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DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del g febbraio 1974

Presiede il Presidente della Classe BENIAMINO SEGRE

SEZIONE 1

(Matematica, meccanica, astronomia, geodesia e geofisica)

Teoria dei numeri. — A4 Generalizalion of a paper by D.D. Wall.
Nota di PerEr BunpscHuH e Jau-Suvona SHIUE @), presentata @9
dal Socio B. SeGre.

RIASSUNTO. — Vengono studiate alcune successioni che generalizzano quelle di Fibo-
nacci modulo un intero 7 > 2.

In this Note we study sequences {G,} of the following type. Let
A ,B,a,b be fixed rational integers, let the equation 22— Ax+4 B =o0
have distinct nonzero roots, which means B==0 and D = A? —4B==o,
and moreover let @, & be not both equal to zero. Then let {G,} be defined by

(1) Go=a , Gi=6 , G,,=AG,—BG, h=1,2, )

and let {R,} denote the special sequence of {G,} with a=o0,6=1.

Let 7 > 2 be a fixed natural number. In this note we are concerned
with the periods of {G,} modulo # and we generalize results proved by
D.D. Wall [3] in case of Fibonacci sequences; these occur in (1) by taking
A=—B=1.

THEOREM 1. {G,} 4s periodic mod m, i.e. there exists a rational integer
h=h(a,b,m) > o0 such that G,,;, =G, (mod m) for all n > ny(a,b,m)=>o0.
Especially if (B, m) = 1, then {G,} is purely periodic mod m, which means
that ny(a,b,m) = o.

Proof. Consider the 2 - 2 least nonnegative residues f}i of G; mod

for o <7< m?-+4 1 and consider further the 72+ 1 ordered pairs (é, , G,-+1),
0 < 7 < m?. Then there exist 7, £ with o < j < £ < m? such that (G;, G;;) =

(*) This paper was written while the second Author was a Humboldt Stiftung fellow
visiting University of Gottingen.
(**) Nella seduta del 9 febbraio 1974.
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o o
= (G;, Gpy1). From the recursion formula in (1) one sees that G;,, = G,
(mod m) for t=o0,1,2, -+, which gives

(2 Gi—jta =G,  (modm)

for #>j, which completes the proof of the first part of Theorem 1 and
shows that #ny(a, b,m) <j<m? k| (k—j) and so % < m?.

If (B, m)=1, then G; = G;, G;;1 = Gz11 (m) imply BG;_; = BG,_; ()
and so Gj_; = G;_; (). Thus by induction we get (2) for each 7 >o.

Remark. Take A= 1,B=2,m=4. We have that {R,(mod 4)}
begins with o,1,1,3,1,3,--- This shows that Z(o,1,4) = 2,
ny(0, 1, 4) = 2 for these A, B, and so it can in fact happen that the sequences
are not purely periodic if (B, )= 1. From now on we assume (B, m) =
Jor the vest of this paper, and so {G, (modm)} is always purely periodic.

COROLLARY 1. [f a = o, then Gyo,5,m = 0 (mod m) and in particular
Ruwy = 0o (mod m), where H (m) = % (0, 1 ,m) denotes the least period of
{R, (mod m)}.

THEOREM 2. If m has the prime factorization m -—H p thenh (a,b ,m)
is the least common multiple of the h(a,b, ph), 1 < Z < c.

Proof. We refer to the proof of Theorem 2 of [3].

In virtue of this theorem, it is clear that we can assume 7 to be a prime
power. We note that if % = (A + }D)/2, x, = (A — JD)/2 are the (distinct
nonzero) roots of x2— Ax + B = o, then we have R, = (x1 —x3) [ (%) — x5)
and we define S, by S, = 2]+ x5 for n=1o0,1,---

The next eight theorems contain results on the least periods of the special
sequences {R, (mod )} under various conditions. For several proofs we
need certain relations between the R,’s and the S,’s, which we collect in the
following lemma whose proof is very simple if one uses the trivial formulas
2+ 2 =A,x2,=B, r,—x,= |D.

LEMMA. For n,t,j >0 one has the relations

(3) R,i: = R,y1 R, —BR,R,_;, where R,=—B'Ry,
@ Rj, =2/ R, S/ + KR},
() Rjn1= 27 (S} + /AR, SiT' 4 LR})
(with certain rational integers K, L),
©) S, =2R,;1—AR, = R,;1 —BR,_4,
©) S, =DR,+ 4B",
(8) Ry=R,S, , Ropy1=R:,;—BR2=S R,,;—B"=R,S,,; + B,
©) R,1Ryy—Ri=—B"" | S,;S,,—S,=DB"",

(10) Sy, = S2—2B".
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Remartk. The proof of (4) is given in [1, Lemma 2] and that of (5) runs
in an analogous way.

