Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali

Rendiconti

Peter Bundschuh, Jau-Shyong Shiue

A Generalization of a paper by D. D. Wall

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 56 (1974), n.2, p. 135-144.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1974_8_56_2_135_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del 9 febbraio 1974
Presiede il Presidente della Classe Beniamino Segre

SEZIONE I

(Miatematica, meccanica, astronomia, geodesia e geofisica)

Teoria dei numeri. - A Generalization of a paper by D. D. Wall. Nota di Peter Bundschuh e Jau-Shyong Shiue ${ }^{(*)}$, presentata ${ }^{(* *)}$ dal Socio B. Segre.

Riassunto. - Vengono studiate alcune successioni che generalizzano quelle di Fibonacci modulo un intero $m \geq 2$.

In this Note we study sequences $\left\{\mathrm{G}_{n}\right\}$ of the following type. Let $\mathrm{A}, \mathrm{B}, a, b$ be fixed rational integers, let the equation $x^{2}-\mathrm{A} x+\mathrm{B}=\mathrm{o}$ have distinct nonzero roots, which means $B \neq 0$ and $D=A^{2}-4 B \neq 0$, and moreover let a, b be not both equal to zero. Then let $\left\{\mathrm{G}_{n}\right\}$ be defined by

$$
\begin{equation*}
\mathrm{G}_{0}=a \quad, \quad \mathrm{G}_{1}=b \quad, \quad \mathrm{G}_{n+1}=\mathrm{AG}_{n}-\mathrm{BG}_{n-1} \quad(n=\mathrm{I}, 2, \cdots) \tag{I}
\end{equation*}
$$

and let $\left\{\mathrm{R}_{n}\right\}$ denote the special sequence of $\left\{\mathrm{G}_{n}\right\}$ with $a=\mathrm{o}, b=\mathrm{I}$.
Let $m \geq 2$ be a fixed natural number. In this note we are concerned with the periods of $\left\{\mathrm{G}_{n}\right\}$ modulo m. and we generalize results proved by D. D. Wall [3] in case of Fibonacci sequences; these occur in (I) by taking $\mathrm{A}=-\mathrm{B}=\mathrm{I}$.

Theorem i. $\left\{\mathrm{G}_{n}\right\}$ is periodic $\bmod m$, i.e. there exists a rational integer $h=h(a, b, m)>0$ such that $\mathrm{G}_{n+h} \equiv \mathrm{G}_{n}(\bmod m)$ for all $n \geq n_{0}(a, b, m) \geq 0$. Especially if $(\mathrm{B} ; m)=\mathrm{I}$, then $\left\{\mathrm{G}_{n}\right\}$ is purely periodic mod m, which means that $n_{0}(a, b, m)=0$.

Proof. Consider the $m^{2}+2$ least nonnegative residues $\overrightarrow{\mathrm{G}}_{i}$ of $\mathrm{G}_{i} \bmod m$ for $\mathrm{o} \leq i \leq m^{2}+\mathrm{I}$ and consider further the $m^{2}+\mathrm{I}$ ordered pairs $\left(\stackrel{\mathrm{G}}{i}, \tilde{\mathrm{G}}_{i+1}\right)$, $\mathrm{o} \leq i \leq m^{2}$. Then there exist j, k with $\mathrm{o} \leq j<k \leq m^{2}$ such that $\left(\stackrel{\rightharpoonup}{\mathrm{G}}_{j}, \stackrel{\mathrm{G}}{j+1}\right)=$
(*) This paper was written while the second Author was a Humboldt Stiftung fellow visiting University of Göttingen.
(**) Nella seduta del 9 febbraio 1974 .
$=\left(\stackrel{\rightharpoonup}{\mathrm{G}}_{k}, \stackrel{\mathrm{G}}{k+1}\right)$. From the recursion formula in (I) one sees that $\mathrm{G}_{k+t} \equiv \mathrm{G}_{j+t}$ $(\bmod m)$ for $t=\mathrm{o}, \mathrm{I}, 2, \cdots$, which gives

$$
\begin{equation*}
\mathrm{G}_{k-j+n} \equiv \mathrm{G}_{n} \quad(\bmod m) \tag{2}
\end{equation*}
$$

for $n \geq j$, which completes the proof of the first part of Theorem I and shows that $n_{0}(a, b, m) \leq j<m^{2}, h \mid(k-j)$ and so $h \leq m^{2}$.

If $(\mathrm{B}, m)=\mathrm{I}$, then $\mathrm{G}_{j} \equiv \mathrm{G}_{k}, \mathrm{G}_{j+1} \equiv \mathrm{G}_{k+1}(m)$ imply $\mathrm{BG}_{j-1} \equiv \mathrm{BG}_{k-1}(m)$ and so $\mathrm{G}_{j-1} \equiv \mathrm{G}_{k-1}(m)$. Thus by induction we get (2) for each $n \geq 0$.

Remark. Take $\mathrm{A}=\mathrm{I}, \mathrm{B}=2, m=4$. We have that $\left\{\mathrm{R}_{n}(\bmod 4)\right\}$ begins with $0,1, I, 3, I, 3, \cdots$ This shows that $h(0,1,4)=2$, $n_{0}(0, I, 4)=2$ for these A , B, and so it can in fact happen that the sequences are not purely periodic if $(\mathrm{B}, m) \neq \mathrm{I}$. From now on we assume $(\mathrm{B}, m)=\mathrm{I}$ for the rest of this paper, and so $\left\{\mathrm{G}_{n}(\bmod m)\right\}$ is always purely periodic.

Corollary i. If $a=\mathrm{o}$, then $\mathrm{G}_{h(0, b, m)} \equiv \mathrm{o}(\bmod m)$ and in particular $\mathrm{R}_{\mathrm{H}(m)} \equiv \mathrm{o}(\bmod m)$, where $\mathrm{H}(m)=h(\mathrm{o}, \mathrm{I}, m)$ denotes the least period of $\left\{\mathrm{R}_{n}(\bmod m)\right\}$.

TheOrem 2. If m has the prime factorization $m=\prod_{i=1}^{c} p_{i}^{k_{i}}$, then $h(a, b, m)$ is the least common multiple of the $h\left(a, b, p_{i}^{k}\right), \mathrm{I} \leq i \leq c$.

