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Mececanica. — Whiittaker's equations of non-holonomic mechanical
systems ©. Nota di Djorpje S. DjukiC presentata ®® dal Socio
B. Finzr.

RI1ASSUNTO. — Il suddetto estratto rappresenta la diminuzione delle equazioni diffe-
renziali del moto del sistema meccanico anolonomo per mezzo dell’energia integrale. Le equa-
zioni differenziali del moto sono in effetti le equazioni Hamel-Boltzmann date nelle quasi—
coordinate. Le Whittaker equazioni esequite sono applicate su un problema semplice della
meccanica anolonoma.

1. INTRODUCTION

Whittaker (see [1] or [2], p. 64) has shown that the energy integral can
be used for the reduction of a given holonomic conservative dynamical system
with # degrees of freedom to another dynamical system with only (7 — 1)
degrees of freedom. Inthese equations, the so-called Whittaker equations, a
generalized coordinate plays the role of time as the independent variable.
The solution of the equations yields the trajectories of the motion.

The aim of this article is to extend Whittaker’s idea to non-holonomic
mechanical systems which possesses an energy integral.

Let us consider a non-holonomic dynamical system. In this system the
number of independent coordinates (¢, ,---, ¢,) required in order to specify
the configuration of the system at any time is greater than the number of
degrees of freedom (7 —/) of the system, owing to the fact that the system
is subject to / constraints, which are expressed by the number of / non-
integrable kinematical relations of the form

(1) 24 @ g: =0 (s=1,-,2),

where a,; are given functions of the generalized coordinates (¢;,---, ¢,).

For such mechanical systems the governing equations of motion expressed
in terms of quasi-coordinates, the so-called Hamel-Boltzmann equations
(see for example [5], p. 370), are
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Here: L =T—Il-Lagrange’s function; T-kinetic energy; [I-potential energy;
P;—non-conservative forces; —qua51 -coordinates.

The quasi-velocities w,(s = 1,-- -, %) are linear combinations of the
velocities, and they are selected in such a way that the first / of them are equal
to zero as follows from (1).

dr, . )
(3 ‘%ZT:;%&%=O’ (s=1,"+-7),
dr. o .
(4) meZ*IT:Z“ekQA <€=Z+I,"',%),
fam |
where the a@,(e=/+41,---,n; A=1,--,%) are given functions of
715"+, 9, Solving (3-4) with respect to the g, we have the equations
(5) Q'xz Z éskwé (521)"':”)y
AS711
where the 4, are functions of ¢;,---,9,.

These 7 equations together with the 7 —/ equations (2) forms the
system of 27z -/ equations of the first order whose solution furnishes 7
quantities ¢, and 7z —/ unknown quasi-velocities , .

The so-called objects of anholonomity ¥;, have the structure

n

s [ sﬂsr
©) Yin = 24 r»_l( ) by by
and
El - 2
(7) Sﬁ::":]brs aqr (S,t,m: I"..’n)‘

If Lagrange’s function does not explicitly depend on time, i.e. dL/ot = o,
and if the non-conservative forces are equal to zero (P; = 0) this mechanical
system possesses an energy integral in the form (see for example [3], p. 200)

”

® Z , ;L — L = % = const.
sSlt1 s

2. - WHITTAKER’S EQUATIONS FOR A NON—HOLONOMIC MECHANICAL SYSTEM

At this point we generalize Whittaker’s ideas [1] to non-holonomic con-
servative mechanical systems.

Let us suppose that the quasi-coordinate =, plays the role of time as the
independent variable. - Than we have the following relation

©) W, = @, Ty @P=1,,n—0,

where m, = dn,/d=,, .
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If we replace in the Lagrange function L the quasi-velocities w,, by (9)
we have the function €, i.e.

(IO> L(TC]_ ,"',TC”,COI,"',O.)”> == Q(TCl,"‘,TEn,(t)n,TCi,"'», 7’1'.',/1_1>.

Then differentiating this expression one obtains

(1) L0 N e, 0
0wy, 2w, =~ u): 31:; ’
oL 1 2Q
12 — = — =1 ... — 1
( ) 20 4 ©y gnp ’ (p s y 72 )
oL I
<I3) o = e (m: 1,.."%)_

Combining (11) and (12) we have

n—1

20 oL A o
(14) ?

