - y in (II), one gets $R_{H-y} \equiv -B^{H-y} R_y \pmod{m}$ and so $-B^y R_{H-y} \equiv B^H R_y \equiv R_y \pmod{m}$. y = I (for example) shows $B^H \equiv I \pmod{m}$ giving the result.

COROLLARY 3. If m > 2 is such that $B \equiv -1$ (m), then H (m) is even. Especially H (m) is even for each m > 2, if B = -1.

Note that H (m) can be odd in both cases (D, m) = 1 and (D, m) \neq 1. If A = 3, B = 2, m = 7, then D = 1, (D, m) = 1, the order of B mod m is 3 and H (m) = 3. If A = 1, B = 2, m = 7, then D = -7, (D, m) = 7, the order of B mod m is once more 3 and H (m) = 21.

THEOREM 7. If (1) $p \mid D$, p > 2, then one has H(p) = 2 dp if H(p) is even. If H(p) is odd, then H(p) = dp. Here d denotes the exact order of B mod p.

Proof. By $p \mid D$ we have for $v = 0, 1, \cdots$

(12)
$$R_{2\nu} \equiv \nu AB^{\nu-1}$$
, $R_{2\nu+1} \equiv (2\nu + I) B^{\nu} \pmod{p}$

the proof of which can be found in [I] in the beginning of §3. Taking $\nu = dp$ in (I2), one sees that $R_{2dp} \equiv 0$, $R_{2dp+1} \equiv I \pmod{p}$, such that $H(p) \mid 2 dp$.

In virtue of $p \nmid A$ (since $p \mid D$, $p \nmid 2B$) one has from (12) that $p \mid H(p)$. Namely, if H(p) = 2S, then $o \equiv R_{H(p)} \equiv SAB^{S-1}(p)$ and so $p \mid S$ and if H(p) = 2S + I, so $o \equiv R_{H(p)} \equiv H(p)B^{S}(p)$ and so once more $p \mid H(p)$. Since $d \mid (p - I)$, we have (d, p) = I and so from Theorem 6 we know $dp \mid H(p)$. In case H(p) is odd the assertion follows from this and $H(p) \mid 2dp$. In case H(p) is even, 2S say, we have from (12)

$$I \equiv R_{H(p)+1} \equiv (H(p) + I) B^{S} \equiv B^{S} \pmod{p},$$

giving d | S and so 2d | H(p), from which the other assertion of Theorem 7 can be derived.

THEOREM 8. If (1) p > 2 and $H(p^2) \neq H(p)$, then $H(p^k) = H(p) p^{k-1}$ for $k = 1, 2, \cdots$.

Proof. The theorem is obviously true for k = 1 and we make induction on k. Assume that the theorem is yet proved up to (and including) a certain $k \ge 1$. Denote for shortness $H(p^k) = H_k$. Since $R_{H_{k+1}} \equiv 0$, $R_{H_{k+1}+1} \equiv 1$ (p^{k+1}) these congruences are also true mod p^k such that $H_k | H_{k+1}$. On the other hand we have by (4) and (5), inserting j = p, $n = H_k$ and observing $p \neq 2$

$$\mathbf{R}_{p\mathbf{H}_{k}} \equiv \mathbf{o} \quad , \quad \mathbf{R}_{p\mathbf{H}_{k}+1} \equiv \left(\mathbf{S}_{\mathbf{H}_{k}}/2\right)^{p} \pmod{p^{k+1}}.$$

By (6) we have $S_{H_k} \equiv 2 (p^k)$ and so $(S_{H_k}/2)^p \equiv I(p^{k+1})$, showing that pH_k is a period of $\{R_n \pmod{p^{k+1}}\}$, which means $H_{k+1} \mid pH_k$. So we have $H_{k+1} = tH_k$ with t either p or I. If k = I, then t = p by the assumption of Theorem 8. Now let $k \ge 2$. If we had t = I or equivalently $H_{k+1} = H_k = p^{k-1}H_1 = pH_{k-1}$ (using the induction hypothesis), then from

$$R_{H_{k+1}} = R_{pH_{k-1}} \equiv 0$$
 , $R_{pH_{k-1}+1} \equiv I(p^{k+1})$

one would get by (4) and (5) (taking j = p, $n = H_{k-1}$)