Proof. We refer to the proof of Theorem 2 of [3].
In virtue of this theorem, it is clear that we can assume m to be a prime power. We note that if $x_{1}=(\mathrm{A}+\sqrt{\mathrm{D}}) / 2, x_{2}=(\mathrm{A}-\sqrt{\mathrm{D}}) / 2$ are the (distinct nonzero) roots of $x^{2}-\mathrm{A} x+\mathrm{B}=\mathrm{o}$, then we have $\mathrm{R}_{n}=\left(x_{1}^{n}-x_{2}^{n}\right) /\left(x_{1}-x_{2}\right)$ and we define S_{n} by $\mathrm{S}_{n}=x_{1}^{n}+x_{2}^{n}$ for $n=\mathrm{o}$, I,\cdots.

The next eight theorems contain results on the least periods of the special sequences $\left\{\mathrm{R}_{n}(\bmod m)\right\}$ under various conditions. For several proofs we need certain relations between the R_{n} 's and the S_{n} 's, which we collect in the following lemma whose proof is very simple if one uses the trivial formulas $x_{1}+x_{2}=\mathrm{A}, x_{1} x_{2}=\mathrm{B}, x_{1}-x_{2}=\sqrt{\overline{\mathrm{D}}}$.

Lemma. For $n, t, j \geq 0$ one has the relations

$$
\begin{equation*}
\mathrm{R}_{n+t}=\mathrm{R}_{n+1} \mathrm{R}_{t}-\mathrm{BR}_{n} \mathrm{R}_{t-1}, \quad \text { where } \mathrm{R}_{1}=-\mathrm{B}^{-1} \mathrm{R}_{1} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{R}_{j n}=2^{1-j} \mathrm{R}_{n}\left(j \mathrm{~S}_{n}^{j-1}+\mathrm{KR}_{n}^{2}\right), \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{R}_{j n+1}=2^{-j}\left(\mathrm{~S}_{n}^{j}+j \mathrm{AR}_{n} \mathrm{~S}_{n}^{j-1}+\mathrm{LR}_{n}^{2}\right) \tag{5}
\end{equation*}
$$ (with certain rational integers K, L),

$$
\begin{equation*}
\mathrm{S}_{n}=2 \mathrm{R}_{n+1}-\mathrm{AR}_{n}=\mathrm{R}_{n+1}-\mathrm{BR}_{n-1} \tag{6}
\end{equation*}
$$ $\mathrm{S}_{n}^{2}=\mathrm{DR}_{n}^{n}+4 \mathrm{~B}^{n}$, $\mathrm{R}_{2 n}=\mathrm{R}_{n} \mathrm{~S}_{n}, \mathrm{R}_{2 n+1}=\mathrm{R}_{n+1}^{2}-\mathrm{BR}_{n}^{2}=\mathrm{S}_{n} \mathrm{R}_{n+1}-\mathrm{B}^{n}=\mathrm{R}_{n} \mathrm{~S}_{n+1}+\mathrm{B}^{n}$,

$$
\begin{equation*}
\mathrm{R}_{n-1} \mathrm{R}_{n+1}-\mathrm{R}_{n}^{2}=-\mathrm{B}^{n-1} \quad, \quad \mathrm{~S}_{n-1} \mathrm{~S}_{n+1}-\mathrm{S}_{n}^{2}=\mathrm{DB}^{n-1} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{S}_{2 n}=\mathrm{S}_{n}^{2}-2 \mathrm{~B}^{n} . \tag{9}
\end{equation*}
$$

Remark. The proof of (4) is given in [I, Lemma 2] and that of (5) runs in an analogous way.

Theorem 3. The terms of $\left\{\mathrm{R}_{n}\right\}$ which are divisible by m, have subscripts which are exactly the multiples of a certain natural number f depending only on m.

Proof. Assume $\mathrm{R}_{i} \equiv \mathrm{R}_{j} \equiv \mathrm{o}(m)$ with $i \geq j$, say. Then from (3) we have $\mathrm{R}_{i+j} \equiv \mathrm{o}(m)$. On the other hand take $n+t=i, n=j$ in (3); we get $m \mid \mathrm{R}_{j+1} \mathrm{R}_{i-j}$ from which we have $\mathrm{R}_{i-j} \equiv \mathrm{o}(m)$, since $\left(\mathrm{R}_{j+1}, m\right)=\mathrm{I}$. Namely if we had $\left(\mathrm{R}_{j+1}, m\right)=\mathrm{M}>\mathrm{I}$, then $\mathrm{M}|m| \mathrm{R}_{j}$ and $\mathrm{M} \mid \mathrm{R}_{j+1}$ and so $\mathrm{M} \mid \mathrm{R}_{v}$ for each $\nu \geq j$. But we have $\mathrm{R}_{t \mathrm{H}(m)+1} \equiv \mathrm{I}(\bmod m)$ and so also ($\bmod \mathrm{M}$) for all natural t. Lef f be the smallest natural number with $\mathrm{R}_{f} \equiv \mathrm{o}(m)$. Then, by the preceding remark on R_{i+j}, we have $\mathrm{R}_{r f} \equiv \mathrm{o}(m)$ for $r=\mathrm{I}, 2, \cdots$. On the other hand, if there exists n such that $\mathrm{R}_{n} \equiv \mathrm{o}(m)$, then divide n by $f: n=r f+g$ with $0 \leq g<f$ and the preceding result concerning R_{i-j} shows $\mathrm{R}_{n-r f}=\mathrm{R}_{g} \equiv \mathrm{o}(m)$, from which we have $g=\mathrm{o}$ by the minimal condition of f.

The following theorem can be proved along the same lines.
Theorem 4. If in the sequence $\left\{\mathrm{R}_{n}\right\}$ there are terms (with $n>0$) being zero, then these terms have subscripts which are exactly the multiples of a certain natural number g, say.

In the next theorem all sequences $\left\{\mathrm{R}_{n}\right\}$ in dependence of A, B are determined, in which zero-terms with subscripts >0 occur.

Theorem 5. $\left\{\mathrm{R}_{n}\right\}$ has zero-terms other than R_{0} if and only if exactly one of the following conditions is satisfied: (i) $\mathrm{A}=\mathrm{o}$; (ii) $\mathrm{B}=\mathrm{A}^{2}$; (iii) $2 \mathrm{~B}=\mathrm{A}^{2}$; (iv) $3 \mathrm{~B}=\mathrm{A}^{2}$ and the g of Theorem 4 is then $g=2, g=3, g=4, g=6$ respectively.