THEOREM 3. T7he terms of {R,} which are divisible by m, have subscripts
which are exactly the multiples of a certain natural number f depending only
on m.

Proof. Assume R;=R; = o(m) with 7>, say. Then from (3) we
have R;;; =0 (m). On the other hand take » + # =14, n=7; in (3); we get
m | R;11R;_; from which we have R;_; = o (), since (R; 1, 7) = 1. Namely
if we had (Rjy1,7) =M > 1, then M |m | R; and M | R;;; and so M| R,
for each v>j;. But we have Ryymy+1 = 1 (mod ) and so also (mod M)
for all natural ¢ Lef / be the smallest natural number with R;= o ().
Then, by the preceding remark on R;,;, wehave R,y=o(m) forr=1,2,--
On the other hand, if there exists # such that R, = o (), then divide #» by
Jin=7f+g with o < g< f and the preceding result concerning R;_; shows
R,_= R, =0 (m), from Wthh we have g = 0 by the minimal condition
of f.

The following theorem can be proved along the same lines.

THEOREM 4. If in the sequence {R,} there are terms (with n > 0) being
zero, then these terms have subscripts whick are exactly the multiples of a certain
natural number g, say. :

In the next theorem all sequences {R,} in dependence of A, B are deter-
mined, in which zero-terms with subscripts > o occur.

THEOREM . {R,} kas zero-terms other than Ro if and only if exactly
one of the following conditions is satisfied: (i) A= o; (ii) B = A% (iii) 2B = A%
(iv) 3B = A® and the g of Theorem 4 is theng=2,g6=3,6=4,g=206
respectively.

Proof. Assume first that {R, } has zero-terms with subscripts > o and
let ¢ be the smallest such subscript. R, =0 is equivalent to (x/x5)° =1,
where x; and %y denote the roots of x2 Ax 4+ B = o mentioned above.
Now

¥—1=[]®, @),
kg

where the ®, denote the cyclotomic polynomials, which are known to be
irreducible over the rational field and of exact degree ¢ (%), ¢ Eulers totient
function. y'= x;/x, is algebraic of degree two at most and a zero of x*— 1.
Therefore at least one of the numbers ®,(y) with Z| g is zero. But if ®,/(y) =0
for a certain g' | g, 1 < ¢’ < g, then obviously H ®,(y) =p—1=o0. This

implies Ry = 0 against the minimality COI’ldlthI’l of g. Therefore we have
@, (x/x5) =0 and so @, (x) must be of degree ¢ (g) < 2. It is easily checked
thatg =1, 2, 3, 4, 6 are the only natural numbers satisfying this condition.
Since Dy (#1/xp) = (%1 —xp)[x;=F 0 the value g= 1 1is impossible.

0 = @, (/%) = (%1 + x3)/%y = Az, implies A = 0 and the remaining cases
3, 4, 6 for g are treated in an analogous manner using the form of @, (x).
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By R,=A,R;3=A>-B ,R,=A(A>—2B), Rg=A (A —B) (A>—3B),
we know that the converse is also true.

COROLLARY 2. [f A==0 and B <o, then R,==0 for all n>o. If
n =41 (mod 6), then R,==0 for all admissible A , B.
Now we begin to study H (). The simplest result is contained in

THEOREM 6. The order of B mod m divides H (m).

Proof. Writing H for H (m) the congruences Ry =0, Ry, =1 (%)
show 1 = — BRy_; (m), such that we have

(11) R,=—BRy_, (modm)
for x = 0, 1. Assume that (11) is proved for o < x <y where y < H, then
— B Ry_yn=B"Ru__n—AB*Ru_,=—BR._;+AR,=R,,; (modm).

Thus (11) is proved for all x with o <x < H. Taking x =H —y in (11),
one gets Ry_, = — B" 7R, (mod ) and so — B’ Ry_, = B" R, =R, (mod ).
y =1 (for example) shows B" = 1( m) giving the result.

COROLLARY 3. If m > 2 is such that B = — 1 (m), then H (m) is even.
Especially H (m) is even for each m > 2, if B =—1.

Note that H () can be odd in both cases (D, ) =1 and (D, ) ==1.
If A=3 B=2, m=27 then D =1, (D, m) = 1, the order of B mod
is3and Hm) =3 IfA=1, B=2 m=7then D=—7 (D,m) =7,
the order of B mod # is once more 3 and H (m) = 21.