(13)
$$\mathbf{o} = \mathbf{R}_{\mathbf{H}_{k-1}}(\mathbf{p}\mathbf{S}_{\mathbf{H}_{k-1}}^{\mathbf{p}-1} + \mathbf{K}\mathbf{R}_{\mathbf{H}_{k-1}}^{2})(\mathbf{p}^{k+1}),$$

(14)
$$I \equiv (S_{H_{k-1}}/2)^{p} + 2^{-p} pAR_{H_{k-1}} S_{H_{k-1}}^{p-1} + 2^{-p} LR_{H_{k-1}}^{2} (p^{k+1}).$$

From (13) we have $p^k | R_{H_{k-1}} S_{H_{k-1}}^{p^{-1}}$, since $p^{k+1} | p^{3k-3} | R_{H_{k-1}}^3$ for $k \ge 2$. Since $p | p^{k-1} | R_{H_{k-1}}$ and $p \nmid 2 B$ we have from (7) that $p \nmid S_{H_{k-1}}$, such that we can conclude

Inserting this in (14) one sees that $(S_{H_{k-1}}/2)^{p} \equiv I(p^{k+1})$. Now from Eulers criterion [2, Satz 46] we conclude that $S_{H_{k-1}} \equiv 2(p^{k})$ and so, by (6) and (15), $R_{H_{k-1}+1} \equiv I(p^{k})$. This together with (15) shows that $H_{k} | H_{k-1}$, or equivalently $pH_{k-1} | H_{k-1}$ (by $H_{k} = pH_{k-1}$), and this is impossible. Therefore we have t = p and $H_{k+1} = pH_{k} = p^{k}H_{1}$ and so the proof is complete.

Remark. It should be noted that Theorem 8 is in general non correct in case p = 2, as it is shown by the following example. Take A = B = I, then R_n is 0, 1, 1, 0, -I, -I, 0, 1, \cdots such that $H(2) = 3 \ddagger H(4) = 6$ and also $H(2^k) = 6$ for each $k \ge 2$.

COROLLARY 4. If ⁽¹⁾ $p \mid D$, p > 2, then $H(p^k) = p^{k-1} H(p)$ for $k = 1, 2, \cdots$. In case p = 3, this is only true under the extra condition $H(9) \neq H(3)$.

(I) It should be noted that on account of the remark after Theorem I we assume also (B, p) = I, such that instead of p > 2 we could have written $p \nmid 2B$.

COROLLARY 5. If (1) $p \mid D$, p > 2, then we have $H(p^k) = 2 dp^k$ for $k = 1, 2, \cdots$ if H(p) is even, and $H(p^k) = dp^k$ if H(p) is odd. Here d denotes the exact order of B mod p.

Proof of the corollaries. From [1, Lemma 5] one knows that $p^2 | R_{H(p^2)}$ implies $p^2 | H(p^2)$ in case $p \neq 3$. If we had $H(p^2) = H(p)$, then $p^2 | H(p) = fdp$ (with f either 1 or 2) in virtue of Theorem 7. But p | d is impossible, and so $H(p^2) \neq H(p)$ if $p \neq 3$ and in case p = 3 this is true by an assumption of Corollary 4. Now Theorem 8 gives all. Note that in the example of the remark after Theorem 8 we have D = -3 and taking p = 3 we get $H(3^k) = 6$ for $k = 1, 2, \cdots$, which shows that the extra condition $H(9) \neq H(3)$ of Corollary 4 cannot be omitted. Corollary 5 follows now immediately from Theorem 7. The first part of it was stated without proof in [1] after the formulation of the main theorem.

THEOREM 9. Let ⁽¹⁾ p > 2, $p \nmid D$ and the Legendre-symbol (D/p) = 1. Then $H(p) \mid (p-1)$.