Proof. Assume first that $\left\{\mathrm{R}_{n}\right\}$ has zero-terms with subscripts >0 and let g be the smallest such subscript. $\mathrm{R}_{g}=0$ is equivalent to $\left(x_{1} / x_{2}\right)^{g}=\mathrm{I}$, where x_{1} and x_{2} denote the roots of $x^{2}-\mathrm{A} x+\mathrm{B}=0$ mentioned above. Now

$$
x^{g}-\mathrm{I}=\prod_{h \mid g} \Phi_{h}(x)
$$

where the Φ_{h} denote the cyclotomic polynomials, which are known to be irreducible over the rational field and of exact degree $\varphi(h), \varphi$ Eulers totient function. $y^{\prime}=x_{1} / x_{2}$ is algebraic of degree two at most and a zero of $x^{g}-\mathrm{I}$. Therefore at least one of the numbers $\Phi_{h}(y)$ with $h \mid g$ is zero. But if $\Phi_{g^{\prime}}(y)=0$ for a certain $g^{\prime} \mid g, \mathrm{I} \leq g^{\prime}<g$, then obviously $\prod_{h \mid g^{\prime}} \Phi_{h}(y)=y^{g^{\prime}}-\mathrm{I}=\mathrm{o}$. This implies $\mathrm{R}_{g^{\prime}}=\mathrm{o}$ against the minimality condition of g. Therefore we have $\Phi_{g}\left(x_{1} \mid x_{2}\right)=0$ and so $\Phi_{g}(x)$ must be of degree $\varphi(g) \leq 2$. It is easily checked that $g=1,2,3,4,6$ are the only natural numbers satisfying this condition.

Since $\Phi_{1}\left(x_{1} / x_{2}\right)=\left(x_{1}-x_{2}\right) / x_{2} \neq 0$ the value $g=\mathrm{I}$ is impossible. $\mathrm{o}=\Phi_{2}\left(x_{1} / x_{2}\right)=\left(x_{1}+x_{2}\right) / x_{2}=\mathrm{A} / x_{2}$ implies $\mathrm{A}=\mathrm{o}$ and the remaining cases 3, 4, 6 for g are treated in an analogous manner using the form of $\Phi_{g}(x)$.

By $R_{2}=A, R_{3}=A^{2}-B, R_{4}=A\left(A^{2}-2 B\right), R_{6}=A\left(A^{2}-B\right)\left(A^{2}-3 B\right)$, we know that the converse is also true.

Corollary 2. If $\mathrm{A} \neq \mathrm{o}$ and $\mathrm{B}<\mathrm{o}$, then $\mathrm{R}_{n} \neq \mathrm{o}$ for all $n>0$. If $n \equiv \pm \mathrm{I}(\bmod 6)$, then $\mathrm{R}_{n} \neq \mathrm{o}$ for all admissible A, B.

Now we begin to study $\mathrm{H}(m)$. The simplest result is contained in
Theorem 6. The order of $\mathrm{B} \bmod m$ divides $\mathrm{H}(m)$.
Proof. Writing H for $\mathrm{H}(m)$ the congruences $\mathrm{R}_{\mathrm{H}} \equiv \mathrm{o}, \mathrm{R}_{\mathrm{H}+1} \equiv \mathrm{I}(m)$ show $\mathrm{I} \equiv-\mathrm{BR}_{\mathrm{H}-1}(m)$, such that we have

$$
\begin{equation*}
\mathrm{R}_{x} \equiv-\mathrm{B}^{x} \mathrm{R}_{\mathrm{H}-x} \quad(\bmod m) \tag{II}
\end{equation*}
$$

for $x=\mathrm{o}, \mathrm{I}$. Assume that (II) is proved for $\mathrm{o} \leq x \leq y$ where $y<\mathrm{H}$, then
$-\mathrm{B}^{x+1} \mathrm{R}_{\mathrm{H}-(x+1)}=\mathrm{B}^{x} \mathrm{R}_{\mathrm{H}-(x-1)}-\mathrm{AB}^{x} \mathrm{R}_{\mathrm{H}-x} \equiv-\mathrm{BR}_{x-1}+\mathrm{AR}_{x}=\mathrm{R}_{x+1}(\bmod m)$.
Thus (II) is proved for all x with $\mathrm{o} \leq x \leq \mathrm{H}$. Taking $x=\mathrm{H}-y$ in (II), one gets $\mathrm{R}_{\mathrm{H}-y} \equiv-\mathrm{B}^{\mathrm{H}-y} \mathrm{R}_{y}(\bmod m)$ and so $-\mathrm{B}^{y} \mathrm{R}_{\mathrm{H}-y} \equiv \mathrm{~B}^{\mathrm{H}} \mathrm{R}_{y} \equiv \mathrm{R}_{y}(\bmod m)$. $y=\mathrm{I}$ (for example) shows $\mathrm{B}^{\mathrm{H}} \equiv \mathrm{I}(m)$ giving the result.

Corollary 3. If $m>2$ is such that $\mathrm{B} \equiv-\mathrm{I}(m)$, then $\mathrm{H}(m)$ is even. Especially $\mathrm{H}(m)$ is even for each $m>2$, if $\mathrm{B}=-\mathrm{I}$.

Note that $\mathrm{H}(m)$ can be odd in both cases $(\mathrm{D}, m)=\mathrm{I}$ and $(\mathrm{D}, m) \neq \mathrm{I}$. If $\mathrm{A}=3, \mathrm{~B}=2, m=7$, then $\mathrm{D}=\mathrm{r},(\mathrm{D}, m)=\mathrm{I}$, the order of $\mathrm{B} \bmod m$ is 3 and $\mathrm{H}(m)=3$. If $\mathrm{A}=\mathrm{I}, \mathrm{B}=2, m=7$, then $\mathrm{D}=-7,(\mathrm{D}, m)=7$, the order of $\mathrm{B} \bmod m$ is once more 3 and $\mathrm{H}(m)=2 \mathrm{I}$.