20, 0w, S0 o

Using this equation the equation of energy (8) may be written in the form

) ' .
(I5> Cl)nmQ(Tfm,(x)n,TCﬁ>——Q<TCm,(x)n,TC]}>Zﬁ,
(m=1, - n; p=1,,n—1)
where (15) furnishes w, as a function of the quantities =, ,- - T,y T, T
(16) 0, =, (T, T, T, -, T, k).

Substituting for , in the function 9Q/3e,, we obtain the function L'

’ ’ SQ r r
(I7> L’<7T1 )ty T, s T, Ttn—l) :mo-cl y Ty T, 0, T, Tt/l~l>>
which will be called Whittaker’s function.
Differentiating the equation of energy with respect to =, and T
(m=1, -, n;p=1,--,2—1), and recalling that », depends on m,,:
and w; by (16), one obtains

(18) O Q| FQ Bw,
STC;) T ( an 311:1; 3&5 87':1’) ’

2Q 2Q *Q dw,

(19) Ty “n(aw,,gnm + 502 afc,,,>’
m=1,.. .. ,n;p=1,...,n—1),

while from (17) we have
(20) L 3P0 FQ day,

Mm 0wy Oy, dw2 3y,

aL’ *Q FQ 0,
(@1) om,  dw dm, S

(mzl,"',%;pzl,"',%—-l).
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Comparing equations (19) and (20), we have

VI %
(22) il T e

and comparing equations (18) and (21), we have
Q oL’
2 = O,
(23) o o)
Combining these results with equations (12) and (13), one obtains

oL oL’ oL AL’

(24) QTp:—a—n—; ’ S_n,;zw”Sﬂ:m’ (p=1, " n—1;m=1,,n).

Substituting these equations into the Hamel-Boltzmann .equations of
motion (2) (P; = 0) and relations (5), and taking into account (g) and that
d/d? = o, d/dx,, we obtain the system

n

-1 »n—1
d oL A L, oL % o L
(25> m 371:1; —'_;%‘Itg—lY;ﬁ o T —— QWﬁE_QP’ (P—Z+I’ ) 72 I)!

dg:= ”ii

(26) d=w p=l+1 b"" T + b, (s=1,"",n),
where
* £ L’ <
! _ o 7 \ ! ’

(27) Qﬁ (TL'm » o) = 7%{ an o, Un (Y;;p + t=21'-‘;-1 Y;‘p Tt,) ’

m=1,--,n;r=I[4+1,---,n—1).
Here, II, denotes the function oL/dw, where ®;,---, ®, are replaced by
T, .., Tu1 using (9) and (16), i.e.

. : oL '

(28> Hn<nl y Ty T s T, Tcn-—l)z 3T”<Tc1" Ty T Wy, ':(’)n>‘

Now these equations (25) may be regarded as the equations of motion
of a new non-holonomic mechanical system where L' is Lagrange’s function,
7, plays the role of time as the independent variable and the Qj are ‘“non-
conservative forces”’. Thus the energy integral (8) enables us to reduce a
given non-holonomic mechanical system with (z —/) degrees of freedom to
another non-holonomic mechanical system with (z — 1 —/) degrees of free-
dom. When the mechanical system is holonomic and the quasi-coordinates
are true coordinates and the equations (25) reduce to the known Whittaker
equations (see [2], p. 66). Hence, the equations (25) may be called Whitta-
ker’s form of the Hamel-Boltzamann equations for non-holonomic conserva-
tive mechanical systems. As a rule when one uses the Hamel-Boltzmann
equafions (see for example [5], p. 371), one may omit in the function L’
the nonlinear terms with respect to mj,---,w . Also, the condition that
= --+=m;= 0 can be used only after calculating the terms oL’/or,.
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Here we have (2% -—/—1) equations (equations (2 5-26)) of the first
order with respect to the ¢, -+, ¢,; %41, -, mo_1 whose solution yields
these (27— /— 1) quantities as function of =,

(29> TC;—:TC;(TC,;,/L,L‘l,--~’£2ﬂ_1_l>,‘ <P=Z+I,“-,n~1),
(30) 9;29.«(7’%;/‘;51,"',62:1—1—1)’ (SZI,"',%>,
where /%, ¢y, ¢9,_,1 are constants of integration. When (20-30) are

substituted in equation (16) and after integration one obtains a functional
dependence between =, and the time

dw,
<3I> i:J (")n<n,z ; 1) + €201,

%, Ci,-v, Con—i

where ¢;,_; is an integration constant. Hence, we have the complete solution
of the equation of motion.