Proof. If $x^2 - Ax + B$ has a double root $r \mod p$, i.e. if $x^2 - Ax + B \equiv \equiv (x - r)^2(p)$, then $A \equiv 2r$, $B \equiv r^2 \pmod{p}$ and so $p \mid D$ against an assumption. Now we have

$$4(x^2 - Ax + B) = (2x - A)^2 - D \equiv O(p) \quad \text{if and only if } (2x - A)^2 \equiv D(p)$$

and since (D/p) = I, p > 2 we have in virtue of the preceding remark two mod p different rational integers y_1 , y_2 which are solutions of $x^2 - Ax + B \equiv \equiv o(p)$. Obviously we have

(16)
$$R_n \equiv R'_n = (y_1^n - y_2^n)/(y_1 - y_2) \pmod{p}$$

for n = 0 and n = 1. Now we have mod p

$$\begin{split} \mathbf{R}_{n+1} &\equiv \mathbf{A}\mathbf{R}'_n - \mathbf{B}\mathbf{R}'_{n-1} = ((\mathbf{A}y_1^n - \mathbf{B}y_1^{n-1}) - (\mathbf{A}y_2^n - \mathbf{B}y_2^{n-1}))/(y_1 - y_2) \equiv \\ &\equiv (y_1^{n+1} - y_2^{n+1})/(y_1 - y_2) = \mathbf{R}'_{n+1} \,, \end{split}$$

proving (16) for all $n \ge 0$. Now by Fermats theorem

$$y_i^{p-1} \equiv I$$
, $y_i^p \equiv y_i \pmod{p}$ for $i = I, 2,$

since $p \nmid y$, by $p \nmid B$. So we have from (16)

 $\mathbf{R}_{p-1} \equiv \mathbf{o} \quad , \quad \mathbf{R}_p \equiv \mathbf{I} \pmod{p},$

which gives the result.

THEOREM 10. Let p > 2 and (D/p) = -1. Then H(p) | d(p + 1), where d is the exact order of B mod p.

Proof. Note first that here we have automatically $p \nmid B$ and $p \nmid D$. By Eulers criterion [2, Satz 57] we have $-I = (D/p) \equiv D^{(p-1)/2}(p)$ and so we get

(17)
$$R_p \equiv -1$$
 , $R_{p+1} \equiv 0$, $R_{p+2} \equiv B$ (p).

Namely we have mod p

$$\mathbf{R}_{p} \equiv 2^{p-1} \mathbf{R}_{p} = \sum_{j=0}^{(p-1)/2} {p \choose 2j+1} \mathbf{A}^{p-2j-1} \mathbf{D}^{j} \equiv \mathbf{D}^{(p-1)/2} \equiv -\mathbf{I} ,$$

giving the first congruence in (17). The second we get from

$$2^{p} \mathbf{R}_{p+1} = \sum_{j=0}^{(p-1)/2} {p + 1 \choose 2j+1} \mathbf{A}^{p-2j} \mathbf{D}^{j} \equiv \sum_{j=1}^{(p-3)/2} {p \choose 2j} + {p \choose 2j+1} \mathbf{A}^{p-2j} \mathbf{D}^{j} \equiv \mathbf{O}(p)$$

and the third follows from the recursion formula.

Applying (4) and (5) with j = d, n = p + I gives by (17)

(18)
$$R_{d(p+1)} \equiv 0$$
, $R_{d(p+1)+1} \equiv (S_{p+1}/2)^d \pmod{p}$.

By (6) and (17) we have $S_{p+1} \equiv 2 B(p)$, and so $(S_{p+1}/2)^d \equiv B^d \equiv 1 \pmod{p}$, which together with (18) gives the result.

The Theorems 3 up to 10 gave information on the periods H(m) of the special sequence $\{R_n \pmod{m}\}$ under various conditions. In the next three theorems we study the connections between H(m) and the periods h(a, b, m) of the general sequences $\{G_n \pmod{m}\}$.

THEOREM 11. Let $E = b^2 - abA + a^2 B$ and (E, m) = I, then h(a, b, m) = H(m). In particular, if (D, m) = I, then $\{S_n \pmod{m}\}$ has period H(m).

Proof. By $G_n = bR_n - aBR_{n-1}$ (see for example [1, formula (2)]) it is clear that h(a, b, m) | H(m). To prove the converse, let h denote h(a, b, m) and consider the system mod m

$$G_{h} - a = bR_{h} - a (I + BR_{h-1}) \equiv 0$$

$$G_{h+1} - b = (bA - aB) R_{h} - b (I + BR_{h-1}) \equiv 0$$

in \mathbb{R}_{k} , $I + \mathbb{B}\mathbb{R}_{k-1}$, whose determinant is $-\mathbb{E}$. In virtue of $(\mathbb{E}, m) = I$ this system has only the trivial solution

$$R_{h} \equiv 0$$
 , $BR_{h-1} \equiv -1$ (m),

or equivalently $R_{k} \equiv 0$, $R_{k+1} \equiv 1$ (m), giving H (m) | h. For $\{S_{n}\}$ we have $a = S_{0} = 2$, $b = S_{1} = A$ and so E = -D, from which the special case follows.