Theorem 7. If ${ }^{(1)} p \mid \mathrm{D}, p>2$, then one has $\mathrm{H}(p)=2 \mathrm{~d} p$ if $\mathrm{H}(p)$ is even. If $\mathrm{H}(p)$ is odd, then $\mathrm{H}(p)=\mathrm{d} p$. Here d denotes the exact order of $B \bmod p$.

Proof. By $p \mid \mathrm{D}$ we have for $\nu=\mathrm{o}, \mathrm{I}, \cdots$

$$
\begin{equation*}
\mathrm{R}_{2 v} \equiv \nu \mathrm{AB} \mathrm{~B}^{\nu-1} \quad, \quad \mathrm{R}_{2 v+1} \equiv(2 \nu+1) \mathrm{B}^{\nu} \quad(\bmod p) \tag{I2}
\end{equation*}
$$

the proof of which can be found in [I] in the beginning of $\S 3$. Taking $\nu=\mathrm{d} p$ in (12), one sees that $\mathrm{R}_{2 \mathrm{~d} p} \equiv \mathrm{o}, \mathrm{R}_{2 \mathrm{~d} p+1} \equiv \mathrm{I}(\bmod p)$, such that $\mathrm{H}(p) \mid 2 \mathrm{~d} p$.

In virtue of $p \nmid \mathrm{~A}$ (since $p \mid \mathrm{D}, p \nmid 2 \mathrm{~B}$) one has from (I2) that $p \mid \mathrm{H}(p)$. Namely, if $\mathrm{H}(p)=2 \mathrm{~S}$, then $\mathrm{o} \equiv \mathrm{R}_{\mathrm{H}(p)} \equiv \mathrm{SAB}^{\mathrm{S}-1}(p)$ and so $p \mid \mathrm{S}$ and if $\mathrm{H}(p)=2 \mathrm{~S}+\mathrm{I}$, so $\mathrm{o} \equiv \mathrm{R}_{\mathrm{H}(p)} \equiv \mathrm{H}(p) \mathrm{B}^{\mathrm{S}}(p)$ and so once more $p \mid \mathrm{H}(p)$. Since $\mathrm{d} \mid(p-\mathrm{I})$, we have $(\mathrm{d}, p)=\mathrm{I}$ and so from Theorem 6 we know $\mathrm{d} p \mid \mathrm{H}(p)$. In case $\mathrm{H}(p)$ is odd the assertion follows from this and $\mathrm{H}(p) \mid 2 \mathrm{~d} p$. In case $\mathrm{H}(p)$ is even, 2 S say, we have from (12)

$$
\mathrm{I} \equiv \mathrm{R}_{\mathrm{H}(p)+1} \equiv(\mathrm{H}(p)+\mathrm{I}) \mathrm{B}^{\mathrm{S}} \equiv \mathrm{~B}^{\mathrm{S}}(\bmod p)
$$

giving $\mathrm{d} \mid \mathrm{S}$ and so $2 \mathrm{~d} \mid \mathrm{H}(p)$, from which the other assertion of Theorem 7 can be derived.

Theorem 8. If ${ }^{(1)} p>2$ and $\mathrm{H}\left(p^{2}\right) \neq \mathrm{H}(p)$, then $\mathrm{H}\left(p^{k}\right)=\mathrm{H}(p) p^{k-1}$ for $k=1,2, \cdots$.

Proof. The theorem is obviously true for $k=\mathrm{I}$ and we make induction on k. Assume that the theorem is yet proved up to (and including) a certain $k \geq \mathrm{I}$. Denote for shortness $\mathrm{H}\left(p^{k}\right)=\mathrm{H}_{k}$. Since $\mathrm{R}_{\mathrm{H}_{k+1}} \equiv \mathrm{o}$, $\mathrm{R}_{\mathrm{H}_{k+1}+1} \equiv \mathrm{I}\left(p^{k+1}\right)$ these congruences are also true $\bmod p^{k}$ such that $\mathrm{H}_{k} \mid \mathrm{H}_{k+1}$. On the other hand we have by (4) and (5), inserting $j=p, n=\mathrm{H}_{k}$ and observing $p \neq 2$

$$
\mathrm{R}_{p \mathrm{H}_{k}} \equiv \mathrm{O} \quad, \quad \mathrm{R}_{p \mathrm{H}_{k}+1} \equiv\left(\mathrm{~S}_{\mathrm{H}_{k}} / 2\right)^{p} \quad\left(\bmod p^{k+1}\right)
$$

By (6) we have $\mathrm{S}_{\mathrm{H}_{k}} \equiv 2\left(p^{k}\right)$ and so $\left(\mathrm{S}_{\mathrm{H}_{k}} / 2\right)^{p} \equiv \mathrm{I}\left(p^{k+1}\right)$, showing that $p \mathrm{H}_{k}$ is a period of $\left\{\mathrm{R}_{n}\left(\bmod p^{k+1}\right)\right\}$, which means $\mathrm{H}_{k+1} \mid p \mathrm{H}_{k}$. So we have $\mathrm{H}_{k+1}=t \mathrm{H}_{k}$ with t either p or I. If $k=\mathrm{I}$, then $t=p$ by the assumption of Theorem 8. Now let $k \geq 2$. If we had $t=\mathrm{I}$ or equivalently $\mathrm{H}_{k+1}=\mathrm{H}_{k}=$ $=p^{k-1} \mathrm{H}_{1}=p \mathrm{H}_{k-1}$ (using the induction hypothesis), then from

$$
\mathrm{R}_{\mathrm{H}_{k+1}}=\mathrm{R}_{p \mathrm{H}_{k-1}} \equiv \mathrm{o} \quad, \quad \mathrm{R}_{p \mathrm{H}_{k-1}+1} \equiv \mathrm{I}\left(p^{k+1}\right)
$$

one would get by (4) and (5) (taking $j=p, n=\mathrm{H}_{k-1}$)

$$
\begin{gather*}
\mathrm{O} \equiv \mathrm{R}_{\mathrm{H}_{k-1}}\left(p \mathrm{~S}_{\mathrm{H}_{k-1}}^{p-1}+\mathrm{KR}_{\mathrm{H}_{k-1}}^{2}\right)\left(p^{k+1}\right) \tag{I3}\\
\mathrm{I} \equiv\left(\mathrm{~S}_{\mathrm{H}_{k-1}} / 2\right)^{p}+2^{-\phi} p \mathrm{AR}_{\mathrm{H}_{k-1}} \mathrm{~S}_{\mathrm{H} k-1}^{p-1}+2^{-p} \mathrm{LR}_{\mathrm{H} k-1}^{2}\left(p^{k+1}\right) . \tag{I4}
\end{gather*}
$$