THEOREM 7. If® p|D, p> 2, then one has H (p) = 2dp if H (p)
is even. If H (p) is odd, then H (p) = dp. Here d denotes the exact order of
B mod p.

Proof. By p|D we have for v=o0,1,---
(12) Ry, =vAB"' | Ryu=(2v+1)B  (mod p)

the proof of which can be found in [1] in the beginning of §3. Taking v=dp
in (12), one sees that Ry = 0, Roqpr1 = 1 (mod p), such that H (p)| 2 dp.

In virtue of ptA (since p| D, pt2B) one has from (12) that p | H (p).
Namely, if H (p) = 2S, then o = Ry = SAB*> ' (p) and so p|S and if
H(p) =2S-+1, so 0= Ruy = H(p) B°(p) and so once more p|H (p).
Since d|(p —1), we have (d,p) =1 and so from Theorem 6 we know
dp | H (p). In case H () is odd the assertion follows from this and H (p) | 2dp.
In case H (p) is even, 2 S say, we have from (12)

1 =Rup =H () + 1) B =B° (mod p),

giving d | S and so 2d | H (p), from which the other assertion of Theorem 7
can be derived.
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THEOREM 8. Jf® p> 2 and H (42 4=H (p), then H ()= H (p) p*-
for E=1,2---. ‘

Proof. The theorem is obviously true for 2= 1 and we make induction
on k4. Assume that the theorem is yet proved up to (and including) a
certain £>1. Denote for shortness H (p%)=H,. Since Ry, 1 =0
Ry, +1 =1 (p**1) these congruences are also true mod p* such that H, | H, ;.
On the other hand we have by (4) and (5), inserting ;= p , #»=H, and

observing p == 2

RPH,& =0 , Rka+1 = (SHk/Z)p (mod Pb-l—]').

By (6) we have Sy, =2 (#) and so (Su,/2)” = 1 (p**1), showing that pH,
is a period of {R,(mod »*"")}, which means H,.1|pH,. So we have
H;11=1¢H, with ¢ either p or 1. If £=1, then #=p by the assumption of
Theorem 8. Now let 2> 2. If we had #= 1 or equivalently H;,; = H, =
= p*"'H, = pH,_, (using the induction hypothesis), then from

— — _ %+1
RH&_,.]_ - Rka_l =0 ’ RjﬁH,g_1+1 =1 (p )

one would get by (4) and (5) (faking J=2p,n=H;)
<I3> 0= RH?—1<pSg;il+ KR?M_1> (pﬂ-l) ’

(14) 1= (Sy,_,/2)"+ 27 pARy, | Si +277LRY, (5.

From (Ig)kv&;e have p*| Ry, | Sflzl, since p*t| p**73) Rik__l for £>2.
Since |2 | Ry, , and pt2B we have from (7) that #1415y, 4, such

that we can conclude
(15) Ry, , =0(ph.

Inserting this in (14) one sees that (Sy, ,/2)’ =1 (*+1). Now from Eulers
criterion [2, Satz 46] we conclude that Sy, | =2 (g% and so, by (6) and
(15), Ryg,_;41 = 1 (p*. This together with (15) shows that H,| H;_;, or equi-
valently pH, ;| H;_; (by H, = pH;_;), and this is impossible. Therefore
we have £ = p and H,.qy = pH, = p*H, and so the proof is complete.

Remark. 1t should be noted that Theorem 8 is in general non correct
in case p = 2, as it is shown by the following example. Take A = B =1,
then R,iso,1,1,0,—1,—1,0,1,---suchthat H2)=3+H @4 =6
and also H (2%) = 6 for each £> 2.

- COROLLARY 4. If W 5| D, p> 2,then H (p¥)=p#1H (p)fork=1,2,--.
In case p =3, this is only true under the extra condition H (9)=FH (3).

(1) It should be noted that on account of the remark after Theorem 1 we assume also
(B, #) =1, such that instead of p> 2 we could have written s} 2B.
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COROLLARY 5. If® p|D, p> 2, then we have H (p¥) = 2 dp* for
k=1,2,- if H(p) is even, and H (p*) = dp* if H (p) is odd. Hzwe d
a’motes z‘}ze exact order of B mod p. )

Proof of the corollaries. From [1, Lemma 5] one knows that 22| Rys?
implies 2 | H (#?) in case p == 3. If we had H (p%) = H (p), then 2| H (p) =
= fdp (with f either 1 or 2) in virtue of Theorem 7. But p|d is impossible,
and so H (p%) == H (p) if p =F= 3 and in case p = 3 this is true by an assumption
of Corollary 4. Now Theorem 8 gives all. Note that in the example of the
remark after Theorem 8 we have D = — 3 and taking p = 3 weget H (3%) = 6
for £#=1,2, -, which shows that the extra condition H (9)==H (3) of
Corollary 4 cannot be omitted. Corollary 5 follows now immediately from
Theorem 7. The first part of it was stated without proof in [1] after the for-
mulation of the main theorem.