Remark. Note that, if $(E, m) \neq I$, both cases h(a, b, m) = H(m)and h(a, b, m) | H(m), but $h(a, b, m) \neq H(m)$ can occur as the following example shows: Take A = 3, B = -I, m = 9; then H(9) = 6 and h(I, I, 9) = 6, but h(I, 7, 9) = 3 (in both cases 3 | E).

COROLLARY 6. If (1) $p \mid D$, p > 2, $p \nmid (bA - 2 aB)$, then $h(a, b, p^k) = H(p^k)$.

Proof. This is Lemma 1 of [1]. Note that $4 BE = (2 aB - bA)^2 - Db^2$, and so under the conditions $p \mid D$, $p \nmid 2B$ we have the equivalence $(m = p^k, E) = 1$ if and only if $p \nmid (2 aB - bA)$; and now the corollary is immediate from Theorem 11.

COROLLARY 7. If p > 2, (D/p) = -1, then $h(a, b, p^k) = H(p^k)$ in case (a, b, p) = 1.

Proof. We have $4E = (2b - aA)^2 - a^2D$. Take $m = p^k$. If we had $(E, p^k) \neq I$, then $p \mid E$ and so

(19)
$$(2b-aA)^2 \equiv a^2 D \pmod{p}$$
.

If $p \mid a$, then by $p \mid E$ we have $p \mid b$ and so $p \mid (a, b, p)$. So $p \nmid a$ and from (19) we see that D is a quadratic residue mod p against (D/p) = -1. Hence $(E, p^k) = 1$ and Theorem 11 gives the assertion.

THEOREM 12. If m is odd and a, b are such that (a, b, m) = 1, h = h(a, b, m) is odd and $B^h \equiv -1 \pmod{m}$, then H(m) = 2h in case H(m) is even and H(m) = h in case H(m) is odd.

Proof. Regarding now

 $G_{h} - a = R_{h} b - (I + BR_{h-1}) a \equiv 0$ $G_{h+1} - b = (R_{h+1} - I) b - BR_{h} a \equiv 0$ (mod m)

as a system in a, b, one has from $(a, b, m) = 1 \mod m$

$$o \equiv (\mathbf{R}_{h+1} - \mathbf{I}) (\mathbf{B}\mathbf{R}_{h-1} + \mathbf{I}) - \mathbf{B}\mathbf{R}_{h}^{2} = \mathbf{B} (\mathbf{R}_{h+1} \mathbf{R}_{h-1} - \mathbf{R}_{h}^{2}) + (\mathbf{R}_{h+1} - \mathbf{B}\mathbf{R}_{h-1}) - \mathbf{I} = -\mathbf{B}^{h} + \mathbf{S}_{h} - \mathbf{I}$$

in virtue of (6) and (9). So $S_{k} \equiv 0 \pmod{m}$ by assumption and $R_{2k} \equiv 0 \pmod{m}$ by (8). Furthermore, we have by (6) and (10)

$$2 \operatorname{R}_{2h+1} = \operatorname{AR}_{2h} + (\operatorname{R}_{2h+1} - \operatorname{BR}_{2h-1}) \equiv \operatorname{S}_{2h} \equiv -2 \operatorname{B}^{h} \equiv 2 \pmod{m}$$

and so $R_{2h} \equiv 0$, $R_{2h+1} \equiv 1 \pmod{m}$, which gives $H(m) \mid 2h$. From $h \mid H(m)$ (see the beginning of the proof of Theorem 11) the result follows immediately. The next corollary comes easily from Theorem 12 and Corollary 3.

COROLLARY 8. If m is odd and B such that $B \equiv -1 \pmod{m}$, if further a, b are such that (a, b, m) = 1 and h(a, b, m) is odd, then H(m) = 2h(a, b, m).

THEOREM 13. If (D, m) = I, $B \equiv -I \pmod{m}$ and a, b are such that (a, b, m) = I and h = h(a, b, m) is even, then H(m) = h.