From (I3) we have $p^{k} \mid \mathrm{R}_{\mathrm{H}_{k-1}} \mathrm{~S}_{\mathrm{H}_{k-1}}^{p-1}$, since $p^{k+1}\left|p^{3 k-3}\right| \mathrm{R}_{\mathrm{H}_{k-1}}^{3}$ for $k \geq 2$. Since $p\left|p^{k-1}\right| \mathrm{R}_{\mathrm{H}_{k-1}}$ and $p \nmid 2 \mathrm{~B}$ we have from (7) that $p \nmid \mathrm{~S}_{\mathrm{H}_{k-1}}$, such that we can conclude

$$
\begin{equation*}
\mathrm{R}_{\mathrm{H}_{k-1}} \equiv \mathrm{o}\left(p^{k}\right) . \tag{15}
\end{equation*}
$$

Inserting this in (14) one sees that $\left(\mathrm{S}_{\mathrm{H}_{k-1}} / 2\right)^{p} \equiv \mathrm{I}\left(p^{k+1}\right)$. Now from Eulers criterion [2, Satz 46] we conclude that $\mathrm{S}_{\mathrm{H}_{k-1}} \equiv 2\left(p^{k}\right)$ and so, by (6) and (I5), $\mathrm{R}_{\mathrm{H}_{k-1}+1} \equiv \mathrm{I}\left(p^{k}\right)$. This together with (I 5) shows that $\mathrm{H}_{k} \mid \mathrm{H}_{k-1}$, or equivalently $p \mathrm{H}_{k-1} \mid \mathrm{H}_{k-1}$ (by $\mathrm{H}_{k}=p \mathrm{H}_{k-1}$), and this is impossible. Therefore we have $t=p$ and $\mathrm{H}_{k+1}=p \mathrm{H}_{k}=p^{k} \mathrm{H}_{1}$ and so the proof is complete.

Remark. It should be noted that Theorem 8 is in general non correct in case $p=2$, as it is shown by the following example. Take $A=B=\mathrm{I}$, then R_{n} is $\mathrm{O}, \mathrm{I}, \mathrm{I}, \mathrm{O},-\mathrm{I},-\mathrm{I}, \mathrm{O}, \mathrm{I}, \cdots$ such that $\mathrm{H}(2)=3 \neq \mathrm{H}(4)=6$ and also $\mathrm{H}\left(2^{k}\right)=6$ for each $k \geq 2$.

Corollary 4. If ${ }^{(1)} p \mid \mathrm{D}, p>2$, then $\mathrm{H}\left(p^{k}\right)=p^{k-1} \mathrm{H}(p)$ for $k=1,2, \cdots$. In case $p=3$, this is only true under the extra condition $\mathrm{H}(9) \neq \mathrm{H}(3)$.
(i) It should be noted that on account of the remark after Theorem I we assume also $(\mathrm{B}, p)=\mathrm{I}$, such that instead of $p>2$ we could have written $p \nmid 2 \mathrm{~B}$.

Corollary 5. If (1) $p \mid \mathrm{D}, p>2$, then we have $\mathrm{H}\left(p^{k}\right)=2 \mathrm{~d} p^{k}$ for $k=\mathrm{I}, 2, \cdots$ if $\mathrm{H}(p)$ is even, and $\mathrm{H}\left(p^{k}\right)=\mathrm{d} p^{k}$ if $\mathrm{H}(p)$ is odd. Here d denotes the exact order of $\mathrm{B} \bmod p$.

Proof of the corollaries. From [I, Lemma 5] one knows that $p^{2} \mid \mathrm{R}_{\mathrm{H}\left(p^{2}\right)}$ implies $p^{2} \mid \mathrm{H}\left(p^{2}\right)$ in case $p \neq 3$. If we had $\mathrm{H}\left(p^{2}\right)=\mathrm{H}(p)$, then $p^{2} \mid \mathrm{H}(p)=$ $=f \mathrm{~d} p$ (with f either I or 2) in virtue of Theorem 7. But $p \mid \mathrm{d}$ is impossible, and so $\mathrm{H}\left(p^{2}\right) \neq \mathrm{H}(p)$ if $p \neq 3$ and in case $p=3$ this is true by an assumption of Corollary 4. Now Theorem 8 gives all. Note that in the example of the remark after Theorem 8 we have $\mathrm{D}=-3$ and taking $p=3$ we get $\mathrm{H}\left(3^{k}\right)=6$ for $k=1,2, \cdots$, which shows that the extra condition $\mathrm{H}(9) \neq \mathrm{H}(3)$ of Corollary 4 cannot be omitted. Corollary 5 follows now immediately from Theorem 7. The first part of it was stated without proof in [r] after the formulation of the main theorem.

Theorem 9. Let ${ }^{(1)} p>2, p \nmid \mathrm{D}$ and the Legendre-symbol $(\mathrm{D} / p)=\mathrm{I}$. Then $\mathrm{H}(p) \mid(p-1)$.

Proof. If $x^{2}-\mathrm{A} x+\mathrm{B}$ has a double root $r \bmod p$, i.e. if $x^{2}-\mathrm{A} x+\mathrm{B} \equiv$ $\equiv(x-r)^{2}(p)$, then $\mathrm{A} \equiv 2 r, \mathrm{~B} \equiv r^{2}(\bmod p)$ and so $p \mid \mathrm{D}$ against an assumption. Now we have
$4\left(x^{2}-\mathrm{A} x+\mathrm{B}\right)=(2 x-\mathrm{A})^{2}-\mathrm{D} \equiv \mathrm{o}(p) \quad$ if and only if $(2 x-\mathrm{A})^{2} \equiv \mathrm{D}(p)$
and since $(\mathrm{D} / p)=\mathrm{I}, p>2$ we have in virtue of the preceding remark two $\bmod p$ different rational integers y_{1}, y_{2} which are solutions of $x^{2}-\mathrm{A} x+\mathrm{B} \equiv$ $\equiv \mathrm{o}(p)$. Obviously we have