Combining (14), (17) and (9) we have Whittaker’s function in the form
n—1 _

’ N oL ’ oL
(32) ngmﬁr"}”'w,
where on the right hand side o, ..., ®, must be eliminated using (9) and (16).

3. EXAMPLE

Let us illustrate the application of the present theory to a simple non-
holonomic problem (see [4], p. 20). Two material particles M and Mz of unit
mass (7 = 1) are joined by a rod of constant length 4 and negligible mass.
The system can be moved only in the vertical plane and only in such a way
that the velocity of the rod’s centre is directed along the rod.

Let be th{e independent coordinates 711 95,95 (n=3), where ¢, and ¢,
are the Cartesian coordinates of the rod’s centre (the axis Og, is vertical) and
7, is the angle between the rod and the Og, axis.

Now, the Lagrangian function is

co . 6% .

(33) L=gi+di+di—2s0
and the axial velocity of the rod’s centre yields the non-holonomic constraint
(34) _élsin93+ézcosgazo’ v (¢=1),
where g is the gravitational constant.

‘Let us introduce the quasi-velocities
<35> 0 = 7:51':""‘91 Sinqg + éz Ccos gy,
(36) W, = 7:C2 = ——Ql CcoS g3—é2 sin 93 ’

(37) W3 = 7:("3 = 93 .
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Comparing (35) with (34) it is obvious that w; = 0. From (37) we have that
73 = ¢,. Using (35-37) Lagrange’s function transforms into

&2
(38) L=co§+—4—(o§—2gq2—i—-~-

Combining (38), (9) and (8) (s = 2; 7z = 3) we have the energy integral in
the form

5% ,
(39) o (L4 )= h—2gg,,

whose solution is,

h—289>
(40) o=,
G

Now, from (32), (38), (9) and (40) one obtains Whittaker’s function

(a1) L'=2|(h—2gg %+ -
In this example the objects of anholonomity takes the values
(42) Y=Y =YhL=7Ts=0 ;5 Yg=1 ; Ya=—1I;
Y, =0 ;Ayzuz—m ; Yf;T:o; vy, T=1,2,3).

Substituting (41—42) into (25) (p = 2) and using (7), (5) and (35-37) we obtain
Whittaker’s equation of motion (here is #—1—/=1I)

’

dm, . 22 '
(43) (/L—quz)d—m~gs1ng3<7+rc2)=o,

This equation must be solved together with the following equations

(44) Ty = T C0S93 T2,
dg . .

(45) drcz = —sing, my,
dg

(46) =

which are obtained by solving (35-37) with respect to ¢,, ¢, and ¢, and
using (9) (p = 2 ;7 = 3) and the fact that w; = o.
The solutions to equations (43—46) are

’ 2
7 7 — — gél cos T + 6,
' g£2 g(:2
(4%) g, = —¢3sinmg + 21 7'C3-|—Tlsin2ﬂ:3+£3,
(49) = ¢, COS Ttg — $4 cos? g — 4 AP
72 2 3 2 3 286 2g 8gc’
(50) 93 = T3,

where %, ¢;, ¢, and ¢3 are constants of integration.
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Substituting (47-50) into (40) and after integration (wz= dmng/d?) we
have the quasi-coordinate w3 as a function of the time

t ]
(51) T3 = T 4,
1

where ¢4 is a constant of integration. Hence, we have the complete solution
of the problem. This solution (equations (48-51)) is same as those obtained
in [4], p. 53 by application of Appell’s equations of motion for non-holo-
nomic mechanical systems.
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