Proof. We now write the system (20) of congruences as equations and since $B \equiv -1 \pmod{m}$ we obtain

(21)
$$\begin{aligned} \mathbf{R}_{h} \cdot b + (\mathbf{R}_{h-1} - \mathbf{I}) \ a &= \mathbf{x} \ m \\ (\mathbf{R}_{h+1} - \mathbf{I}) \ b + \mathbf{R}_{h} \ a &= \mathbf{\lambda} \ m \end{aligned}$$

with certain rational integers \varkappa , λ .

First let h/2 be odd. Then by (8) we have

 $R_{{\it h}+1} \equiv S_{{\it h}/2} \; R_{{\it h}/2+1} + {\tt I} ~~,~~ R_{{\it h}-1} \equiv R_{{\it h}/2-1} \; S_{{\it h}/2} + {\tt I} ~~({\rm mod} ~{\it m}).$

Inserting this and $R_h = R_{h/2} S_{h/2}$ in (21) we get with certain rational integers \varkappa' , λ'

(22)
$$\begin{aligned} R_{h/2}b + R_{h/2-1} & a = \varkappa' m S_{h/2}^{-1} \\ R_{h/2+1}b + R_{h/2} & a = \lambda' m S_{h/2}^{-1} \end{aligned}$$

Now by (9) we have $R_{h/2}^2 - R_{h/2-1} R_{h/2+1} = B^{h/2-1} \equiv 1 \pmod{m}$. So from (22) we see that $m \mid a S_{h/2}$ and $m \mid b S_{h/2}$. If $m \nmid S_{h/2}$, then m has a prime factor q with $q \nmid S_{h/2}$, but $q \mid a$ and $q \mid b$ against our condition (a, b, m) = 1. So $S_{h/2} \equiv 0 \pmod{m}$ and by (8)

$$R_{h} = R_{h/.} S_{h/2} \equiv 0$$
 , $R_{h+1} = S_{h/2} R_{h/2+1} - B^{h/2} \equiv I \pmod{m}$

and so $H(m) \mid h$.

Now let h/2 be even; then by (8) we have

$$R_{h+1} \equiv R_{h/2} S_{h/2+1} + I$$
, $R_{h-1} \equiv R_{h/2} S_{h/2-1} + I$ (mod *m*).

From (21) we get with rational integers \varkappa'' , λ''

$$S_{k/2} b + S_{k/2-1} a = \varkappa'' m R_{k/2}^{-1}$$
$$S_{k/2+1} b + S_{k/2} a = \lambda'' m R_{k/2}^{-1}$$

and by (9) we have $S_{h/2}^2 - S_{h/2-1} S_{h/2+1} \equiv D \pmod{m}$. Therefore we have $m \mid a DR_{h/2}$ and $m \mid b DR_{h/2}$, and so $m \mid aR_{h/2}$, $m \mid bR_{h/2}$ by (D, m) = I. Now we have $R_{h/2} \equiv 0 \pmod{m}$, by an analogous reasoning as above, and so by (8)

$$\mathbf{R}_{h} = \mathbf{R}_{h/2} \mathbf{S}_{h/2} \equiv \mathbf{0} \quad , \quad \mathbf{R}_{h+1} \equiv \mathbf{R}_{h/2} \mathbf{S}_{h/2+1} + \mathbf{B}^{h/2} \equiv \mathbf{I} \pmod{m},$$

giving H(m) | h also in case h/2 is even. Since h | H(m), our proof is complete.

Remark. It should be noted that our Theorem 13 is a generalization of Theorem 12 in [3], whose proof is however not clear to us. Furthermore, we do not need the condition that m is odd as in [3]. One may ask whether in

our Theorem 13 one can replace the condition $B \equiv -1 \pmod{m}$ by the weaker condition (B, m) = I. The following example shows that this is not possible in general: Take m = 9, A = 3, B = -4, then D = 4 and (D, m) = I. If (B, m) = I is satisfied. For a = I, b = 2 we have (a, b, m) = I and h = h (a, b, m) = 2. But H(m) = 6.

References

- BUNDSCHUH P. and SHIUE J.-S., Solution of a problem on the uniform distribution of integers, «Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur.», 55, 172-177 (1973).
- [2] SCHOLZ A. and SCHOENEBERG B., Einführung in die Zahlentheorie, 3. Aufl., Berlin: de Gruyter, 1961.
- [3] WALL D. D., Fibonacci series modulo m., «Amer. Math. Monthly», 67, 52-61 (1961).