$$
\begin{equation*}
\mathrm{R}_{n} \equiv \mathrm{R}_{n}^{\prime}=\left(y_{1}^{n}-y_{2}^{n}\right) /\left(y_{1}-y_{2}\right) \quad(\bmod p) \tag{16}
\end{equation*}
$$

for $n=0$ and $n=1$. Now we have $\bmod p$

$$
\begin{gathered}
\mathrm{R}_{n+1} \equiv \mathrm{AR}_{n}^{\prime}-\mathrm{BR}_{n-1}^{\prime}=\left(\left(\mathrm{A} y_{1}^{n}-\mathrm{B} y_{1}^{n-1}\right)-\left(\mathrm{A} y_{2}^{n}-\mathrm{B} y_{2}^{n-1}\right)\right) /\left(y_{1}-y_{2}\right) \equiv \\
\equiv\left(y_{1}^{n+1}-y_{2}^{n+1}\right) /\left(y_{1}-y_{2}\right)=\mathrm{R}_{n+1}^{\prime}
\end{gathered}
$$

proving (16) for all $n \geq 0$. Now by Fermats theorem

$$
y_{i}^{\phi-1} \equiv \mathrm{I} \quad, \quad y_{i}^{p} \equiv y_{i} \quad(\bmod p) \quad \text { for } i=\mathrm{I}, 2
$$

since $p \nmid y_{i}$ by $p \nmid B$. So we have from (I6)

$$
\mathrm{R}_{p-1} \equiv \mathrm{o} \quad, \quad \mathrm{R}_{p} \equiv \mathrm{I} \quad(\bmod p)
$$

which gives the result.
Theorem io. Let $p>2$ and $(\mathrm{D} / p)=-\mathrm{I}$. Then $\mathrm{H}(p) \mid \mathrm{d}(p+1)$, where d is the exact order of $\mathrm{B} \bmod p$.

Proof. Note first that here we have automatically $p \nmid \mathrm{~B}$ and $p \nmid \mathrm{D}$. By Eulers' criterion [2, Satz 57] we have $-\mathrm{I}=(\mathrm{D} / p) \equiv \mathrm{D}^{(p-1) / 2}(p)$ and so we get

$$
\begin{equation*}
\mathrm{R}_{p} \equiv-\mathrm{I} \quad, \quad \mathrm{R}_{p+1} \equiv \mathrm{o} \quad, \quad \mathrm{R}_{p+2} \equiv \mathrm{~B} \tag{7}
\end{equation*}
$$

Namely we have mod p

$$
\mathrm{R}_{p} \equiv 2^{p-1} \mathrm{R}_{p}=\sum_{j=0}^{(p-1) / 2}\binom{p}{2 j+\mathrm{I}} \mathrm{~A}^{p-2 j-1} \mathrm{D}^{j} \equiv \mathrm{D}^{(p-1) / 2} \equiv-\mathrm{I},
$$

giving the first congruence in (i7). The second we get from

$$
2^{p} \mathrm{R}_{p+1}=\sum_{j=0}^{(p-1) / 2}\binom{p+\mathrm{I}}{2 j+\mathrm{I}} \mathrm{~A}^{p-2 j} \mathrm{D}^{j} \equiv \sum_{j=1}^{(p-3) / 2}\left(\binom{p}{2 j}+\binom{p}{2 j+\mathrm{I}}\right) \mathrm{A}^{p-2 j} \mathrm{D}^{j} \equiv \mathrm{o}(p)
$$

and the third follows from the recursion formula.
Applying (4) and (5) with $j=\mathrm{d}, n=p+\mathrm{I}$ gives by (I 7)

$$
\begin{equation*}
\mathrm{R}_{\mathrm{d}(p+1)} \equiv 0 \quad, \quad \mathrm{R}_{\mathrm{d}(p+1)+1} \equiv\left(\mathrm{~S}_{p+1} / 2\right)^{\mathrm{d}} \quad(\bmod p) \tag{I8}
\end{equation*}
$$

By (6) and (${ }^{1} 7$) we have $\mathrm{S}_{p+1} \equiv 2 \mathrm{~B}(p)$, and so $\left(\mathrm{S}_{p+1} / 2\right)^{\mathrm{d}} \equiv \mathrm{B}^{\mathrm{d}} \equiv \mathrm{I}(\bmod p)$, which together with (I8) gives the result.

The Theorems 3 up to io gave information on the periods $\mathrm{H}(m)$ of the special sequence $\left\{\mathrm{R}_{n}(\bmod m)\right\}$ under various conditions. In the next three theorems we study the connections between $\mathrm{H}(m)$ and the periods $h(a, b, m)$ of the general sequences $\left\{\mathrm{G}_{n}(\bmod m)\right\}$.

Theoremin. Let $\mathrm{E}=b^{2}-a b \mathrm{~A}+a^{2} \mathrm{~B}$ and $(\mathrm{E}, m)=\mathrm{I}$, then $h(a, b, m)=$ $=\mathrm{H}(m)$. In particular, if $(\mathrm{D}, m)=\mathrm{I}$, then $\left\{\mathrm{S}_{n}(\bmod m)\right\}$ has period $\mathrm{H}(m)$.

Proof. By $\mathrm{G}_{n}=b \mathrm{R}_{n}-a \mathrm{BR}_{n-1}$ (see for example [I , formula (2)]) it is clear that $h(a, b, m) \mid \mathrm{H}(m)$. To prove the converse, let h denote $h(a, b, m)$ and consider the system $\bmod m$

$$
\begin{aligned}
& \mathrm{G}_{h}-a=b \mathrm{R}_{h}-a\left(\mathrm{I}+\mathrm{BR}_{h-1}\right) \equiv \mathrm{o} \\
& \mathrm{G}_{h+1}-b=(b \mathrm{~A}-a \mathrm{~B}) \mathrm{R}_{h}-b\left(\mathrm{I}+\mathrm{BR}_{h-1}\right) \equiv \mathrm{o}
\end{aligned}
$$

in R_{h}^{\prime}, $\mathrm{I}+\mathrm{BR}_{h-1}$, whose determinant is -E . In virtue of $(\mathrm{E}, m)=\mathrm{I}$ this system has only the trivial solution

$$
\mathrm{R}_{h} \equiv \mathrm{o} \quad, \quad \mathrm{BR}_{h-1} \equiv-\mathrm{I}(m)
$$

or equivalently $\mathrm{R}_{h} \equiv \mathrm{o}, \mathrm{R}_{k+1} \equiv \mathrm{I}(m)$, giving $\mathrm{H}(m) \mid h$. For $\left\{\mathrm{S}_{n}\right\}$ we have $a=\mathrm{S}_{0}=2, b=\mathrm{S}_{1}=\mathrm{A}$ and so $\mathrm{E}=-\mathrm{D}$, from which the special case follows.