THEOREM 9. Let M p > 2, ptD and the Legendre-symbol (D[p) = 1.
Then H(p) | {p — 1).

Proof. 1f x> — Ax + B has a double root » mod p, i.e. if 22— Ax + B =
=(x —7)2(p), then A=27, B =72 (mod p) and so p|D against an assump-
tion. Now we have

4(@*—Ax+B)=(2x—A)—D=o0(p) if and only if (22—A)*=D(p)

and since (D/p) = 1, p > 2 we have in virtue of the preceding remark two
mod p different rational integers y, , ¥, which are solutions of 2 — Ax + B =
= o (p). Obv1ously we have

(16) R,=R,= (0 —yl(y;—yy)  (mod p)
for =10 and » = 1. Now we have mod »
Roy1= AR, —BR, 1 = (A7 — By;™) — (Ay; — By D)3, — ) =

= (i ="y — ) = Rusa,

proving (16) for all #>o0. Now by Fermats theorem
pii=1, yt=y, (mod p) fori=1,2,
since pty, by ptB. So we have from (16) »
R,i=0 , R,=1 (mod p),

which 'gives thé result.

THEOREM 10. Let p>2 and (D[p)=—1. Then H(p)|d(p + 1),
where d s the exact order of B mod p.

Proof. Note first that here we have automatically p 1B and ptD. By
Eulers' criterion [2, Satz 57] we have — 1= (D/p) = DY P2 (p) and so
we get

(17) Ry=—1 , Ryy=o , Ryp=B (.
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Namely we have mod p

QN ? 52717 (5-1)2
= 21R, = ( ; TTD =DV =
R,=2 5 ];0 2]+I)A D I

H

giving the first congruence in (17). The second we get from

(p=1)2 . (=32 : ..
o= 2 (G = R LA ) 4=

and the third follows from the recursion formula.
Applying (4) and (5) with j=d, »= p + 1 gives by (17)

(18) Raprn =0 ,  Ragin = (Spna/2)! (mod ).

By (6) and (17) we have S,,; = 2 B(p), and so (S,,;/2) = Bd = 1 (mod ),
which together with (18) gives the result. '

The Theorems 3 up to 10 gave information on the periods H (#2) of the
special sequence {R, ‘mod 72)} under various conditions. In the next three
theorems we study the connections between H () and the periods % (z , 6, )
of the general sequences {G, (mod )}.

THEOREM 11. Let E=06"—abA + & B and (E , m)=1,then ki (a , b , m) =
= H (m). In particular, if (D ,m) = 1, then {S, (mod m)} has period H (m).

Proof. By G, = bR,— aBR, ; (see for example [1, formula (2)]) it
is clear that % (a,b,m)|H (m). To prove the converse, let % denote
h(a,b,m) and consider the system mod

G,—a=06R,—a(1+BR, ) =0
G}H_l‘—b: (5A——aB) R;,—b(l + BRﬁ—l) =0,

in R;, 1+ BR,_;, whose determinant is —E. In virtue of (E, m) = 1 this
system has only the trivial solution

R}‘ =0 N BR}!—]. = —1 (m),
or equivalently R, = o, Ry, = 1 (m), giving H (%) | #. For {S,} we have
@a=S5y=2, 6=S,=A and so E=—D, from which the special case
follows.

Remark. Note that, if (E,m)==1, both cases % (a,b ,vm) = H (m)
and % (@, ,m)| H (m), but 4 (a, b ,m)==H (m) can occur as the following
example shows: Take A=3, B=-—1, m=g9; then H (9) =6 and
£(1,1,9) =6, but % (1 »7,9) =3 (in both cases 3| E).

COROLLARY 6. Jf @ p |D, p>2, pt (A —2aB), then k(a,b, p*) =
= H@.
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Proof. This is Lemma 1 of [1]. Note that 4 BE = (2 aB — 4A)*— D4#?,
and so under the conditions p|D, pt2B we have the equivalence
(m = p* ,E) =1 if and only if p1t(2aB—6A); and now the corollary is
immediate from Theorem 1T1.

COROLLARY 7. If p>2, (D[p)=—1, then k(a,b, p*) = H (p*) in
case (a,b,p) = 1.