Remark. Note that, if $(\mathrm{E}, m) \neq \mathrm{I}$, both cases $h(a, b, m)=\mathrm{H}(m)$ and $h(a, b, m) \mid \mathrm{H}(m)$, but $h(a, b, m) \neq \mathrm{H}(m)$ can occur as the following example shows: Take $\mathrm{A}=3, \mathrm{~B}=-\mathrm{I}, m=9$; then $\mathrm{H}(9)=6$ and $h(\mathrm{I}, \mathrm{I}, 9)=6$, but $h(\mathrm{I}, 7,9)=3$ (in both cases $3 \mid \mathrm{E}$).

Corollary 6. If ${ }^{(1)} p \mid \mathrm{D}, p>2, p ł(b \mathrm{~A}-2 a \mathrm{~B})$, then $h\left(a, b, p^{k}\right)=$ $=\mathrm{H}\left(p^{k}\right)$.

Proof. This is Lemma I of [I$]$. Note that $4 \mathrm{BE}=(2 a \mathrm{~B}-b \mathrm{~A})^{2}-\mathrm{D} b^{2}$, and so under the conditions $p \mid \mathrm{D}, p \nmid 2 \mathrm{~B}$ we have the equivalence ($m=p^{k}, \mathrm{E}$) $=\mathrm{I}$ if and only if $p \nmid(2 a \mathrm{~B}-b \mathrm{~A})$; and now the corollary is immediate from Theorem in.

Corollary 7. If $p>2,(\mathrm{D} / p)=-\mathrm{I}$, then $h\left(a, b, p^{k}\right)=\mathrm{H}\left(p^{k}\right)$ in case $(a, b, p)=1$.

Proof. We have $4 \mathrm{E}=(2 b-a \mathrm{~A})^{2}-a^{2} \mathrm{D}$. Take $m=p^{k}$. If we had $\left(\mathrm{E}, p^{k}\right) \neq \mathrm{I}$, then $p \mid \mathrm{E}$ and so

$$
\begin{equation*}
(2 b-a \mathrm{~A})^{2} \equiv a^{2} \mathrm{D} \quad(\bmod p) . \tag{19}
\end{equation*}
$$

If $p \mid a$, then by $p \mid \mathrm{E}$ we have $p \mid b$ and so $p \mid(a, b, p)$. So $p \nmid a$ and from (19) we see that D is a quadratic residue $\bmod p$ against $(\mathrm{D} / p)=-\mathrm{I}$. Hence $\left(\mathrm{E}, p^{k}\right)=\mathrm{I}$ and Theorem II gives the assertion.

Theorem 12. If m is odd and a, b are such that $(a, b, m)=\mathrm{I}, h=$ $=h(a, b, m)$ is odd and $\mathrm{B}^{h} \equiv-\mathrm{I}(\bmod m)$, then $\mathrm{H}(m)=2 h$ in case $\mathrm{H}(m)$ is even and $\mathrm{H}(m)=h$ in case $\mathrm{H}(m)$ is odd.

Proof. Regarding now
(20)

$$
\begin{aligned}
& \mathrm{G}_{h}-a=\mathrm{R}_{h} b-\left(\mathrm{I}+\mathrm{BR}_{h-1}\right) a \equiv \mathrm{o} \\
& \mathrm{G}_{h+1}-b=\left(\mathrm{R}_{h+1}-\mathrm{I}\right) b-\mathrm{BR}_{h} a \equiv \mathrm{o}
\end{aligned} \quad(\bmod m)
$$

as a system in a, b, one has from $(a, b, m)=\mathrm{I} \bmod m$

$$
\begin{gathered}
\mathrm{o} \equiv\left(\mathrm{R}_{h+1}-\mathrm{I}\right)\left(\mathrm{BR}_{h-1}+\mathrm{I}\right)-\mathrm{BR}_{h}^{2}=\mathrm{B}\left(\mathrm{R}_{h+1} \mathrm{R}_{h-1}-\mathrm{R}_{h}^{2}\right)+ \\
+\left(\mathrm{R}_{h+1}-\mathrm{BR}_{h-1}\right)-\mathrm{I}=-\mathrm{B}^{h}+\mathrm{S}_{h}-\mathrm{I}
\end{gathered}
$$

in virtue of (6) and (9). So $\mathrm{S}_{h} \equiv \mathrm{o}(\bmod m)$ by assumption and $\mathrm{R}_{2 h} \equiv \mathrm{o}(m)$ by (8). Furthermore, we have by (6) and (io)

$$
2 \mathrm{R}_{2 h+1}=\mathrm{AR}_{2 h}+\left(\mathrm{R}_{2 h+1}-\mathrm{BR}_{2 h-1}\right) \equiv \mathrm{S}_{2 h} \equiv-2 \mathrm{~B}^{h} \equiv 2 \quad(\bmod m)
$$

and so $\mathrm{R}_{2 h} \equiv \mathrm{o}, \mathrm{R}_{2 h+1} \equiv \mathrm{I}(\bmod m)$, which gives $\mathrm{H}(m) \mid 2 h$. From $h \mid \mathrm{H}(m)$ (see the beginning of the proof of Theorem II) the result follows immediately.

The next corollary comes easily from Theorem 12 and Corollary 3.
Corollary 8. If m is odd and B such that $\mathrm{B} \equiv-\mathrm{I}(\bmod m)$, if further a, b are such that $(a, b, m)=\mathrm{I}$ and $h(a, b, m)$ is odd, then $\mathrm{H}(m)=$ $=2 \hbar(a, b, m)$.

Theorem i3. If $(\mathrm{D}, m)=\mathrm{I}, \mathrm{B} \equiv-\mathrm{I}(\bmod m)$ and a, b are such that $(a, b, m)=\mathrm{I}$ and $h=h(a, b, m)$ is even, then $\mathrm{H}(m)=h$.