Proof. We have 4E = (26— aA)’ —a®D. Take m= p*. If we had
(E,p) =1, then p|E and so
(19) (26 —aAP =d*D  (mod p).

If p|a, then by p| E we have p| b and so p|(a, b, ). So pta and from
(19) we see that D is a quadratic residue mod p against (D/p) = — 1.
Hence (E, ) =1 and Theorem 11 gives the assertion.

THEOREM 12. If m 4s odd and a,b are such that (a,b,m) =1, h =
=rkh(a,b,m) is odd and B" = —1 (mod m), then H (m)= 24 in case
H (m) is even and H (m) = % in case H (m) is odd.

Proof. Regarding now v

G‘;t — a = R;Lé_—<1 + BRh—])a =0

(20) (mod 2)
G’}H_l—&: <Rh+1_~ I) é_—Bth =0

as a system in &, 4, one has from (e, é,m) = 1 mod m
0=Ryy—1)(BR,;+ 1) — BR% =BR,u Ry —R) +
+ Ry —BR, ) —1=—B"+5,—1

in virtue of (6) and (9). So S, = o (mod 7) by assumption and Ry, = o (m)
by (8). Furthermore, we have by (6) and (10)

2 Rg;,_l_l :AR% —+ (R2h+]_ —_— BRQ},_l) = SQ;, =—2Bt=2 (mod m)

and so Ry, = 0, Rgsq1 = 1 (mod ), which gives H () | 2 4. From % | H (m)
(see the beginning of the proof of Theorem 11) the result follows immediately.
The next corollary comes easily from Theorem 12 and Corollary 3.

COROLLARY 8. If m is odd and B such that B = — 1 (mod ), if further
a,b are such that (a,6,m)=1 and h(a,b,m) is odd, then H (m)=
=2k(a,b,m).

THEOREM 13. If (D,m)=1,B = —1 (mod m) and a, b are such that
(@,b,m)=1 and h="h(a,b,m) is even, then H (m) = h.
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Proof. We now write the system (20) of congruences as equations and
since B = -—1 (mod m) we obtain
Ryb+Ry—1Da=um

(21) :
(R;t+1'—‘1>b _l—th:)\m

with certain rational integers », A.
First let %/2 be odd. Then by (8) we have

Rimi=Sm2Rugir+1  , Ri1=Rup1Sip+1 (mod ).
Inserting this and R, = Ry S;;2 in (21) we get with certain rational integers
xl , AI

Rijpé + Ryp_1 @ = %' m Sz
(22)

R/1/2+1b + Rh/g a = 7\, we S;,—/zl .

Now by (9) we have Rjp— Ryp_q Ripgs1 = B '=1 (mod m). So from
(22) we see that # | aSye and m | 6S,e. If m1S,s, then m has a prime
factor ¢ with ¢t Sy, but ¢ | a and ¢ | 4 against our condition (a, 6 ,m) = 1.
So S =0 (mod m) and by (8)

R,=Ry. Sis=0 , Ruyr1=SmRy1—B?=1  (mod m)

and so H () | 4.
Now let %/2 be even; then by (8) we have

Rivi=RupSigi+1  , Risi=RupSipa+1 (mod m2).
From (21) we get with rational integers »'' , )"

-1
Sie b+ Sye—1a = »""m Rjp

-1
Sip116 + Siga = N"m Ry

and by (9) we have 52/2—511/.2_1 Sye+1 =D (mod m). Therefore we have
m | aDRyp and | 6DR,e, and so m |aRyuse,m|éRus by (D,m) = 1.
Now we have Ry = o (mod ), by an analogous reasoning as above, and

so by (8)

Rh = R;,/g S],/g =0 y Rh+1 = R;,/z S;,/2+1 —|— B}l"2 =1 (mod m),
giving H ()| 2 also in case %[2 is even. Since % |H (m), our proof is
complete.

Remark. Tt should be noted that our Theorem 13 is a generalization of
Theorem 12 in [3], whose proof is however not clear to us. Furthermore,
we do not need the condition that » is odd as in [3]. One may ask whether in



144 Lincei — Rend. Sc. fis. mat. e nat. — Vol. LVI - febbraio 1974

our Theorem 13 one can replace the condition B = —1 (mod ) by the
weaker condition (B, ) = 1. The following example shows that this is not
possible in general: Take m = 9, A = 3, B=—4, then D = 4 and (D, m) =

=1, (B,m)=1 is satishied. For a=1, 6 =2 we have (@a,6,m)=1
and 2=/ (a,b,m)=2. But H(m) = 6.
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