Proof. We now write the system (20) of congruences as equations and since $\mathrm{B} \equiv$ - I $(\bmod m)$ we obtain

$$
\begin{align*}
& \mathrm{R}_{h} \cdot b+\left(\mathrm{R}_{h-1}-\mathrm{I}\right) a=x m \\
& \left(\mathrm{R}_{h+1}-\mathrm{I}\right) b+\mathrm{R}_{h} a=\lambda m \tag{2I}
\end{align*}
$$

with certain rational integers x, λ.
First let $h / 2$ be odd. Then by (8) we have

$$
\mathrm{R}_{h+1} \equiv \mathrm{~S}_{k / 2} \mathrm{R}_{k / 2+1}+\mathrm{I} \quad, \quad \mathrm{R}_{h-1} \equiv \mathrm{R}_{h / 2-1} \mathrm{~S}_{h / 2}+\mathrm{I} \quad(\bmod m)
$$

Inserting this and $\mathrm{R}_{h}=\mathrm{R}_{h / 2} \mathrm{~S}_{h / 2}$ in (2I) we get with certain rational integers $x^{\prime}, \lambda^{\prime}$

$$
\begin{align*}
& \mathrm{R}_{h / 2} b+\mathrm{R}_{h / 2-1} a=x^{\prime} m \mathrm{~S}_{h / 2}^{-1} \tag{22}\\
& \mathrm{R}_{h / 2+1} b+\mathrm{R}_{h / 2} a=\lambda^{\prime} m \mathrm{~S}_{h / 2}^{-1}
\end{align*}
$$

Now by (9) we have $\mathrm{R}_{h / 2}^{2}-\mathrm{R}_{h / 2-1} \mathrm{R}_{h / 2+1}=\mathrm{B}^{h / 2-1} \equiv \mathrm{I}(\bmod m)$. So from (22) we see that $m \mid a \mathrm{~S}_{h / 2}$ and $m \mid b \mathrm{~S}_{h / 2}$. If $m \nmid \mathrm{~S}_{h / 2}$, then m has a prime factor q with $q \nmid \mathrm{~S}_{h / 2}$, but $q \mid a$ and $q \mid b$ against our condition $(a, b, m)=\mathrm{I}$. So $\mathrm{S}_{h / 2} \equiv \mathrm{O}(\bmod m)$ and by (8)

$$
\mathrm{R}_{h}=\mathrm{R}_{h /} \cdot \mathrm{S}_{h / 2} \equiv \mathrm{o} \quad, \quad \mathrm{R}_{h+1}=\mathrm{S}_{h / 2} \mathrm{R}_{h / 2+1}-\mathrm{B}^{h / 2} \equiv \mathrm{I} \quad(\bmod m)
$$

and so $\mathrm{H}(m) \mid h$.
Now let $h / 2$ be even; then by (8) we have

$$
\mathrm{R}_{h+1} \equiv \mathrm{R}_{h / 2} \mathrm{~S}_{k / 2+1}+\mathrm{I} \quad, \quad \mathrm{R}_{k-1} \equiv \mathrm{R}_{k / 2} \mathrm{~S}_{k / 2-1}+\mathrm{I} \quad(\bmod m) .
$$

From (2I) we get with rational integers $\varkappa^{\prime \prime}, \lambda^{\prime \prime}$

$$
\begin{aligned}
& \mathrm{S}_{h / 2} b+\mathrm{S}_{k / 2-1} a=x^{\prime \prime} m \mathrm{R}_{k / 2}^{-1} \\
& \mathrm{~S}_{h / 2+1} b+\mathrm{S}_{h / 2} a=\lambda^{\prime \prime} m \mathrm{R}_{k / 2}^{-1}
\end{aligned}
$$

and by (9) we have $\mathrm{S}_{h / 2}^{2}-\mathrm{S}_{h / 2-1} \mathrm{~S}_{h / 2+1} \equiv \mathrm{D}(\bmod m)$. Therefore we have $m \mid a \mathrm{DR}_{k / 2}$ and $m \mid b \mathrm{DR}_{k / 2}$, and so $m\left|a \mathrm{R}_{k / 2}, m\right| b \mathrm{R}_{k / 2}$ by $(\mathrm{D}, m)=\mathrm{I}$. Now we have $\mathrm{R}_{k / 2} \equiv \mathrm{o}(\bmod m)$, by an analogous reasoning as above, and so by (8)

$$
\mathrm{R}_{h}=\mathrm{R}_{h / 2} \mathrm{~S}_{h / 2} \equiv \mathrm{o} \quad, \quad \mathrm{R}_{k+1} \equiv \mathrm{R}_{k / 2} \mathrm{~S}_{h / 2+1}+\mathrm{B}^{h / 2} \equiv \mathrm{I} \quad(\bmod m)
$$

giving $\mathrm{H}(m) \mid h$ also in case $h / 2$ is even. Since $h \mid \mathrm{H}(m)$, our proof is complete.

Remark. It should be noted that our Theorem I3 is a generalization of Theorem 12 in [3], whose proof is however not clear to us. Furthermore, we do not need the condition that m is odd as in [3]. One may ask whether in
our Theorem 13 one can replace the condition $B \equiv-I(\bmod m)$ by the weaker condition $(\mathrm{B}, m)=\mathrm{I}$. The following example shows that this is not possible in general: Take $m=9, \mathrm{~A}=3, \mathrm{~B}=-4$, then $\mathrm{D}=4$ and $(\mathrm{D}, m)=$ $=\mathrm{I},(\mathrm{B}, m)=\mathrm{I}$ is satisfied. For $a=\mathrm{I}, b=2$ we have $(a, b, m)=\mathrm{I}$ and $h=h(a, b, m)=2$. But $\mathrm{H}(m)=6$.

References

[r] Bundschun P. and Shiue J.-S., Solution of a problem on the uniform distribution of integers, "Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur.», 55, 172-177 (1973).
[2] Scholz A. and Schoeneberg B., Einführung in die Zahlentheorie, 3. Aufl., Berlin: de Gruyter, 1961.
[3] Wall D. D., Fibonacci series modulo m., "Amer. Math. Monthly", 67, 52-61 (1961).

